-
2
-
-
84861657962
-
Fundamentals of FGF19 & FGF21 action in vitro and in vivo
-
Adams, A. C., T. Coskun, A. R. Rovira, M. A. Schneider, D. W. Raches, R. Micanovic, H. A. Bina, J. D. Dunbar, and A. Kharitonenkov. 2012b. Fundamentals of FGF19 & FGF21 action in vitro and in vivo. PLoS ONE 7:e38438.
-
(2012)
PLoS ONE
, vol.7
-
-
Adams, A.C.1
Coskun, T.2
Rovira, A.R.3
Schneider, M.A.4
Raches, D.W.5
Micanovic, R.6
Bina, H.A.7
Dunbar, J.D.8
Kharitonenkov, A.9
-
3
-
-
84880610688
-
FGF21 drives a shift in adipokine tone to restore metabolic health
-
Adams, A. C., and A. Kharitonenkov. 2013. FGF21 drives a shift in adipokine tone to restore metabolic health. Aging 5:386-387.
-
(2013)
Aging
, vol.5
, pp. 386-387
-
-
Adams, A.C.1
Kharitonenkov, A.2
-
4
-
-
84883260199
-
Fibroblast Growth Factor 21 is not required for the antidiabetic actions of thiazolidinediones
-
Adams, A. C., T. Coskun, C. C. Cheng, L. S. O'Farrell, S. L. DuBois, R. E. Gimeno, and A. Kharitonenkov. 2013a. Fibroblast Growth Factor 21 is not required for the antidiabetic actions of thiazolidinediones. Molecular Metabolism 2:205-214.
-
(2013)
Molecular Metabolism
, vol.2
, pp. 205-214
-
-
Adams, A.C.1
Coskun, T.2
Cheng, C.C.3
O'Farrell, L.S.4
DuBois, S.L.5
Gimeno, R.E.6
Kharitonenkov, A.7
-
5
-
-
84879187565
-
LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys
-
Adams, A. C., C. A. Halstead, B. C. Hansen, A. R. Irizarry, J. A. Martin, S. R. Myers, V. L. Reynolds, H. W. Smith, V. J. Wroblewski, and A. Kharitonenkov. 2013b. LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys. PLoS ONE 8:e65763.
-
(2013)
PLoS ONE
, vol.8
-
-
Adams, A.C.1
Halstead, C.A.2
Hansen, B.C.3
Irizarry, A.R.4
Martin, J.A.5
Myers, S.R.6
Reynolds, V.L.7
Smith, H.W.8
Wroblewski, V.J.9
Kharitonenkov, A.10
-
6
-
-
84905679771
-
The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue
-
Adams, A. C., C. Yang, T. Coskun, C. C. Cheng, R. E. Gimeno, Y. Luo, and A. Kharitonenkov. 2013c. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Molecular Metabolism 2:31-37.
-
(2013)
Molecular Metabolism
, vol.2
, pp. 31-37
-
-
Adams, A.C.1
Yang, C.2
Coskun, T.3
Cheng, C.C.4
Gimeno, R.E.5
Luo, Y.6
Kharitonenkov, A.7
-
7
-
-
70350322694
-
Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis
-
Badman, M. K., A. Koester, J. S. Flier, A. Kharitonenkov, and E. Maratos-Flier. 2009. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 150:4931-4940.
-
(2009)
Endocrinology
, vol.150
, pp. 4931-4940
-
-
Badman, M.K.1
Koester, A.2
Flier, J.S.3
Kharitonenkov, A.4
Maratos-Flier, E.5
-
8
-
-
84885484874
-
Pegylated FGF21 rapidly normalizes insulin-stimulated glucose utilization in diet-induced insulin resistant mice
-
Camacho, R. C., P. T. Zafian, J. Achanfuo-Yeboah, A. Manibusan, and J. P. Berger. 2013. Pegylated FGF21 rapidly normalizes insulin-stimulated glucose utilization in diet-induced insulin resistant mice. Eur. J. Pharmacol. 715:41-45.
