메뉴 건너뛰기




Volumn 25, Issue 6, 2015, Pages 320-329

To translate, or not to translate: Viral and host mRNA regulation by interferon-stimulated genes

Author keywords

MicroRNA function; MicroRNA processing; Translational regulation

Indexed keywords

INTERFERON; MESSENGER RNA; MICRORNA; VIRUS RNA;

EID: 84929517045     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2015.02.001     Document Type: Review
Times cited : (62)

References (131)
  • 1
    • 84896987305 scopus 로고    scopus 로고
    • Interferon-stimulated genes: a complex web of host defenses
    • Schneider W.M., et al. Interferon-stimulated genes: a complex web of host defenses. Annu. Rev. Immunol. 2014, 32:513-545.
    • (2014) Annu. Rev. Immunol. , vol.32 , pp. 513-545
    • Schneider, W.M.1
  • 2
    • 79955542915 scopus 로고    scopus 로고
    • A diverse range of gene products are effectors of the type I interferon antiviral response
    • Schoggins J.W., et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 2011, 472:481-485.
    • (2011) Nature , vol.472 , pp. 481-485
    • Schoggins, J.W.1
  • 3
    • 75149196287 scopus 로고    scopus 로고
    • The mechanism of eukaryotic translation initiation and principles of its regulation
    • Jackson R.J., et al. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat. Rev. Mol. Cell Biol. 2010, 11:113-127.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 113-127
    • Jackson, R.J.1
  • 4
    • 13744249590 scopus 로고    scopus 로고
    • Sindbis virus translation is inhibited by a PKR/RNase L-independent effector induced by alpha/beta interferon priming of dendritic cells
    • Ryman K.D., et al. Sindbis virus translation is inhibited by a PKR/RNase L-independent effector induced by alpha/beta interferon priming of dendritic cells. J. Virol. 2005, 79:1487-1499.
    • (2005) J. Virol. , vol.79 , pp. 1487-1499
    • Ryman, K.D.1
  • 5
    • 77949899515 scopus 로고    scopus 로고
    • Viral induction of the zinc finger antiviral protein is IRF3-dependent but NF-kappaB-independent
    • Wang N., et al. Viral induction of the zinc finger antiviral protein is IRF3-dependent but NF-kappaB-independent. J. Biol. Chem. 2010, 285:6080-6090.
    • (2010) J. Biol. Chem. , vol.285 , pp. 6080-6090
    • Wang, N.1
  • 6
    • 38949096858 scopus 로고    scopus 로고
    • Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein
    • Published online January 25, 2008
    • Kerns J.A., et al. Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLoS Genet. 2008, 4. Published online January 25, 2008. http://dx.doi.org/10.1371/journal.pgen.0040021.
    • (2008) PLoS Genet. , vol.4
    • Kerns, J.A.1
  • 7
    • 78650310818 scopus 로고    scopus 로고
    • ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses
    • Hayakawa S., et al. ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat. Immunol. 2011, 12:37-44.
    • (2011) Nat. Immunol. , vol.12 , pp. 37-44
    • Hayakawa, S.1
  • 8
    • 84884747041 scopus 로고    scopus 로고
    • Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein
    • Published online July 11, 2013
    • Mao R., et al. Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLoS Pathog. 2013, 9. Published online July 11, 2013. http://dx.doi.org/10.1371/journal.ppat.1003494.
    • (2013) PLoS Pathog. , vol.9
    • Mao, R.1
  • 9
    • 84885995929 scopus 로고    scopus 로고
    • Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells
    • Seo G.J., et al. Reciprocal inhibition between intracellular antiviral signaling and the RNAi machinery in mammalian cells. Cell Host Microbe 2013, 14:435-445.
    • (2013) Cell Host Microbe , vol.14 , pp. 435-445
    • Seo, G.J.1
  • 10
    • 0037031709 scopus 로고    scopus 로고
    • Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein
    • Gao G., et al. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 2002, 297:1703-1706.
    • (2002) Science , vol.297 , pp. 1703-1706
    • Gao, G.1
  • 11
    • 0142060863 scopus 로고    scopus 로고
    • Expression of the zinc-finger antiviral protein inhibits alphavirus replication
    • Bick M.J., et al. Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J. Virol. 2003, 77:11555-11562.
    • (2003) J. Virol. , vol.77 , pp. 11555-11562
    • Bick, M.J.1
  • 12
    • 33847194606 scopus 로고    scopus 로고
    • Inhibition of filovirus replication by the zinc finger antiviral protein
    • Muller S., et al. Inhibition of filovirus replication by the zinc finger antiviral protein. J. Virol. 2007, 81:2391-2400.
    • (2007) J. Virol. , vol.81 , pp. 2391-2400
    • Muller, S.1
  • 13
    • 84862505687 scopus 로고    scopus 로고
    • Zinc-finger antiviral protein inhibits XMRV infection
    • Published online June 15, 2012
    • Wang X., et al. Zinc-finger antiviral protein inhibits XMRV infection. PLoS ONE 2012, 7. Published online June 15, 2012. http://dx.doi.org/10.1371/journal.pone.0039159.
    • (2012) PLoS ONE , vol.7
    • Wang, X.1
  • 14
    • 80053144075 scopus 로고    scopus 로고
    • Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation
    • Zhu Y., et al. Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:15834-15839.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 15834-15839
    • Zhu, Y.1
  • 15
    • 8644267555 scopus 로고    scopus 로고
    • The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs
    • Guo X., et al. The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. J. Virol. 2004, 78:12781-12787.
    • (2004) J. Virol. , vol.78 , pp. 12781-12787
    • Guo, X.1
  • 16
    • 41949103837 scopus 로고    scopus 로고
    • P72 DEAD box RNA helicase is required for optimal function of the zinc-finger antiviral protein
    • Chen G., et al. p72 DEAD box RNA helicase is required for optimal function of the zinc-finger antiviral protein. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:4352-4357.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 4352-4357
    • Chen, G.1
  • 17
    • 33846083772 scopus 로고    scopus 로고
    • The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA
    • Guo X., et al. The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:151-156.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 151-156
    • Guo, X.1
  • 18
    • 84923279851 scopus 로고    scopus 로고
    • PARP13 regulates cellular mRNA post-transcriptionally and functions as a pro-apoptotic factor by destabilizing TRAILR4 transcript
    • Published online November 10, 2014
    • Todorova T., et al. PARP13 regulates cellular mRNA post-transcriptionally and functions as a pro-apoptotic factor by destabilizing TRAILR4 transcript. Nat. Commun. 2014, 5. Published online November 10, 2014. http://dx.doi.org/10.1038/ncomms6362.
