메뉴 건너뛰기




Volumn 35, Issue 9, 2014, Pages 420-428

Antiviral innate immunity and stress granule responses

Author keywords

DsRNA; Innate immunity; Interferon; Shut off; Stress granules; Virus infection

Indexed keywords

RECEPTOR; RETINOIC ACID INDUCIBLE GENE I LIKE RECEPTOR; UNCLASSIFIED DRUG; VIRUS RNA; INTERFERON; RIBONUCLEOPROTEIN;

EID: 84922520038     PISSN: 14714906     EISSN: 14714981     Source Type: Journal    
DOI: 10.1016/j.it.2014.07.006     Document Type: Review
Times cited : (189)

References (130)
  • 1
    • 84881027832 scopus 로고    scopus 로고
    • Innate immune detection of microbial nucleic acids
    • Gurtler C., Bowie A.G. Innate immune detection of microbial nucleic acids. Trends Microbiol. 2013, 21:413-420.
    • (2013) Trends Microbiol. , vol.21 , pp. 413-420
    • Gurtler, C.1    Bowie, A.G.2
  • 2
    • 46249115827 scopus 로고    scopus 로고
    • Interferon-inducible antiviral effectors
    • Sadler A.J., Williams B.R. Interferon-inducible antiviral effectors. Nat. Rev. Immunol. 2008, 8:559-568.
    • (2008) Nat. Rev. Immunol. , vol.8 , pp. 559-568
    • Sadler, A.J.1    Williams, B.R.2
  • 3
    • 74549167783 scopus 로고    scopus 로고
    • Regulation of adaptive immunity by the innate immune system
    • Iwasaki A., Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science 2010, 327:291-295.
    • (2010) Science , vol.327 , pp. 291-295
    • Iwasaki, A.1    Medzhitov, R.2
  • 4
    • 84894493425 scopus 로고    scopus 로고
    • Innate receptors for adaptive immunity
    • Michallet M.C., et al. Innate receptors for adaptive immunity. Curr. Opin. Microbiol. 2013, 16:296-302.
    • (2013) Curr. Opin. Microbiol. , vol.16 , pp. 296-302
    • Michallet, M.C.1
  • 5
    • 0036154218 scopus 로고    scopus 로고
    • Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules
    • Kedersha N., et al. Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol. Biol. Cell 2002, 13:195-210.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 195-210
    • Kedersha, N.1
  • 6
    • 0036863320 scopus 로고    scopus 로고
    • Stress granules: sites of mRNA triage that regulate mRNA stability and translatability
    • Kedersha N., Anderson P. Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem. Soc. Trans. 2002, 30:963-969.
    • (2002) Biochem. Soc. Trans. , vol.30 , pp. 963-969
    • Kedersha, N.1    Anderson, P.2
  • 7
    • 66249103703 scopus 로고    scopus 로고
    • RNA granules: post-transcriptional and epigenetic modulators of gene expression
    • Anderson P., Kedersha N. RNA granules: post-transcriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell Biol. 2009, 10:430-436.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 430-436
    • Anderson, P.1    Kedersha, N.2
  • 8
    • 77951260924 scopus 로고    scopus 로고
    • The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors
    • Kawai T., Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 2010, 11:373-384.
    • (2010) Nat. Immunol. , vol.11 , pp. 373-384
    • Kawai, T.1    Akira, S.2
  • 9
    • 79959649316 scopus 로고    scopus 로고
    • RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity
    • Ramos H.J., Gale M. RIG-I like receptors and their signaling crosstalk in the regulation of antiviral immunity. Curr. Opin. Virol. 2011, 1:167-176.
    • (2011) Curr. Opin. Virol. , vol.1 , pp. 167-176
    • Ramos, H.J.1    Gale, M.2
  • 10
    • 34548694962 scopus 로고    scopus 로고
    • Innate recognition of viruses
    • Pichlmair A., Reis e Sousa C. Innate recognition of viruses. Immunity 2007, 27:370-383.
    • (2007) Immunity , vol.27 , pp. 370-383
    • Pichlmair, A.1    Reis e Sousa, C.2
  • 11
    • 84872317979 scopus 로고    scopus 로고
    • Innate immune responses to DNA viruses
    • Nie Y., Wang Y.Y. Innate immune responses to DNA viruses. Protein Cell 2013, 4:1-7.
    • (2013) Protein Cell , vol.4 , pp. 1-7
    • Nie, Y.1    Wang, Y.Y.2
  • 12
    • 84879385334 scopus 로고    scopus 로고
    • CGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING
    • Ablasser A., et al. cGAS produces a 2'-5'-linked cyclic dinucleotide second messenger that activates STING. Nature 2013, 498:380-384.
    • (2013) Nature , vol.498 , pp. 380-384
    • Ablasser, A.1
  • 13
    • 3242813113 scopus 로고    scopus 로고
    • The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses
    • Yoneyama M., et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 2004, 5:730-737.
    • (2004) Nat. Immunol. , vol.5 , pp. 730-737
    • Yoneyama, M.1
  • 14
    • 23844438864 scopus 로고    scopus 로고
    • Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity
    • Yoneyama M., et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 2005, 175:2851-2858.
    • (2005) J. Immunol. , vol.175 , pp. 2851-2858
    • Yoneyama, M.1
  • 15
    • 68049089651 scopus 로고    scopus 로고
    • Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus
    • Schlee M., et al. Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 2009, 31:25-34.
    • (2009) Immunity , vol.31 , pp. 25-34
    • Schlee, M.1
  • 16
    • 67749133995 scopus 로고    scopus 로고
    • 5'-Triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I
    • Schmidt A., et al. 5'-Triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:12067-12072.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 12067-12072
    • Schmidt, A.1
  • 17
    • 33750976374 scopus 로고    scopus 로고
    • 5'-Triphosphate RNA is the ligand for RIG-I
    • Hornung V., et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science 2006, 314:994-997.
    • (2006) Science , vol.314 , pp. 994-997
    • Hornung, V.1
  • 18
    • 27144440523 scopus 로고    scopus 로고
    • IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction
    • Kawai T., et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 2005, 6:981-988.
    • (2005) Nat. Immunol. , vol.6 , pp. 981-988
    • Kawai, T.1
  • 19
    • 80053590435 scopus 로고    scopus 로고
    • Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter
    • Belgnaoui S.M., et al. Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr. Opin. Immunol. 2011, 23:564-572.
    • (2011) Curr. Opin. Immunol. , vol.23 , pp. 564-572
    • Belgnaoui, S.M.1
  • 20
    • 34247341367 scopus 로고    scopus 로고
    • TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
    • Gack M.U., et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 2007, 446:916-920.
    • (2007) Nature , vol.446 , pp. 916-920
    • Gack, M.U.1
  • 21
    • 84862994793 scopus 로고    scopus 로고
    • Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response
    • Jiang X., et al. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 2012, 36:959-973.
    • (2012) Immunity , vol.36 , pp. 959-973
    • Jiang, X.1
  • 22
    • 80052281413 scopus 로고    scopus 로고
    • Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus
    • Horner S.M., et al. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14590-14595.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 14590-14595
    • Horner, S.M.1
  • 23
    • 84861181618 scopus 로고    scopus 로고
    • The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity
    • Liu H.M., et al. The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe 2012, 11:528-537.
    • (2012) Cell Host Microbe , vol.11 , pp. 528-537
    • Liu, H.M.1
  • 24
    • 77951708374 scopus 로고    scopus 로고
    • Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity
    • Zeng W., et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 2010, 141:315-330.
    • (2010) Cell , vol.141 , pp. 315-330
    • Zeng, W.1
  • 25
    • 84883759334 scopus 로고    scopus 로고
    • RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner
    • Peisley A., et al. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol. Cell 2013, 51:573-583.
    • (2013) Mol. Cell , vol.51 , pp. 573-583
    • Peisley, A.1
  • 26
    • 84899957213 scopus 로고    scopus 로고
    • Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I
    • Peisley A., et al. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature 2014, 509:110-114.
    • (2014) Nature , vol.509 , pp. 110-114
    • Peisley, A.1
  • 27
    • 33748475531 scopus 로고    scopus 로고
    • Type I interferon gene induction by the interferon regulatory factor family of transcription factors
    • Honda K., et al. Type I interferon gene induction by the interferon regulatory factor family of transcription factors. Immunity 2006, 25:349-360.
    • (2006) Immunity , vol.25 , pp. 349-360
    • Honda, K.1
  • 28
    • 33646152751 scopus 로고    scopus 로고
    • Antiviral effect of the mammalian translation initiation factor 2alpha kinase GCN2 against RNA viruses
    • Berlanga J.J., et al. Antiviral effect of the mammalian translation initiation factor 2alpha kinase GCN2 against RNA viruses. EMBO J. 2006, 25:1730-1740.
    • (2006) EMBO J. , vol.25 , pp. 1730-1740
    • Berlanga, J.J.1
  • 29
    • 84883271505 scopus 로고    scopus 로고
    • Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses
    • Ng C.S., et al. Encephalomyocarditis virus disrupts stress granules, the critical platform for triggering antiviral innate immune responses. J. Virol. 2013, 87:9511-9522.
    • (2013) J. Virol. , vol.87 , pp. 9511-9522
    • Ng, C.S.1
  • 30
    • 35848929915 scopus 로고    scopus 로고
    • Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase
    • White J.P., et al. Inhibition of cytoplasmic mRNA stress granule formation by a viral proteinase. Cell Host Microbe 2007, 2:295-305.
    • (2007) Cell Host Microbe , vol.2 , pp. 295-305
    • White, J.P.1
  • 31
    • 84894188840 scopus 로고    scopus 로고
    • Production of a dominant-negative fragment due to G3BP1 cleavage contributes to the disruption of mitochondria-associated protective stress granules during CVB3 infection