-
(2013)
Eur. J. Pharmacol.
, vol.715
, pp. 41-45
-
-
Camacho, R.C.1
Zafian, P.T.2
Achanfuo-Yeboah, J.3
Manibusan, A.4
Berger, J.P.5
-
9
-
-
79960743932
-
Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21
-
Chartoumpekis, D. V., I. G. Habeos, P. G. Ziros, A. I. Psyrogiannis, V. E. Kyriazopoulou, and A. G. Papavassiliou. 2011. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol. Med. 17:736-740.
-
(2011)
Mol. Med.
, vol.17
, pp. 736-740
-
-
Chartoumpekis, D.V.1
Habeos, I.G.2
Ziros, P.G.3
Psyrogiannis, A.I.4
Kyriazopoulou, V.E.5
Papavassiliou, A.G.6
-
10
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
Coskun, T., H. A. Bina, M. A. Schneider, J. D. Dunbar, C. C. Hu, Y. Chen, D. E. Moller, and A. Kharitonenkov. 2008. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018-6027.
-
(2008)
Endocrinology
, vol.149
, pp. 6018-6027
-
-
Coskun, T.1
Bina, H.A.2
Schneider, M.A.3
Dunbar, J.D.4
Hu, C.C.5
Chen, Y.6
Moller, D.E.7
Kharitonenkov, A.8
-
11
-
-
84865741904
-
BetaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism
-
Ding, X., J. Boney-Montoya, B. M. Owen, A. L. Bookout, K. C. Coate, D. J. Mangelsdorf, and S. A. Kliewer. 2012. betaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab. 16:387-393.
-
(2012)
Cell Metab.
, vol.16
, pp. 387-393
-
-
Ding, X.1
Boney-Montoya, J.2
Owen, B.M.3
Bookout, A.L.4
Coate, K.C.5
Mangelsdorf, D.J.6
Kliewer, S.A.7
-
12
-
-
84863012459
-
Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones
-
Dutchak, P. A., T. Katafuchi, A. L. Bookout, J. H. Choi, R. T. Yu, D. J. Mangelsdorf, and S. A. Kliewer. 2012. Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 148:556-567.
-
(2012)
Cell
, vol.148
, pp. 556-567
-
-
Dutchak, P.A.1
Katafuchi, T.2
Bookout, A.L.3
Choi, J.H.4
Yu, R.T.5
Mangelsdorf, D.J.6
Kliewer, S.A.7
-
13
-
-
84863012022
-
FGF21 regulates PGC-1[alpha] and browning of white adipose tissues in adaptive thermogenesis
-
Fisher, F. M. 2012. FGF21 regulates PGC-1[alpha] and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26:271-281.
-
(2012)
Genes Dev.
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
-
14
-
-
79960726293
-
Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo
-
Fisher, F. M., J. L. Estall, A. C. Adams, P. J. Antonellis, H. A. Bina, J. S. Flier, A. Kharitonenkov, B. M. Spiegelman, and E. Maratos-Flier. 2011. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 152:2996-3004.
-
(2011)
Endocrinology
, vol.152
, pp. 2996-3004
-
-
Fisher, F.M.1
Estall, J.L.2
Adams, A.C.3
Antonellis, P.J.4
Bina, H.A.5
Flier, J.S.6
Kharitonenkov, A.7
Spiegelman, B.M.8
Maratos-Flier, E.9
-
15
-
-
84863012022
-
FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis
-
Fisher, F. M., S. Kleiner, N. Douris, E. C. Fox, R. J. Mepani, F. Verdeguer, J. Wu, A. Kharitonenkov, J. S. Flier, E. Maratos-Flier, and B. M. Spiegelman. 2012. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 26:271-281.
-
(2012)
Genes Dev.