    • (2014) Nat. Commun. , vol.5
    • Todorova, T.1
  • 19
    • 84868579811 scopus 로고    scopus 로고
    • Translational repression precedes and is required for ZAP-mediated mRNA decay
    • Zhu Y., et al. Translational repression precedes and is required for ZAP-mediated mRNA decay. EMBO J. 2012, 31:4236-4246.
    • (2012) EMBO J. , vol.31 , pp. 4236-4246
    • Zhu, Y.1
  • 20
    • 84864378884 scopus 로고    scopus 로고
    • New PARP gene with an anti-alphavirus function
    • Atasheva S., et al. New PARP gene with an anti-alphavirus function. J. Virol. 2012, 86:8147-8160.
    • (2012) J. Virol. , vol.86 , pp. 8147-8160
    • Atasheva, S.1
  • 21
    • 84893442958 scopus 로고    scopus 로고
    • Interferon-stimulated poly(ADP-Ribose) polymerases are potent inhibitors of cellular translation and virus replication
    • Atasheva S., et al. Interferon-stimulated poly(ADP-Ribose) polymerases are potent inhibitors of cellular translation and virus replication. J. Virol. 2014, 88:2116-2130.
    • (2014) J. Virol. , vol.88 , pp. 2116-2130
    • Atasheva, S.1
  • 22
    • 84907211041 scopus 로고    scopus 로고
    • PARP12, an interferon-stimulated gene involved in the control of protein translation and inflammation
    • Welsby I., et al. PARP12, an interferon-stimulated gene involved in the control of protein translation and inflammation. J. Biol. Chem. 2014, 289:26642-26657.
    • (2014) J. Biol. Chem. , vol.289 , pp. 26642-26657
    • Welsby, I.1
  • 23
    • 0034652704 scopus 로고    scopus 로고
    • Induction of the human protein P56 by interferon, double-stranded RNA, or virus infection
    • Guo J., et al. Induction of the human protein P56 by interferon, double-stranded RNA, or virus infection. Virology 2000, 267:209-219.
    • (2000) Virology , vol.267 , pp. 209-219
    • Guo, J.1
  • 24
    • 33845961263 scopus 로고    scopus 로고
    • Distinct induction patterns and functions of two closely related interferon-inducible human genes, ISG54 and ISG56
    • Terenzi F., et al. Distinct induction patterns and functions of two closely related interferon-inducible human genes, ISG54 and ISG56. J. Biol. Chem. 2006, 281:34064-34071.
    • (2006) J. Biol. Chem. , vol.281 , pp. 34064-34071
    • Terenzi, F.1
  • 25
    • 84871484827 scopus 로고    scopus 로고
    • The broad-spectrum antiviral functions of IFIT and IFITM proteins
    • Diamond M.S., Farzan M. The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nat. Rev. Immunol. 2013, 13:46-57.
    • (2013) Nat. Rev. Immunol. , vol.13 , pp. 46-57
    • Diamond, M.S.1    Farzan, M.2
  • 26
    • 78549284909 scopus 로고    scopus 로고
    • 2'-O methylation of the viral mRNA cap evades host restriction by IFIT family members
    • Daffis S., et al. 2'-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 2010, 468:452-456.
    • (2010) Nature , vol.468 , pp. 452-456
    • Daffis, S.1
  • 27
    • 84887295537 scopus 로고    scopus 로고
    • Sequestration by IFIT1 impairs translation of 2'O-unmethylated capped RNA
    • Published online October 3, 2013
    • Habjan M., et al. Sequestration by IFIT1 impairs translation of 2'O-unmethylated capped RNA. PLoS Pathog. 2013, 9. Published online October 3, 2013. http://dx.doi.org/10.1371/journal.ppat.1003663.
    • (2013) PLoS Pathog. , vol.9
    • Habjan, M.1
  • 28
    • 84883310180 scopus 로고    scopus 로고
    • Ifit1 inhibits Japanese encephalitis virus replication through binding to 5' capped 2'-O unmethylated RNA
    • Kimura T., et al. Ifit1 inhibits Japanese encephalitis virus replication through binding to 5' capped 2'-O unmethylated RNA. J. Virol. 2013, 87:9997-10003.
    • (2013) J. Virol. , vol.87 , pp. 9997-10003
    • Kimura, T.1
  • 29
    • 84863711523 scopus 로고    scopus 로고
    • 2'-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo
    • Published online May 10, 2012
    • Szretter K.J., et al. 2'-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and -independent mechanisms of host restriction in vivo. PLoS Pathog. 2012, 8. Published online May 10, 2012. http://dx.doi.org/10.1371/journal.ppat.1002698.
    • (2012) PLoS Pathog. , vol.8
    • Szretter, K.J.1
  • 30
    • 78751637122 scopus 로고    scopus 로고
    • Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5
    • Zust R., et al. Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 2011, 12:137-143.
    • (2011) Nat. Immunol. , vol.12 , pp. 137-143
    • Zust, R.1
  • 31
    • 84874671928 scopus 로고    scopus 로고
    • Structural basis for viral 5'-PPP-RNA recognition by human IFIT proteins
    • Abbas Y.M., et al. Structural basis for viral 5'-PPP-RNA recognition by human IFIT proteins. Nature 2013, 494:60-64.
    • (2013) Nature , vol.494 , pp. 60-64
    • Abbas, Y.M.1
  • 32
    • 79959377900 scopus 로고    scopus 로고
    • IFIT1 is an antiviral protein that recognizes 5'-triphosphate RNA
    • Pichlmair A., et al. IFIT1 is an antiviral protein that recognizes 5'-triphosphate RNA. Nat. Immunol. 2011, 12:624-630.
    • (2011) Nat. Immunol. , vol.12 , pp. 624-630
    • Pichlmair, A.1
  • 33
    • 84893940908 scopus 로고    scopus 로고
    • A viral RNA structural element alters host recognition of nonself RNA
    • Hyde J.L., et al. A viral RNA structural element alters host recognition of nonself RNA. Science 2014, 343:783-787.
    • (2014) Science , vol.343 , pp. 783-787
    • Hyde, J.L.1
  • 34
    • 0034671570 scopus 로고    scopus 로고
    • A new pathway of translational regulation mediated by eukaryotic initiation factor 3
    • Guo J., et al. A new pathway of translational regulation mediated by eukaryotic initiation factor 3. EMBO J. 2000, 19:6891-6899.
