메뉴 건너뛰기




Volumn 494, Issue 7435, 2013, Pages 60-64

Structural basis for viral 5′-PPP-RNA recognition by human IFIT proteins

Author keywords

[No Author keywords available]

Indexed keywords

5' TRIPHOSPHATE; IFIT1 PROTEIN; IFIT5 PROTEIN; INTERFERON; RETINOIC ACID INDUCIBLE PROTEIN I; SINGLE STRANDED RNA; UNCLASSIFIED DRUG; VIRUS RNA; CARRIER PROTEIN; IFIT1 PROTEIN, HUMAN; IFIT5 PROTEIN, HUMAN; TUMOR PROTEIN;

EID: 84874671928     PISSN: 00280836     EISSN: 14764687     Source Type: Journal    
DOI: 10.1038/nature11783     Document Type: Article
Times cited : (184)

References (28)
  • 2
    • 79959377900 scopus 로고    scopus 로고
    • IFIT1 is an antiviral protein that recognizes 59-triphosphateRNA
    • Pichlmair, A. et al. IFIT1 is an antiviral protein that recognizes 59-triphosphateRNA. Nature Immunol. 12, 624-630 (2011).
    • (2011) Nature Immunol. , vol.12 , pp. 624-630
    • Pichlmair, A.1
  • 4
    • 0037648552 scopus 로고    scopus 로고
    • Design of stable a-helical arrays from an idealized TPR motif
    • Main, E. R. G., Xiong, Y., Cocco, M. J., D'Andrea, L. & Regan, L. Design of stable a-helical arrays from an idealized TPR motif. Structure 11, 497-508 (2003).
    • (2003) Structure , vol.11 , pp. 497-508
    • Main, E.R.G.1    Xiong, Y.2    Cocco, M.J.3    D'andrea, L.4    Regan, L.5
  • 5
    • 0034671570 scopus 로고    scopus 로고
    • A new pathway of translational regulation mediated by eukaryotic initiation factor 3
    • Guo, J., Hui, D. J., Merrick, W. C. & Sen, G. C. A new pathway of translational regulation mediated by eukaryotic initiation factor 3 EMBO J. 19, 6891-6899 (2000).
    • (2000) EMBO J. , vol.19 , pp. 6891-6899
    • Guo, J.1    Hui, D.J.2    Merrick, W.C.3    Sen, G.C.4
  • 6
    • 33845961263 scopus 로고    scopus 로고
    • Distinct induction patterns and functions of two closely related interferon-inducible human genes, ISG54 and ISG56
    • Terenzi, F., Hui, D. J., Merrick, W. C. & Sen, G. C. Distinct induction patterns and functions of two closely related interferon-inducible human genes, ISG54 and ISG56. J. Biol. Chem. 281, 34064-34071 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 34064-34071
    • Terenzi, F.1    Hui, D.J.2    Merrick, W.C.3    Sen, G.C.4
  • 7
    • 33750984771 scopus 로고    scopus 로고
    • RIG-I-mediated antiviral responses to single-stranded RNA bearing 59-phosphates
    • Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 59-phosphates. Science 314, 997-1001 (2006).
    • (2006) Science , vol.314 , pp. 997-1001
    • Pichlmair, A.1
  • 8
    • 33750976374 scopus 로고    scopus 로고
    • 59-Triphosphate RNA is the ligand for RIG-I
    • Hornung, V. et al. 59-Triphosphate RNA is the ligand for RIG-I. Science 314, 994-997 (2006).
    • (2006) Science , vol.314 , pp. 994-997
    • Hornung, V.1
  • 9
    • 60749124538 scopus 로고    scopus 로고
    • Cytosolic viral sensor RIG-I is a 59-triphosphate-dependent translocase on double-stranded RNA
    • Myong, S. et al. Cytosolic viral sensor RIG-I is a 59-triphosphate- dependent translocase on double-stranded RNA. Science 323, 1070-1074 (2009).
    • (2009) Science , vol.323 , pp. 1070-1074
    • Myong, S.1
  • 10
    • 77954386541 scopus 로고    scopus 로고
    • Structural and functional insights into 59-ppp RNA pattern recognition by the innate immune receptor RIG-I
    • Wang, Y. et al. Structural and functional insights into 59-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nature Struct. Mol. Biol. 17, 781-787 (2010).
    • (2010) Nature Struct. Mol. Biol. , vol.17 , pp. 781-787
    • Wang, Y.1
  • 11
    • 77955481642 scopus 로고    scopus 로고
    • The structural basis of 59 triphosphate double-stranded RNA recognition by RIG-I C-terminal domain
    • Lu, C. et al. The structural basis of 59 triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure 18, 1032-1043 (2010).
    • (2010) Structure , vol.18 , pp. 1032-1043
    • Lu, C.1
  • 12
    • 80054703126 scopus 로고    scopus 로고
    • Structural basis for the activation of innate immune patternrecognition receptor RIG-I by viral RNA
    • Kowalinski, E. et al. Structural basis for the activation of innate immune patternrecognition receptor RIG-I by viral RNA. Cell 147, 423-435 (2011).
    • (2011) Cell , vol.147 , pp. 423-435
    • Kowalinski, E.1
  • 13
    • 80054685883 scopus 로고    scopus 로고
    • Structural insights into RNA recognition by RIG-I
    • Luo, D. et al. Structural insights into RNA recognition by RIG-I. Cell 147, 409-422 (2011).
    • (2011) Cell , vol.147 , pp. 409-422
    • Luo, D.1
  • 14
    • 81555204380 scopus 로고    scopus 로고
    • Structural basis ofRNA recognition and activation by innateimmune receptor RIG-I
    • Jiang, F. et al. Structural basis ofRNA recognition and activation by innateimmune receptor RIG-I. Nature 479, 423-427 (2011).
    • (2011) Nature , vol.479 , pp. 423-427