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
Kleiner, S.2
Douris, N.3
Fox, E.C.4
Mepani, R.J.5
Verdeguer, F.6
Wu, J.7
Kharitonenkov, A.8
Flier, J.S.9
Maratos-Flier, E.10
Spiegelman, B.M.11
-
16
-
-
84883481988
-
Effects of a fibroblast growth factor 21 analog, LY2405319, in obese human subjects with type 2 diabetes; results of a randomized proof-ofconcept trial
-
Gaich, G., J. Y. Chien, H. Fu, L. C. Glass, A. Kharitonenkov, T. Bumol, H. K. Schilske, and D. E. Moller. 2013. Effects of a fibroblast growth factor 21 analog, LY2405319, in obese human subjects with type 2 diabetes; results of a randomized proof-ofconcept trial. Cell Metab. 18:333-340.
-
(2013)
Cell Metab.
, vol.18
, pp. 333-340
-
-
Gaich, G.1
Chien, J.Y.2
Fu, H.3
Glass, L.C.4
Kharitonenkov, A.5
Bumol, T.6
Schilske, H.K.7
Moller, D.E.8
-
17
-
-
84874616515
-
Differential enzyme-linked immunosorbent assay and ligandbinding mass spectrometry for analysis of biotransformation of protein therapeutics: Application to various FGF21 modalities
-
Hager, T., C. Spahr, J. Xu, H. Salimi-Moosavi, and M. Hall. 2013. Differential enzyme-linked immunosorbent assay and ligandbinding mass spectrometry for analysis of biotransformation of protein therapeutics: Application to various FGF21 modalities. Anal. Chem. 85:2731-2738.
-
(2013)
Anal. Chem.
, vol.85
, pp. 2731-2738
-
-
Hager, T.1
Spahr, C.2
Xu, J.3
Salimi-Moosavi, H.4
Hall, M.5
-
18
-
-
84877272187
-
An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice
-
Holland, W. L., A. C. Adams, J. T. Brozinick, H. H. Bui, Y. Miyauchi, C. M. Kusminski, S. M. Bauer, M. Wade, E. Singhal, C. C. Cheng, K. Volk, M. S. Kuo, R. Gordillo, A. Kharitonenkov, and P. E. Scherer. 2013. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 17:790-797.
-
(2013)
Cell Metab.
, vol.17
, pp. 790-797
-
-
Holland, W.L.1
Adams, A.C.2
Brozinick, J.T.3
Bui, H.H.4
Miyauchi, Y.5
Kusminski, C.M.6
Bauer, S.M.7
Wade, M.8
Singhal, E.9
Cheng, C.C.10
Volk, K.11
Kuo, M.S.12
Gordillo, R.13
Kharitonenkov, A.14
Scherer, P.E.15
-
19
-
-
77249099832
-
Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat
-
Hondares, E., M. Rosell, F. J. Gonzalez, M. Giralt, R. Iglesias, and F. Villarroya. 2010. Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab. 11:206-212.
-
(2010)
Cell Metab.
, vol.11
, pp. 206-212
-
-
Hondares, E.1
Rosell, M.2
Gonzalez, F.J.3
Giralt, M.4
Iglesias, R.5
Villarroya, F.6
-
20
-
-
70349324370
-
Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver
-
Hotta, Y., H. Nakamura, M. Konishi, Y. Murata, H. Takagi, S. Matsumura, K. Inoue, T. Fushiki, and N. Itoh. 2009. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 150:4625-4633.
-
(2009)
Endocrinology
, vol.150
, pp. 4625-4633
-
-
Hotta, Y.1
Nakamura, H.2
Konishi, M.3
Murata, Y.4
Takagi, H.5
Matsumura, S.6
Inoue, K.7
Fushiki, T.8
Itoh, N.9
-
21
-
-
79958126904
-
A better anti-diabetic recombinant human fibroblast growth factor 21 (rhFGF21) modified with polyethylene glycol
-
Huang, Z., H. Wang, M. Lu, C. Sun, X. Wu, Y. Tan, C. Ye, G. Zhu, X. Wang, L. Cai, and X. Li. 2011. A better anti-diabetic recombinant human fibroblast growth factor 21 (rhFGF21) modified with polyethylene glycol. PLoS ONE 6:e20669.