    • (2000) EMBO J. , vol.19 , pp. 6891-6899
    • Guo, J.1
  • 35
    • 0141891214 scopus 로고    scopus 로고
    • Viral stress-inducible protein p56 inhibits translation by blocking the interaction of eIF3 with the ternary complex eIF2.GTP, Met-tRNAi
    • Hui D.J., et al. Viral stress-inducible protein p56 inhibits translation by blocking the interaction of eIF3 with the ternary complex eIF2.GTP, Met-tRNAi. J. Biol. Chem. 2003, 278:39477-39482.
    • (2003) J. Biol. Chem. , vol.278 , pp. 39477-39482
    • Hui, D.J.1
  • 36
    • 0037379437 scopus 로고    scopus 로고
    • Alpha interferon induces distinct translational control programs to suppress hepatitis C virus RNA replication
    • Wang C., et al. Alpha interferon induces distinct translational control programs to suppress hepatitis C virus RNA replication. J. Virol. 2003, 77:3898-3912.
    • (2003) J. Virol. , vol.77 , pp. 3898-3912
    • Wang, C.1
  • 37
    • 0023057778 scopus 로고
    • AIDS virus and HTLV-I differ in codon choices
    • Grantham P., Perrin P. AIDS virus and HTLV-I differ in codon choices. Nature 1986, 319:727-728.
    • (1986) Nature , vol.319 , pp. 727-728
    • Grantham, P.1    Perrin, P.2
  • 38
    • 14544296732 scopus 로고    scopus 로고
    • Evolution of relative synonymous codon usage in human immunodeficiency virus type-1
    • Meintjes P.L., Rodrigo A.G. Evolution of relative synonymous codon usage in human immunodeficiency virus type-1. J. Bioinform. Comput. Biol. 2005, 3:157-168.
    • (2005) J. Bioinform. Comput. Biol. , vol.3 , pp. 157-168
    • Meintjes, P.L.1    Rodrigo, A.G.2
  • 39
    • 79957455461 scopus 로고    scopus 로고
    • HIV-1 modulates the tRNA pool to improve translation efficiency
    • van Weringh A., et al. HIV-1 modulates the tRNA pool to improve translation efficiency. Mol. Biol. Evol. 2011, 28:1827-1834.
    • (2011) Mol. Biol. Evol. , vol.28 , pp. 1827-1834
    • van Weringh, A.1
  • 40
    • 84868377002 scopus 로고    scopus 로고
    • Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11
    • Li M., et al. Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11. Nature 2012, 491:125-128.
    • (2012) Nature , vol.491 , pp. 125-128
    • Li, M.1
  • 41
    • 5044250716 scopus 로고    scopus 로고
    • Modulation of T cell development and activation by novel members of the Schlafen (slfn) gene family harbouring an RNA helicase-like motif
    • Geserick P., et al. Modulation of T cell development and activation by novel members of the Schlafen (slfn) gene family harbouring an RNA helicase-like motif. Int. Immunol. 2004, 16:1535-1548.
    • (2004) Int. Immunol. , vol.16 , pp. 1535-1548
    • Geserick, P.1
  • 42
    • 0032211731 scopus 로고    scopus 로고
    • Schlafen, a new family of growth regulatory genes that affect thymocyte development
    • Schwarz D.A., et al. Schlafen, a new family of growth regulatory genes that affect thymocyte development. Immunity 1998, 9:657-668.
    • (1998) Immunity , vol.9 , pp. 657-668
    • Schwarz, D.A.1
  • 43
    • 34247638050 scopus 로고    scopus 로고
    • Novel transcriptional regulation of the schlafen-2 gene in macrophages in response to TLR-triggered stimulation
    • Sohn W.J., et al. Novel transcriptional regulation of the schlafen-2 gene in macrophages in response to TLR-triggered stimulation. Mol. Immunol. 2007, 44:3273-3282.
    • (2007) Mol. Immunol. , vol.44 , pp. 3273-3282
    • Sohn, W.J.1
  • 44
    • 84888016188 scopus 로고    scopus 로고
    • The antiviral activities of ISG15
    • Morales D.J., Lenschow D.J. The antiviral activities of ISG15. J. Mol. Biol. 2013, 425:4995-5008.
    • (2013) J. Mol. Biol. , vol.425 , pp. 4995-5008
    • Morales, D.J.1    Lenschow, D.J.2
  • 45
    • 0032530480 scopus 로고    scopus 로고
    • Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection
    • Gradi A., et al. Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:11089-11094.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 11089-11094
    • Gradi, A.1
  • 46
    • 84922393475 scopus 로고    scopus 로고
    • Ubiquitin-like protein ISG15 in host defense against heart failure in a mouse model of virus-induced cardiomyopathy
    • Epub 2014 Aug 27
    • Rahnefeld A., et al. Ubiquitin-like protein ISG15 in host defense against heart failure in a mouse model of virus-induced cardiomyopathy. Circulation 2014, 130:1589-1600. http://dx.doi/10.1161/CIRCULATIONAHA.114.009847. Epub 2014 Aug 27.
    • (2014) Circulation , vol.130 , pp. 1589-1600
    • Rahnefeld, A.1
  • 47
    • 39949085583 scopus 로고    scopus 로고
    • Stress granules: the Tao of RNA triage
    • Anderson P., Kedersha N. Stress granules: the Tao of RNA triage. Trends Biochem. Sci. 2008, 33:141-150.
    • (2008) Trends Biochem. Sci. , vol.33 , pp. 141-150
    • Anderson, P.1    Kedersha, N.2
  • 48
    • 72149095755 scopus 로고    scopus 로고
    • Eukaryotic stress granules: the ins and outs of translation
    • Buchan J.R., Parker R. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 2009, 36:932-941.
    • (2009) Mol. Cell , vol.36 , pp. 932-941
    • Buchan, J.R.1    Parker, R.2
  • 49
    • 84922520038 scopus 로고    scopus 로고
    • Antiviral innate immunity and stress granule responses
    • Onomoto K., et al. Antiviral innate immunity and stress granule responses. Trends Immunol. 2014, 35:420-428.
    • (2014) Trends Immunol. , vol.35 , pp. 420-428
    • Onomoto, K.1
  • 50
    • 22144478256 scopus 로고    scopus 로고
    • MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies
    • Liu J., et al. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 2005, 7:719-723.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 719-723
    • Liu, J.1
  • 51
    • 24644480213 scopus 로고    scopus 로고
    • Inhibition of translational initiation by Let-7 MicroRNA in human cells
    • Pillai R.S., et al. Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 2005, 309:1573-1576.