    • Jiang, F.1
  • 15
    • 68049089651 scopus 로고    scopus 로고
    • Recognition of 59 triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus
    • Schlee, M. et al. Recognition of 59 triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31, 25-34 (2009).
    • (2009) Immunity , vol.31 , pp. 25-34
    • Schlee, M.1
  • 16
    • 4744341309 scopus 로고    scopus 로고
    • The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin a
    • J?nek, M. et al. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin a. Nature Struct. Mol. Biol. 11, 1001-1007 (2004).
    • (2004) Nature Struct. Mol. Biol. , vol.11 , pp. 1001-1007
    • Jnek, M.1
  • 17
    • 36749075083 scopus 로고    scopus 로고
    • Structural basis for recruitment of mitochondrial fission complexes by Fis1
    • Zhang, Y. & Chan, D. C. Structural basis for recruitment of mitochondrial fission complexes by Fis1. Proc. Natl Acad. Sci. USA 104, 18526-18530 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 18526-18530
    • Zhang, Y.1    Chan, D.C.2
  • 18
    • 37149049312 scopus 로고    scopus 로고
    • X-ray solution scattering (SAXS) combined with crystallography and computation: Defining accurate macromolecular structures, conformations and assemblies in solution
    • Putnam, C. D., Hammel, M., Hura, G. L. & Tainer, J. A. X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution. Q. Rev. Biophys. 40, 191-285 (2007).
    • (2007) Q. Rev. Biophys. , vol.40 , pp. 191-285
    • Putnam, C.D.1    Hammel, M.2    Hura, G.L.3    Tainer, J.A.4
  • 19
    • 79958045453 scopus 로고    scopus 로고
    • Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law
    • Rambo, R. P. & Tainer, J. A. Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 95, 559-571 (2011).
    • (2011) Biopolymers , vol.95 , pp. 559-571
    • Rambo, R.P.1    Tainer, J.A.2
  • 20
    • 0035997350 scopus 로고    scopus 로고
    • Eukaryotic ribonuclease P: A plurality of ribonucleoprotein enzymes
    • Xiao, S., Scott, F., Fierke, C. A. & Engelke, D. R. Eukaryotic ribonuclease P: a plurality of ribonucleoprotein enzymes. Annu. Rev. Biochem. 71, 165-189 (2002).
    • (2002) Annu. Rev. Biochem. , vol.71 , pp. 165-189
    • Xiao, S.1    Scott, F.2    Fierke, C.A.3    Engelke, D.R.4
  • 22
    • 78549284909 scopus 로고    scopus 로고
    • 29-O methylation of the viral mRNA cap evades host restriction by IFIT family members
    • Daffis, S. et al. 29-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468, 452-456 (2010).
    • (2010) Nature , vol.468 , pp. 452-456
    • Daffis, S.1
  • 23
    • 78751637122 scopus 로고    scopus 로고
    • Ribose 29-O-methylation provides a molecular signature for the distinction of self and non-selfmRNAdependent on the RNA sensorMda5
    • Zu st, R. et al. Ribose 29-O-methylation provides a molecular signature for the distinction of self and non-selfmRNAdependent on the RNA sensorMda5. Nature Immunol. 12, 137-143 (2011).
    • (2011) Nature Immunol. , vol.12 , pp. 137-143
    • Zu St, R.1
  • 24
    • 84863711523 scopus 로고    scopus 로고
    • 29-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and-independent mechanisms of host restriction in vivo
    • Szretter, K. J. et al. 29-O methylation of the viral mRNA cap by West Nile virus evades ifit1-dependent and-independent mechanisms of host restriction in vivo. PLoS Pathog. 8, e1002698 (2012).
    • (2012) PLoS Pathog. , vol.8
    • Szretter, K.J.1
  • 25
    • 83855162132 scopus 로고    scopus 로고
    • Conventional and unconventional mechanisms for capping viral mRNA
    • Decroly, E., Ferron, F., Lescar, J. & Canard, B. Conventional and unconventional mechanisms for capping viral mRNA. Nature Rev. Microbiol. 10, 51-65 (2012).
    • (2012) Nature Rev. Microbiol. , vol.10 , pp. 51-65
    • Decroly, E.1    Ferron, F.2    Lescar, J.3    Canard, B.4
  • 26
    • 79959242498 scopus 로고    scopus 로고
    • Detection of prokaryotic mRNA signifies microbial viability and promotes immunity
    • Sander, L. E. et al. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 474, 385-389 (2011).
    • (2011) Nature , vol.474 , pp. 385-389
    • Sander, L.E.1
  • 27
    • 84865802844 scopus 로고    scopus 로고
    • Crystal structure of ISG54 reveals a novel RNA binding structure and potential functional mechanisms
    • Yang, Z. et al. Crystal structure of ISG54 reveals a novel RNA binding structure and potential functional mechanisms. Cell Res. 22, 1328-1338 (2012).
    • (2012) Cell Res. , vol.22 , pp. 1328-1338
    • Yang, Z.1
  • 28
    • 0033638223 scopus 로고    scopus 로고
    • Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast
    • Mossessova, E. & Lima, C. D. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol. Cell 5, 865-876 (2000).
    • (2000) Mol. Cell , vol.5 , pp. 865-876
    • Mossessova, E.1    Lima, C.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.