-
(2011)
PLoS ONE
, vol.6
-
-
Huang, Z.1
Wang, H.2
Lu, M.3
Sun, C.4
Wu, X.5
Tan, Y.6
Ye, C.7
Zhu, G.8
Wang, X.9
Cai, L.10
Li, X.11
-
22
-
-
45649085226
-
Inhibition of growth hormone signaling by the fasting-induced hormone FGF21
-
Inagaki, T., V. Y. Lin, R. Goetz, M. Mohammadi, D. J. Mangelsdorf, and S. A. Kliewer. 2008. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab. 8:77-83.
-
(2008)
Cell Metab.
, vol.8
, pp. 77-83
-
-
Inagaki, T.1
Lin, V.Y.2
Goetz, R.3
Mohammadi, M.4
Mangelsdorf, D.J.5
Kliewer, S.A.6
-
23
-
-
0034333526
-
Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein
-
Ito, S., S. Kinoshita, N. Shiraishi, S. Nakagawa, S. Sekine, T. Fujimori, and Y. I. Nabeshima. 2000. Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech. Dev. 98:115-119.
-
(2000)
Mech. Dev.
, vol.98
, pp. 115-119
-
-
Ito, S.1
Kinoshita, S.2
Shiraishi, N.3
Nakagawa, S.4
Sekine, S.5
Fujimori, T.6
Nabeshima, Y.I.7
-
24
-
-
77955814651
-
Hormone-like (endocrine) Fgfs: Their evolutionary history and roles in development, metabolism, and disease
-
Itoh, N. 2010. Hormone-like (endocrine) Fgfs: Their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res. 342:1-11.
-
(2010)
Cell Tissue Res.
, vol.342
, pp. 1-11
-
-
Itoh, N.1
-
25
-
-
54849438574
-
FGF21 is an Akt-regulated myokine
-
Izumiya, Y., H. A. Bina, N. Ouchi, Y. Akasaki, A. Kharitonenkov, and K. Walsh. 2008. FGF21 is an Akt-regulated myokine. FEBS Lett. 582:3805-3810.
-
(2008)
FEBS Lett.
, vol.582
, pp. 3805-3810
-
-
Izumiya, Y.1
Bina, H.A.2
Ouchi, N.3
Akasaki, Y.4
Kharitonenkov, A.5
Walsh, K.6
-
26
-
-
70350093621
-
Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice
-
Johnson, C. L., J. Y. Weston, S. A. Chadi, E. N. Fazio, M. W. Huff, A. Kharitonenkov, A. Koester, and C. L. Pin. 2009. Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology 137:1795-1804.
-
(2009)
Gastroenterology
, vol.137
, pp. 1795-1804
-
-
Johnson, C.L.1
Weston, J.Y.2
Chadi, S.A.3
Fazio, E.N.4
Huff, M.W.5
Kharitonenkov, A.6
Koester, A.7
Pin, C.L.8
-
27
-
-
84861047531
-
A PPARgamma-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis
-
Jonker, J. W., J. M. Suh, A. R. Atkins, M. Ahmadian, P. Li, J. Whyte, M. He, H. Juguilon, Y. Q. Yin, C. T. Phillips, R. T. Yu, J. M. Olefsky, R. R. Henry, M. Downes, and R. M. Evans. 2012. A PPARgamma-FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature 485:391-394.
-
(2012)
Nature
, vol.485
, pp. 391-394
-
-
Jonker, J.W.1
Suh, J.M.2
Atkins, A.R.3
Ahmadian, M.4
Li, P.5
Whyte, J.6
He, M.7
Juguilon, H.8
Yin, Y.Q.9
Phillips, C.T.10
Yu, R.T.11
Olefsky, J.M.12
Henry, R.R.13
Downes, M.14
Evans, R.M.15
-
29
-
-
84874903440
-
Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319
-
Kharitonenkov, A., J. M. Beals, R. Micanovic, B. A. Strifler, R. Rathnachalam, V. J. Wroblewski, S. Li, A. Koester, A. M. Ford, T. Coskun, J. D. Dunbar, C. C. Cheng, C. C. Frye, T. F. Bumol, and D. E. Moller. 2013. Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS ONE 8:e58575.