    • (2005) Science , vol.309 , pp. 1573-1576
    • Pillai, R.S.1
  • 52
    • 20444427566 scopus 로고    scopus 로고
    • Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies
    • Sen G.L., Blau H.M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat. Cell Biol. 2005, 7:633-636.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 633-636
    • Sen, G.L.1    Blau, H.M.2
  • 53
    • 80052996141 scopus 로고    scopus 로고
    • Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants
    • Yang J.S., Lai E.C. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 2011, 43:892-903.
    • (2011) Mol. Cell , vol.43 , pp. 892-903
    • Yang, J.S.1    Lai, E.C.2
  • 54
    • 79955957616 scopus 로고    scopus 로고
    • Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm
    • Leung A.K., et al. Poly(ADP-ribose) regulates stress responses and microRNA activity in the cytoplasm. Mol. Cell 2011, 42:489-499.
    • (2011) Mol. Cell , vol.42 , pp. 489-499
    • Leung, A.K.1
  • 55
    • 53149094334 scopus 로고    scopus 로고
    • Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation
    • Kleine H., et al. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation. Mol. Cell 2008, 32:57-69.
    • (2008) Mol. Cell , vol.32 , pp. 57-69
    • Kleine, H.1
  • 56
    • 77955582184 scopus 로고    scopus 로고
    • SF1 and SF2 helicases: family matters
    • Fairman-Williams M.E., et al. SF1 and SF2 helicases: family matters. Curr. Opin. Struct. Biol. 2010, 20:313-324.
    • (2010) Curr. Opin. Struct. Biol. , vol.20 , pp. 313-324
    • Fairman-Williams, M.E.1
  • 57
    • 84862568417 scopus 로고    scopus 로고
    • Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses
    • Arjan-Odedra S., et al. Endogenous MOV10 inhibits the retrotransposition of endogenous retroelements but not the replication of exogenous retroviruses. Retrovirology 2012, 9:53.
    • (2012) Retrovirology , vol.9 , pp. 53
    • Arjan-Odedra, S.1
  • 58
    • 77956829730 scopus 로고    scopus 로고
    • P body-associated protein Mov10 inhibits HIV-1 replication at multiple stages
    • Burdick R., et al. P body-associated protein Mov10 inhibits HIV-1 replication at multiple stages. J. Virol. 2010, 84:10241-10253.
    • (2010) J. Virol. , vol.84 , pp. 10241-10253
    • Burdick, R.1
  • 59
    • 46449086130 scopus 로고    scopus 로고
    • Capped small RNAs and MOV10 in human hepatitis delta virus replication
    • Haussecker D., et al. Capped small RNAs and MOV10 in human hepatitis delta virus replication. Nat. Struct. Mol. Biol. 2008, 15:714-721.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 714-721
    • Haussecker, D.1
  • 60
    • 84880556107 scopus 로고    scopus 로고
    • The MOV10 helicase inhibits LINE-1 mobility
    • Li X., et al. The MOV10 helicase inhibits LINE-1 mobility. J. Biol. Chem. 2013, 288:21148-21160.
    • (2013) J. Biol. Chem. , vol.288 , pp. 21148-21160
    • Li, X.1
  • 61
    • 84868114098 scopus 로고    scopus 로고
    • Moloney leukemia virus type 10 inhibits reverse transcription and retrotransposition of intracisternal a particles
    • Lu C., et al. Moloney leukemia virus type 10 inhibits reverse transcription and retrotransposition of intracisternal a particles. J. Virol. 2012, 86:10517-10523.
    • (2012) J. Virol. , vol.86 , pp. 10517-10523
    • Lu, C.1
  • 62
    • 77951984369 scopus 로고    scopus 로고
    • Moloney leukemia virus 10 (MOV10) protein inhibits retrovirus replication
    • Wang X., et al. Moloney leukemia virus 10 (MOV10) protein inhibits retrovirus replication. J. Biol. Chem. 2010, 285:14346-14355.
    • (2010) J. Biol. Chem. , vol.285 , pp. 14346-14355
    • Wang, X.1
  • 63
    • 28444495985 scopus 로고    scopus 로고
    • Identification of novel argonaute-associated proteins
    • Meister G., et al. Identification of novel argonaute-associated proteins. Curr. Biol. 2005, 15:2149-2155.
    • (2005) Curr. Biol. , vol.15 , pp. 2149-2155
    • Meister, G.1
  • 64
    • 72149086111 scopus 로고    scopus 로고
    • A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation
    • Banerjee S., et al. A coordinated local translational control point at the synapse involving relief from silencing and MOV10 degradation. Neuron 2009, 64:871-884.
    • (2009) Neuron , vol.64 , pp. 871-884
    • Banerjee, S.1
  • 65
    • 23644433363 scopus 로고    scopus 로고
    • TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing
    • Chendrimada T.P., et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005, 436:740-744.
    • (2005) Nature , vol.436 , pp. 740-744
    • Chendrimada, T.P.1
  • 66
    • 27744537851 scopus 로고    scopus 로고
    • Human RISC couples microRNA biogenesis and posttranscriptional gene silencing
    • Gregory R.I., et al. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 2005, 123:631-640.
    • (2005) Cell , vol.123 , pp. 631-640
    • Gregory, R.I.1
  • 67
    • 34249282938 scopus 로고    scopus 로고
    • MicroRNA silencing through RISC recruitment of eIF6
    • Chendrimada T.P., et al. MicroRNA silencing through RISC recruitment of eIF6. Nature 2007, 447:823-828.
    • (2007) Nature , vol.447 , pp. 823-828
    • Chendrimada, T.P.1
  • 68
    • 84865473920 scopus 로고    scopus 로고
    • APOBEC3G inhibits microRNA-mediated repression of translation by interfering with the interaction between Argonaute-2 and MOV10
    • Liu C., et al. APOBEC3G inhibits microRNA-mediated repression of translation by interfering with the interaction between Argonaute-2 and MOV10. J. Biol. Chem. 2012, 287:29373-29383.
    • (2012) J. Biol. Chem. , vol.287 , pp. 29373-29383
    • Liu, C.1
  • 69
    • 33646924568 scopus 로고    scopus 로고
    • Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies
    • Published online May 12, 2006
    • Wichroski M.J., et al. Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog. 2006, 2. Published online May 12, 2006. http://dx.doi.org/10.1371/journal.ppat.0020041.
    • (2006) PLoS Pathog. , vol.2
    • Wichroski, M.J.1
  • 70
    • 78651507445 scopus 로고    scopus 로고
    • Adenosine deaminases acting on RNA, RNA editing, and interferon action
    • George C.X., et al. Adenosine deaminases acting on RNA, RNA editing, and interferon action. J. Interferon Cytokine Res. 2011, 31:99-117.