-
(2013)
PLoS ONE
, vol.8
-
-
Kharitonenkov, A.1
Beals, J.M.2
Micanovic, R.3
Strifler, B.A.4
Rathnachalam, R.5
Wroblewski, V.J.6
Li, S.7
Koester, A.8
Ford, A.M.9
Coskun, T.10
Dunbar, J.D.11
Cheng, C.C.12
Frye, C.C.13
Bumol, T.F.14
Moller, D.E.15
-
30
-
-
39149091423
-
FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho
-
Kharitonenkov, A., J. D. Dunbar, H. A. Bina, S. Bright, J. S. Moyers, C. Zhang, L. Ding, R. Micanovic, S. F. Mehrbod, M. D. Knierman, J. E. Hale, T. Coskun, and A. B. Shanafelt. 2008. FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho. J. Cell. Physiol. 215:1-7.
-
(2008)
J. Cell. Physiol.
, vol.215
, pp. 1-7
-
-
Kharitonenkov, A.1
Dunbar, J.D.2
Bina, H.A.3
Bright, S.4
Moyers, J.S.5
Zhang, C.6
Ding, L.7
Micanovic, R.8
Mehrbod, S.F.9
Knierman, M.D.10
Hale, J.E.11
Coskun, T.12
Shanafelt, A.B.13
-
31
-
-
79952103793
-
FGF21 reloaded: Challenges of a rapidly growing field
-
Kharitonenkov, A., and P. Larsen. 2011. FGF21 reloaded: Challenges of a rapidly growing field. Trends Endocrinol. Metab. 22:81-86.
-
(2011)
Trends Endocrinol. Metab.
, vol.22
, pp. 81-86
-
-
Kharitonenkov, A.1
Larsen, P.2
-
32
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
Kharitonenkov, A., T. L. Shiyanova, A. Koester, A. M. Ford, R. Micanovic, E. J. Galbreath, G. E. Sandusky, L. J. Hammond, J. S. Moyers, R. A. Owens, J. Gromada, J. T. Brozinick, E. D. Hawkins, V. J. Wroblewski, D. S. Li, F. Mehrbod, S. R. Jaskunas, and A. B. Shanafelt. 2005. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115:1627-1635.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 1627-1635
-
-
Kharitonenkov, A.1
Shiyanova, T.L.2
Koester, A.3
Ford, A.M.4
Micanovic, R.5
Galbreath, E.J.6
Sandusky, G.E.7
Hammond, L.J.8
Moyers, J.S.9
Owens, R.A.10
Gromada, J.11
Brozinick, J.T.12
Hawkins, E.D.13
Wroblewski, V.J.14
Li, D.S.15
Mehrbod, F.16
Jaskunas, S.R.17
Shanafelt, A.B.18
-
33
-
-
33846418834
-
The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21
-
Kharitonenkov, A., V. J. Wroblewski, A. Koester, Y. F. Chen, C. K. Clutinger, X. T. Tigno, B. C. Hansen, A. B. Shanafelt, and G. J. Etgen. 2007. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148:774-781.
-
(2007)
Endocrinology
, vol.148
, pp. 774-781
-
-
Kharitonenkov, A.1
Wroblewski, V.J.2
Koester, A.3
Chen, Y.F.4
Clutinger, C.K.5
Tigno, X.T.6
Hansen, B.C.7
Shanafelt, A.B.8
Etgen, G.J.9
-
34
-
-
55249119775
-
The Klotho gene family and the endocrine fibroblast growth factors
-
Kurosu, H., and M. Kuro-o. 2008. The Klotho gene family and the endocrine fibroblast growth factors. Curr. Opin. Nephrol. Hypertens. 17:368-372.
-
(2008)
Curr. Opin. Nephrol. Hypertens.
, vol.17
, pp. 368-372
-
-
Kurosu, H.1
Kuro-o, M.2
-
35
-
-
84877260638
-
Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice
-
Lin, Z. 2013. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 17:779-789.
-
(2013)
Cell Metab.
, vol.17
, pp. 779-789
-
-
Lin, Z.1
-
36
-
-
84863011453
-
FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents
-
Mu, J., J. Pinkstaff, Z. Li, L. Skidmore, N. Li, H. Myler, Q. Dallas-Yang, A. M. Putnam, J. Yao, S. Bussell, M. Wu, T. C. Norman, C. G. Rodriguez, B. Kimmel, J. M. Metzger, A. Manibusan, D. Lee, D. M. Zaller, B. B. Zhang, R. D. Dimarchi, J. P. Berger, and D. W. Axelrod. 2012. FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents. Diabetes 61:505-512.
-
(2012)
Diabetes
, vol.61
, pp. 505-512
-
-
Mu, J.1
Pinkstaff, J.2
Li, Z.3
Skidmore, L.4
Li, N.5
Myler, H.6
Dallas-Yang, Q.7
Putnam, A.M.8
Yao, J.9
Bussell, S.10
Wu, M.11
Norman, T.C.12
Rodriguez, C.G.13
Kimmel, B.14
Metzger, J.M.15
Manibusan, A.16
Lee, D.17
Zaller, D.M.18
Zhang, B.B.19
Dimarchi, R.D.20
Berger, J.P.21
Axelrod, D.W.22
more..
-
37
-
-
0034697846
-
Identification of a novel FGF, FGF-21, preferentially expressed in the liver
-
Nishimura, T., Y. Nakatake, M. Konishi, and N. Itoh. 2000. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochim. Biophys. Acta 1492:203-206.
-
(2000)
Biochim. Biophys. Acta
, vol.1492
, pp. 203-206
-
-
Nishimura, T.1
Nakatake, Y.2
Konishi, M.3
Itoh, N.4
-
38
-
-
34249697012
-
BetaKlotho is required for metabolic activity of fibroblast growth factor 21
-
Ogawa, Y., H. Kurosu, M. Yamamoto, A. Nandi, K. P. Rosenblatt, R. Goetz, A. V. Eliseenkova, M. Mohammadi, and M. Kuro-o. 2007. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc. Natl. Acad. Sci. USA 104:7432-7437.
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 7432-7437
-
-
Ogawa, Y.1
Kurosu, H.2
Yamamoto, M.3
Nandi, A.4
Rosenblatt, K.P.5
Goetz, R.6
Eliseenkova, A.V.7
Mohammadi, M.8
Kuro-o, M.9
-
39
-
-
76549112800
-
Relevant use of Klotho in FGF19 subfamily signaling system in vivo
-
Tomiyama, K., R. Maeda, I. Urakawa, Y. Yamazaki, T. Tanaka, S. Ito, Y. Nabeshima, T. Tomita, S. Odori, K. Hosoda, K. Nakao, A. Imura, and Y. Nabeshima. 2010. Relevant use of Klotho in FGF19 subfamily signaling system in vivo. Proc. Natl. Acad. Sci. USA 107:1666-1671.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 1666-1671
-
-
Tomiyama, K.1
Maeda, R.2
Urakawa, I.3
Yamazaki, Y.4
Tanaka, T.5
Ito, S.6
Nabeshima, Y.7
Tomita, T.8
Odori, S.9
Hosoda, K.10
Nakao, K.11
Imura, A.12
Nabeshima, Y.13
-
40
-
-
84866133825
-
Adiponectin: Mechanistic insights and clinical implications
-
Turer, A. T., and P. E. Scherer. 2012. Adiponectin: Mechanistic insights and clinical implications. Diabetologia 55:2319-2326.
-
(2012)
Diabetologia
, vol.55
, pp. 2319-2326
-
-
Turer, A.T.1
Scherer, P.E.2
-
41
-
-
84865442538
-
Longacting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys
-
Veniant, M. M., R. Komorowski, P. Chen, S. Stanislaus, K. Winters, T. Hager, L. Zhou, R. Wada, R. Hecht, and J. Xu. 2012. Longacting FGF21 has enhanced efficacy in diet-induced obese mice and in obese rhesus monkeys. Endocrinology 153:4192-4203.