    • (2011) J. Interferon Cytokine Res. , vol.31 , pp. 99-117
    • George, C.X.1
  • 71
    • 12344300804 scopus 로고    scopus 로고
    • Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome
    • Epub 2004 Nov 9
    • Athanasiadis A., et al. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2004, 2:e391. http://dx.doi.org/10.1371/journal.pbio.0020391. Epub 2004 Nov 9.
    • (2004) PLoS Biol. , vol.2 , pp. e391
    • Athanasiadis, A.1
  • 72
    • 4644324088 scopus 로고    scopus 로고
    • Widespread RNA editing of embedded alu elements in the human transcriptome
    • Kim D.D., et al. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 2004, 14:1719-1725.
    • (2004) Genome Res. , vol.14 , pp. 1719-1725
    • Kim, D.D.1
  • 73
    • 3543004084 scopus 로고    scopus 로고
    • Systematic identification of abundant A-to-I editing sites in the human transcriptome
    • Levanon E.Y., et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat. Biotechnol. 2004, 22:1001-1005.
    • (2004) Nat. Biotechnol. , vol.22 , pp. 1001-1005
    • Levanon, E.Y.1
  • 74
    • 84861970552 scopus 로고    scopus 로고
    • Accurate identification of human Alu and non-Alu RNA editing sites
    • Ramaswami G., et al. Accurate identification of human Alu and non-Alu RNA editing sites. Nat. Methods 2012, 9:579-581.
    • (2012) Nat. Methods , vol.9 , pp. 579-581
    • Ramaswami, G.1
  • 75
    • 77956897387 scopus 로고    scopus 로고
    • Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome
    • Sakurai M., et al. Inosine cyanoethylation identifies A-to-I RNA editing sites in the human transcriptome. Nat. Chem. Biol. 2010, 6:733-740.
    • (2010) Nat. Chem. Biol. , vol.6 , pp. 733-740
    • Sakurai, M.1
  • 76
    • 78751569755 scopus 로고    scopus 로고
    • Elucidating the inosinome: global approaches to adenosine-to-inosine RNA editing
    • Wulff B.E., et al. Elucidating the inosinome: global approaches to adenosine-to-inosine RNA editing. Nat. Rev. Genet. 2011, 12:81-85.
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 81-85
    • Wulff, B.E.1
  • 77
    • 0027437227 scopus 로고
    • Clonal expansion of hypermutated measles virus in a SSPE brain
    • Baczko K., et al. Clonal expansion of hypermutated measles virus in a SSPE brain. Virology 1993, 197:188-195.
    • (1993) Virology , vol.197 , pp. 188-195
    • Baczko, K.1
  • 78
    • 71949124275 scopus 로고    scopus 로고
    • Evidence for ADAR-induced hypermutation of the Drosophila sigma virus (Rhabdoviridae)
    • Published online November 26, 2009
    • Carpenter J.A., et al. Evidence for ADAR-induced hypermutation of the Drosophila sigma virus (Rhabdoviridae). BMC Genet. 2009, 10. Published online November 26, 2009. http://dx.doi.org/10.1186/1471-2156-10-75.
    • (2009) BMC Genet. , vol.10
    • Carpenter, J.A.1
  • 79
    • 0023763122 scopus 로고
    • Biased hypermutation and other genetic changes in defective measles viruses in human brain infections
    • Cattaneo R., et al. Biased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell 1988, 55:255-265.
    • (1988) Cell , vol.55 , pp. 255-265
    • Cattaneo, R.1
  • 80
    • 84869228793 scopus 로고    scopus 로고
    • Hyperediting of human T-cell leukemia virus type 2 and simian T-cell leukemia virus type 3 by the dsRNA adenosine deaminase ADAR-1
    • Ko N.L., et al. Hyperediting of human T-cell leukemia virus type 2 and simian T-cell leukemia virus type 3 by the dsRNA adenosine deaminase ADAR-1. J. Gen. Virol. 2012, 93:2646-2651.
    • (2012) J. Gen. Virol. , vol.93 , pp. 2646-2651
    • Ko, N.L.1
  • 81
    • 0030972389 scopus 로고    scopus 로고
    • Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts
    • Kumar M., Carmichael G.G. Nuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcripts. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:3542-3547.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 3542-3547
    • Kumar, M.1    Carmichael, G.G.2
  • 82
    • 84942794315 scopus 로고    scopus 로고
    • Circulating type 1 vaccine-derived poliovirus may evolve under the pressure of adenosine deaminases acting on RNA
    • Published online November 14, 2014
    • Liu Y., et al. Circulating type 1 vaccine-derived poliovirus may evolve under the pressure of adenosine deaminases acting on RNA. J. Matern. Fetal Neonatal Med. 2014, Published online November 14, 2014. http://dx.doi.org/10.3109/14767058.2014.979147.
    • (2014) J. Matern. Fetal Neonatal Med.
    • Liu, Y.1
  • 83
    • 0025255969 scopus 로고
    • A specific base transition occurs on replicating hepatitis delta virus RNA
    • Luo G.X., et al. A specific base transition occurs on replicating hepatitis delta virus RNA. J. Virol. 1990, 64:1021-1027.
    • (1990) J. Virol. , vol.64 , pp. 1021-1027
    • Luo, G.X.1
  • 84
    • 84895456203 scopus 로고    scopus 로고
    • Stability of the parainfluenza virus 5 genome revealed by deep sequencing of strains isolated from different hosts and following passage in cell culture
    • Rima B.K., et al. Stability of the parainfluenza virus 5 genome revealed by deep sequencing of strains isolated from different hosts and following passage in cell culture. J. Virol. 2014, 88:3826-3836.
    • (2014) J. Virol. , vol.88 , pp. 3826-3836
    • Rima, B.K.1
  • 85
    • 79551705342 scopus 로고    scopus 로고
    • Double-stranded RNA adenosine deaminase ADAR-1-induced hypermutated genomes among inactivated seasonal influenza and live attenuated measles virus vaccines
    • Suspene R., et al. Double-stranded RNA adenosine deaminase ADAR-1-induced hypermutated genomes among inactivated seasonal influenza and live attenuated measles virus vaccines. J. Virol. 2011, 85:2458-2462.
    • (2011) J. Virol. , vol.85 , pp. 2458-2462
    • Suspene, R.1
  • 86
    • 18144401994 scopus 로고    scopus 로고
    • New antiviral pathway that mediates hepatitis C virus replicon interferon sensitivity through ADAR1
    • Taylor D.R., et al. New antiviral pathway that mediates hepatitis C virus replicon interferon sensitivity through ADAR1. J. Virol. 2005, 79:6291-6298.
    • (2005) J. Virol. , vol.79 , pp. 6291-6298
    • Taylor, D.R.1
  • 87
    • 33847687659 scopus 로고    scopus 로고
    • Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity
    • Tenoever B.R., et al. Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity. Science 2007, 315:1274-1278.
    • (2007) Science , vol.315 , pp. 1274-1278
    • Tenoever, B.R.1
  • 88
    • 33846092075 scopus 로고    scopus 로고
    • A-to-G hypermutation in the genome of lymphocytic choriomeningitis virus
    • Zahn R.C., et al. A-to-G hypermutation in the genome of lymphocytic choriomeningitis virus. J. Virol. 2007, 81:457-464.
    • (2007) J. Virol. , vol.81 , pp. 457-464
    • Zahn, R.C.1
  • 89
    • 0038664237 scopus 로고    scopus 로고
    • Dynamic association of RNA-editing enzymes with the nucleolus
    • Desterro J.M., et al. Dynamic association of RNA-editing enzymes with the nucleolus. J. Cell Sci. 2003, 116:1805-1818.
    • (2003) J. Cell Sci. , vol.116 , pp. 1805-1818
    • Desterro, J.M.1
  • 90
    • 0035150231 scopus 로고    scopus 로고
    • The human but not the Xenopus RNA-editing enzyme ADAR1 has an atypical nuclear localization signal and displays the characteristics of a shuttling protein
    • Eckmann C.R., et al. The human but not the Xenopus RNA-editing enzyme ADAR1 has an atypical nuclear localization signal and displays the characteristics of a shuttling protein. Mol. Biol. Cell 2001, 12:1911-1924.
    • (2001) Mol. Biol. Cell , vol.12 , pp. 1911-1924
    • Eckmann, C.R.1
  • 91
    • 0036856310 scopus 로고    scopus 로고
    • Nucleocytoplasmic distribution of human RNA-editing enzyme ADAR1 is modulated by double-stranded RNA-binding domains, a leucine-rich export signal, and a putative dimerization domain
    • Strehblow A., et al. Nucleocytoplasmic distribution of human RNA-editing enzyme ADAR1 is modulated by double-stranded RNA-binding domains, a leucine-rich export signal, and a putative dimerization domain. Mol. Biol. Cell 2002, 13:3822-3835.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 3822-3835
    • Strehblow, A.1
  • 92
    • 62849103689 scopus 로고    scopus 로고
    • RNA-regulated interaction of transportin-1 and exportin-5 with the double-stranded RNA-binding domain regulates nucleocytoplasmic shuttling of ADAR1
    • Fritz J., et al. RNA-regulated interaction of transportin-1 and exportin-5 with the double-stranded RNA-binding domain regulates nucleocytoplasmic shuttling of ADAR1. Mol. Cell Biol. 2009, 29:1487-1497.
    • (2009) Mol. Cell Biol. , vol.29 , pp. 1487-1497
    • Fritz, J.1
  • 93
    • 84876892072 scopus 로고    scopus 로고
    • ADAR1 forms a complex with dicer to promote microRNA processing and RNA-induced gene silencing
    • Ota H., et al. ADAR1 forms a complex with dicer to promote microRNA processing and RNA-induced gene silencing. Cell 2013, 153:575-589.
    • (2013) Cell , vol.153 , pp. 575-589
    • Ota, H.1
  • 94
    • 84890045060 scopus 로고    scopus 로고
    • Proteins that contain a functional Z-DNA-binding domain localize to cytoplasmic stress granules
    • Ng S.K., et al. Proteins that contain a functional Z-DNA-binding domain localize to cytoplasmic stress granules. Nucleic Acids Res. 2013, 41:9786-9799.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 9786-9799
    • Ng, S.K.1
  • 95
    • 84857394407 scopus 로고    scopus 로고
    • Tudor-SN and ADAR1 are components of cytoplasmic stress granules
    • Weissbach R., Scadden A.D. Tudor-SN and ADAR1 are components of cytoplasmic stress granules. RNA 2012, 18:462-471.
    • (2012) RNA , vol.18 , pp. 462-471
    • Weissbach, R.1    Scadden, A.D.2
  • 96
    • 33847317017 scopus 로고    scopus 로고
    • Redirection of silencing targets by adenosine-to-inosine editing of miRNAs
    • Kawahara Y., et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 2007, 315:1137-1140.
    • (2007) Science , vol.315 , pp. 1137-1140
    • Kawahara, Y.1
  • 97
    • 30044443191 scopus 로고    scopus 로고
    • Modulation of microRNA processing and expression through RNA editing by ADAR deaminases
    • Yang W., et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol. 2006, 13:13-21.
    • (2006) Nat. Struct. Mol. Biol. , vol.13 , pp. 13-21
    • Yang, W.1
  • 98
    • 84895742059 scopus 로고    scopus 로고
    • MicroRNA editing facilitates immune elimination of HCMV infected cells
    • Published online February 27, 2014
    • Nachmani D., et al. MicroRNA editing facilitates immune elimination of HCMV infected cells. PLoS Pathog. 2014, 10. Published online February 27, 2014. http://dx.doi.org/10.1371/journal.ppat.1003963.
    • (2014) PLoS Pathog. , vol.10
    • Nachmani, D.1
  • 100
    • 0015515003 scopus 로고
    • Interferon inhibits viral protein synthesis in L cells infected with vaccinia virus
    • Metz D.H., Esteban M. Interferon inhibits viral protein synthesis in L cells infected with vaccinia virus. Nature 1972, 238:385-388.
    • (1972) Nature , vol.238 , pp. 385-388
    • Metz, D.H.1    Esteban, M.2
  • 101
    • 0016746392 scopus 로고
    • Blocks in elongation and initiation of protein synthesis induced by interferon treatment in mouse L cells
    • Content J., et al. Blocks in elongation and initiation of protein synthesis induced by interferon treatment in mouse L cells. Eur. J. Biochem. 1975, 54:1-10.
    • (1975) Eur. J. Biochem. , vol.54 , pp. 1-10
    • Content, J.1
  • 102
    • 0016182487 scopus 로고
    • Increased sensitivity of cell-free protein synthesis to double-stranded RNA after interferon treatment
    • Kerr I.M., et al. Increased sensitivity of cell-free protein synthesis to double-stranded RNA after interferon treatment. Nature 1974, 250:57-59.