-
(2012)
Endocrinology
, vol.153
, pp. 4192-4203
-
-
Veniant, M.M.1
Komorowski, R.2
Chen, P.3
Stanislaus, S.4
Winters, K.5
Hager, T.6
Zhou, L.7
Wada, R.8
Hecht, R.9
Xu, J.10
-
42
-
-
37549052177
-
Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes
-
Wang, H., L. Qiang, and S. R. Farmer. 2008. Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol. Cell. Biol. 28:188-200.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 188-200
-
-
Wang, H.1
Qiang, L.2
Farmer, S.R.3
-
43
-
-
84893702773
-
Longevity effect of IGF-1R mutation depends on genetic background-specific receptor activation
-
Xu, J., G. Gontier, Z. Chaker, P. Lacube, J. Dupont, and M. Holzenberger. 2013. Longevity effect of IGF-1R mutation depends on genetic background-specific receptor activation. Aging Cell 21:1-10.
-
(2013)
Aging Cell
, vol.21
, pp. 1-10
-
-
Xu, J.1
Gontier, G.2
Chaker, Z.3
Lacube, P.4
Dupont, J.5
Holzenberger, M.6
-
44
-
-
84863338708
-
Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB
-
Yang, C., C. Jin, X. Li, F. Wang, W. L. McKeehan, and Y. Luo. 2012. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS ONE 7:e33870.
-
(2012)
PLoS ONE
, vol.7
-
-
Yang, C.1
Jin, C.2
Li, X.3
Wang, F.4
McKeehan, W.L.5
Luo, Y.6
-
45
-
-
57849155278
-
FGF21 N-and C-termini play different roles in receptor interaction and activation
-
Yie, J., R. Hecht, J. Patel, J. Stevens, W. Wang, N. Hawkins, S. Steavenson, S. Smith, D. Winters, S. Fisher, L. Cai, E. Belouski, C. Chen, M. L. Michaels, Y. S. Li, R. Lindberg, M. Wang, M. Veniant, and J. Xu. 2009. FGF21 N-and C-termini play different roles in receptor interaction and activation. FEBS Lett. 583:19-24.
-
(2009)
FEBS Lett.
, vol.583
, pp. 19-24
-
-
Yie, J.1
Hecht, R.2
Patel, J.3
Stevens, J.4
Wang, W.5
Hawkins, N.6
Steavenson, S.7
Smith, S.8
Winters, D.9
Fisher, S.10
Cai, L.11
Belouski, E.12
Chen, C.13
Michaels, M.L.14
Li, Y.S.15
Lindberg, R.16
Wang, M.17
Veniant, M.18
Xu, J.19
-
46
-
-
33744937606
-
Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family
-
Zhang, X., O. A. Ibrahimi, S. K. Olsen, H. Umemori, M. Mohammadi, and D. M. Ornitz. 2006. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem. 281:15694-15700.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 15694-15700
-
-
Zhang, X.1
Ibrahimi, O.A.2
Olsen, S.K.3
Umemori, H.4
Mohammadi, M.5
Ornitz, D.M.6
-
47
-
-
84881508008
-
The starvation hormone, fibroblast growth factor-21, extends lifespan in mice
-
Zhang, Y., Y. Xie, E. D. Berglund, K. C. Coate, T. T. He, T. Katafuchi, G. Xiao, M. J. Potthoff, W. Wei, Y. Wan, R. T. Yu, R. M. Evans, S.A. Kliewer, and D. J. Mangelsdorf. 2012. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife 1:e00065.
-
(2012)
ELife
, vol.1
-
-
Zhang, Y.1
Xie, Y.2
Berglund, E.D.3
Coate, K.C.4
He, T.T.5
Katafuchi, T.6
Xiao, G.7
Potthoff, M.J.8
Wei, W.9
Wan, Y.10
Yu, R.T.11
Evans, R.M.12
Kliewer, S.A.13
Mangelsdorf, D.J.14
|