    • (1974) Nature , vol.250 , pp. 57-59
    • Kerr, I.M.1
  • 103
    • 0011985297 scopus 로고
    • Oligonucleotide inhibitor of protein synthesis made in extracts of interferon-treated chick embryo cells: comparison with the mouse low molecular weight inhibitor
    • Ball L.A., White C.N. Oligonucleotide inhibitor of protein synthesis made in extracts of interferon-treated chick embryo cells: comparison with the mouse low molecular weight inhibitor. Proc. Natl. Acad. Sci. U.S.A. 1978, 75:1167-1171.
    • (1978) Proc. Natl. Acad. Sci. U.S.A. , vol.75 , pp. 1167-1171
    • Ball, L.A.1    White, C.N.2
  • 104
    • 0017641602 scopus 로고
    • Extracts of interferon-treated cells can inhibit reticulocyte lysate protein synthesis
    • Cooper J.A., Farrell P.J. Extracts of interferon-treated cells can inhibit reticulocyte lysate protein synthesis. Biochem. Biophys. Res. Commun. 1977, 77:124-131.
    • (1977) Biochem. Biophys. Res. Commun. , vol.77 , pp. 124-131
    • Cooper, J.A.1    Farrell, P.J.2
  • 105
    • 0017372188 scopus 로고
    • Synthesis of low molecular weight inhibitor of protein synthesis with enzyme from interferon-treated cells
    • Hovanessian A.G., et al. Synthesis of low molecular weight inhibitor of protein synthesis with enzyme from interferon-treated cells. Nature 1977, 268:537-540.
    • (1977) Nature , vol.268 , pp. 537-540
    • Hovanessian, A.G.1
  • 106
    • 0013683658 scopus 로고
    • PppA2'p5'A2'p5'A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells
    • Kerr I.M., Brown R.E. pppA2'p5'A2'p5'A: an inhibitor of protein synthesis synthesized with an enzyme fraction from interferon-treated cells. Proc. Natl. Acad. Sci. U.S.A. 1978, 75:256-260.
    • (1978) Proc. Natl. Acad. Sci. U.S.A. , vol.75 , pp. 256-260
    • Kerr, I.M.1    Brown, R.E.2
  • 107
    • 0017772646 scopus 로고
    • Nature of inhibitor of cell-free protein synthesis formed in response to interferon and double-stranded RNA
    • Kerr I.M., et al. Nature of inhibitor of cell-free protein synthesis formed in response to interferon and double-stranded RNA. Nature 1977, 268:540-542.
    • (1977) Nature , vol.268 , pp. 540-542
    • Kerr, I.M.1
  • 108
    • 0017102289 scopus 로고
    • Interferon, double-stranded RNA, and protein phosphorylation
    • Lebleu B., et al. Interferon, double-stranded RNA, and protein phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 1976, 73:3107-3111.
    • (1976) Proc. Natl. Acad. Sci. U.S.A. , vol.73 , pp. 3107-3111
    • Lebleu, B.1
  • 109
    • 0017180822 scopus 로고
    • Interferon-induced inhibition of protein synthesis in L-cell extracts: an ATP-dependent step in the activation of an inhibitor by double-stranded RNA
    • Roberts W.K., et al. Interferon-induced inhibition of protein synthesis in L-cell extracts: an ATP-dependent step in the activation of an inhibitor by double-stranded RNA. Proc. Natl. Acad. Sci. U.S.A. 1976, 73:3136-3140.
    • (1976) Proc. Natl. Acad. Sci. U.S.A. , vol.73 , pp. 3136-3140
    • Roberts, W.K.1
  • 110
    • 0017176867 scopus 로고
    • Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis
    • Roberts W.K., et al. Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis. Nature 1976, 264:477-480.
    • (1976) Nature , vol.264 , pp. 477-480
    • Roberts, W.K.1
  • 111
    • 0017177570 scopus 로고
    • Specific phosphorylation in vitro of a protein associated with ribosomes of interferon-treated mouse L cells
    • Zilberstein A., et al. Specific phosphorylation in vitro of a protein associated with ribosomes of interferon-treated mouse L cells. FEBS Lett. 1976, 68:119-124.
    • (1976) FEBS Lett. , vol.68 , pp. 119-124
    • Zilberstein, A.1
  • 112
    • 0017370502 scopus 로고
    • Phosphorylation of initiation factor elF-2 and the control of reticulocyte protein synthesis
    • Farrell P.J., et al. Phosphorylation of initiation factor elF-2 and the control of reticulocyte protein synthesis. Cell 1977, 11:187-200.
    • (1977) Cell , vol.11 , pp. 187-200
    • Farrell, P.J.1
  • 113
    • 0018363340 scopus 로고
    • The (2'-5') oligoadenylate (pppA2'-5'A2'-5'A) synthetase and protein kinase(s) from interferon-treated cells
    • Hovanessian A.G., Kerr I.M. The (2'-5') oligoadenylate (pppA2'-5'A2'-5'A) synthetase and protein kinase(s) from interferon-treated cells. Eur. J. Biochem. 1979, 93:515-526.
    • (1979) Eur. J. Biochem. , vol.93 , pp. 515-526
    • Hovanessian, A.G.1    Kerr, I.M.2
  • 114
    • 0017147523 scopus 로고
    • Specificity of the protein kinase activity associated with the hemin-controlled repressor of rabbit reticulocyte
    • Kramer G., et al. Specificity of the protein kinase activity associated with the hemin-controlled repressor of rabbit reticulocyte. Proc. Natl. Acad. Sci. U.S.A. 1976, 73:3078-3082.
    • (1976) Proc. Natl. Acad. Sci. U.S.A. , vol.73 , pp. 3078-3082
    • Kramer, G.1
  • 115
    • 0017890248 scopus 로고
    • Regulation of protein synthesis: activation by double-stranded RNA of a protein kinase that phosphorylates eukaryotic initiation factor 2
    • Levin D., London I.M. Regulation of protein synthesis: activation by double-stranded RNA of a protein kinase that phosphorylates eukaryotic initiation factor 2. Proc. Natl. Acad. Sci. U.S.A. 1978, 75:1121-1125.
    • (1978) Proc. Natl. Acad. Sci. U.S.A. , vol.75 , pp. 1121-1125
    • Levin, D.1    London, I.M.2
  • 116
    • 0007587840 scopus 로고
    • Regulation of protein synthesis in reticulocyte lysates: phosphorylation of methionyl-tRNAf binding factor by protein kinase activity of translational inhibitor isolated from hemedeficient lysates
    • Levin D., et al. Regulation of protein synthesis in reticulocyte lysates: phosphorylation of methionyl-tRNAf binding factor by protein kinase activity of translational inhibitor isolated from hemedeficient lysates. Proc. Natl. Acad. Sci. U.S.A. 1976, 73:3112-3116.
    • (1976) Proc. Natl. Acad. Sci. U.S.A. , vol.73 , pp. 3112-3116
    • Levin, D.1
  • 117
    • 0040350202 scopus 로고
    • Mechanism of interferon action: phosphorylation of protein synthesis initiation factor eIF-2 in interferon-treated human cells by a ribosome-associated kinase processing site specificity similar to hemin-regulated rabbit reticulocyte kinase
    • Samuel C.E. Mechanism of interferon action: phosphorylation of protein synthesis initiation factor eIF-2 in interferon-treated human cells by a ribosome-associated kinase processing site specificity similar to hemin-regulated rabbit reticulocyte kinase. Proc. Natl. Acad. Sci. U.S.A. 1979, 76:600-604.
    • (1979) Proc. Natl. Acad. Sci. U.S.A. , vol.76 , pp. 600-604
    • Samuel, C.E.1
  • 118
    • 0035800333 scopus 로고    scopus 로고
    • Signal integration via PKR
    • Published online July 3, 2001
    • Williams B.R. Signal integration via PKR. Sci STKE. 2001, Published online July 3, 2001. http://dx.doi.org/10.1126/stke.2001.89.re2.
    • (2001) Sci STKE.
    • Williams, B.R.1
  • 119
    • 0018198246 scopus 로고
    • Interferon, double-stranded RNA and RNA degradation. Fractionation of the endonucleaseINT system into two macromolecular components; role of a small molecule in nuclease activation
    • Ratner L., et al. Interferon, double-stranded RNA and RNA degradation. Fractionation of the endonucleaseINT system into two macromolecular components; role of a small molecule in nuclease activation. Biochem. Biophys. Res. Commun. 1978, 81:947-954.
    • (1978) Biochem. Biophys. Res. Commun. , vol.81 , pp. 947-954
    • Ratner, L.1
  • 120
    • 0017847367 scopus 로고
    • Interferon action may be mediated by activation of a nuclease by pppA2'p5'A2'p5'A
    • Baglioni C., et al. Interferon action may be mediated by activation of a nuclease by pppA2'p5'A2'p5'A. Nature 1978, 273:684-687.
    • (1978) Nature , vol.273 , pp. 684-687
    • Baglioni, C.1
  • 121
    • 0017948303 scopus 로고
    • Inhibition of cell-free protein synthesis by pppA2'p5'A2'p5'A: a novel oligonucleotide synthesized by interferon-treated L cell extracts
    • Clemens M.J., Williams B.R. Inhibition of cell-free protein synthesis by pppA2'p5'A2'p5'A: a novel oligonucleotide synthesized by interferon-treated L cell extracts. Cell 1978, 13:565-572.
    • (1978) Cell , vol.13 , pp. 565-572
    • Clemens, M.J.1    Williams, B.R.2
  • 122
    • 0020323034 scopus 로고
    • Control of the ppp(a2'p)nA system in HeLa cells. Effects of interferon and virus infection
    • Silverman R.H., et al. Control of the ppp(a2'p)nA system in HeLa cells. Effects of interferon and virus infection. Eur. J. Biochem. 1982, 124:131-138.
    • (1982) Eur. J. Biochem. , vol.124 , pp. 131-138
    • Silverman, R.H.1
  • 123
    • 2942703171 scopus 로고
    • Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure
    • Poirier G.G., et al. Poly(ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc. Natl. Acad. Sci. U.S.A. 1982, 79:3423-3427.
    • (1982) Proc. Natl. Acad. Sci. U.S.A. , vol.79 , pp. 3423-3427
    • Poirier, G.G.1
  • 124
    • 84879813578 scopus 로고    scopus 로고
    • Beyond DNA repair, the immunological role of PARP-1 and its siblings
    • Rosado M.M., et al. Beyond DNA repair, the immunological role of PARP-1 and its siblings. Immunology 2013, 139:428-437.
    • (2013) Immunology , vol.139 , pp. 428-437
    • Rosado, M.M.1
  • 125
    • 0037151051 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1
    • Schreiber V., et al. Poly(ADP-ribose) polymerase-2 (PARP-2) is required for efficient base excision DNA repair in association with PARP-1 and XRCC1. J. Biol. Chem. 2002, 277:23028-23036.
    • (2002) J. Biol. Chem. , vol.277 , pp. 23028-23036
    • Schreiber, V.1
  • 126
    • 84886727189 scopus 로고    scopus 로고
    • Poly(ADP-ribose) signaling in cell death
    • Virag L., et al. Poly(ADP-ribose) signaling in cell death. Mol. Aspects Med. 2013, 34:1153-1167.
    • (2013) Mol. Aspects Med. , vol.34 , pp. 1153-1167
    • Virag, L.1
  • 127
    • 84901594799 scopus 로고    scopus 로고
    • Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts
    • Published online May 29, 2014
    • Daugherty M.D., et al. Rapid evolution of PARP genes suggests a broad role for ADP-ribosylation in host-virus conflicts. PLoS Genet. 2014, 10. Published online May 29, 2014. http://dx.doi.org/10.1371/journal.pgen.1004403.
    • (2014) PLoS Genet. , vol.10
    • Daugherty, M.D.1
  • 128
    • 84863313761 scopus 로고    scopus 로고
    • Structure and mechanism of a canonical poly(ADP-ribose) glycohydrolase
    • Published online June 6, 2012
    • Dunstan M.S., et al. Structure and mechanism of a canonical poly(ADP-ribose) glycohydrolase. Nat. Commun. 2012, 3. Published online June 6, 2012. http://dx.doi.org/10.1038/ncomms1889.
    • (2012) Nat. Commun. , vol.3
    • Dunstan, M.S.1
  • 129
    • 80053375417 scopus 로고    scopus 로고
    • The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase
    • Slade D., et al. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature 2011, 477:616-620.
    • (2011) Nature , vol.477 , pp. 616-620
    • Slade, D.1
  • 130
    • 84876186940 scopus 로고    scopus 로고
    • A family of macrodomain proteins reverses cellular mono-ADP-ribosylation
    • Jankevicius G., et al. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat. Struct. Mol. Biol. 2013, 20:508-514.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 508-514
    • Jankevicius, G.1
  • 131
    • 84876167387 scopus 로고    scopus 로고
    • Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases
    • Rosenthal F., et al. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat. Struct. Mol. Biol. 2013, 20:502-507.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 502-507
    • Rosenthal, F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.