    • Fung G., et al. Production of a dominant-negative fragment due to G3BP1 cleavage contributes to the disruption of mitochondria-associated protective stress granules during CVB3 infection. PLoS ONE 2013, 8:e79546.
    • (2013) PLoS ONE , vol.8
    • Fung, G.1
  • 32
    • 70350678748 scopus 로고    scopus 로고
    • Mammalian orthoreovirus particles induce and are recruited into stress granules at early times postinfection
    • Qin Q., et al. Mammalian orthoreovirus particles induce and are recruited into stress granules at early times postinfection. J. Virol. 2009, 83:11090-11101.
    • (2009) J. Virol. , vol.83 , pp. 11090-11101
    • Qin, Q.1
  • 33
    • 23044475941 scopus 로고    scopus 로고
    • Importance of eIF2alpha phosphorylation and stress granule assembly in alphavirus translation regulation
    • McInerney G.M., et al. Importance of eIF2alpha phosphorylation and stress granule assembly in alphavirus translation regulation. Mol. Biol. Cell 2005, 16:3753-3763.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 3753-3763
    • McInerney, G.M.1
  • 34
    • 84867167962 scopus 로고    scopus 로고
    • Dynamic oscillation of translation and stress granule formation mark the cellular response to virus infection
    • Ruggieri A., et al. Dynamic oscillation of translation and stress granule formation mark the cellular response to virus infection. Cell Host Microbe 2012, 12:71-85.
    • (2012) Cell Host Microbe , vol.12 , pp. 71-85
    • Ruggieri, A.1
  • 35
    • 77954384495 scopus 로고    scopus 로고
    • Regulation of PKR by HCV IRES RNA: importance of domain II and NS5A
    • Toroney R., et al. Regulation of PKR by HCV IRES RNA: importance of domain II and NS5A. J. Mol. Biol. 2010, 400:393-412.
    • (2010) J. Mol. Biol. , vol.400 , pp. 393-412
    • Toroney, R.1
  • 36
    • 84869019846 scopus 로고    scopus 로고
    • Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress
    • Garaigorta U., et al. Hepatitis C virus (HCV) induces formation of stress granules whose proteins regulate HCV RNA replication and virus assembly and egress. J. Virol. 2012, 86:11043-11056.
    • (2012) J. Virol. , vol.86 , pp. 11043-11056
    • Garaigorta, U.1
  • 37
    • 80052443081 scopus 로고    scopus 로고
    • The leader protein of cardioviruses inhibits stress granule assembly
    • Borghese F., Michiels T. The leader protein of cardioviruses inhibits stress granule assembly. J. Virol. 2011, 85:9614-9622.
    • (2011) J. Virol. , vol.85 , pp. 9614-9622
    • Borghese, F.1    Michiels, T.2
  • 38
    • 35948982216 scopus 로고    scopus 로고
    • The mengovirus leader protein blocks interferon-alpha/beta gene transcription and inhibits activation of interferon regulatory factor 3
    • Hato S.V., et al. The mengovirus leader protein blocks interferon-alpha/beta gene transcription and inhibits activation of interferon regulatory factor 3. Cell. Microbiol. 2007, 9:2921-2930.
    • (2007) Cell. Microbiol. , vol.9 , pp. 2921-2930
    • Hato, S.V.1
  • 39
    • 84871997466 scopus 로고    scopus 로고
    • Stress granule formation induced by measles virus is protein kinase PKR dependent and impaired by RNA adenosine deaminase ADAR1
    • Okonski K.M., Samuel C.E. Stress granule formation induced by measles virus is protein kinase PKR dependent and impaired by RNA adenosine deaminase ADAR1. J. Virol. 2013, 87:756-766.
    • (2013) J. Virol. , vol.87 , pp. 756-766
    • Okonski, K.M.1    Samuel, C.E.2
  • 40
    • 84883288616 scopus 로고    scopus 로고
    • Measles virus nonstructural C protein modulates viral RNA polymerase activity by interacting with host protein SHCBP1
    • Ito M., et al. Measles virus nonstructural C protein modulates viral RNA polymerase activity by interacting with host protein SHCBP1. J. Virol. 2013, 87:9633-9642.
    • (2013) J. Virol. , vol.87 , pp. 9633-9642
    • Ito, M.1
  • 41
    • 84860900591 scopus 로고    scopus 로고
    • Influenza A virus inhibits cytoplasmic stress granule formation
    • Khaperskyy D.A., et al. Influenza A virus inhibits cytoplasmic stress granule formation. FASEB J. 2012, 26:1629-1639.
    • (2012) FASEB J. , vol.26 , pp. 1629-1639
    • Khaperskyy, D.A.1
  • 42
    • 84865060036 scopus 로고    scopus 로고
    • Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity
    • Onomoto K., et al. Critical role of an antiviral stress granule containing RIG-I and PKR in viral detection and innate immunity. PLoS ONE 2012, 7:e43031.
    • (2012) PLoS ONE , vol.7
    • Onomoto, K.1
  • 43
    • 0028847292 scopus 로고
    • Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor
    • Lu Y., et al. Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor. Virology 1995, 214:222-228.
    • (1995) Virology , vol.214 , pp. 222-228
    • Lu, Y.1
  • 44
    • 84871954468 scopus 로고    scopus 로고
    • Japanese encephalitis virus core protein inhibits stress granule formation through an interaction with Caprin-1 and facilitates viral propagation
    • Katoh H., et al. Japanese encephalitis virus core protein inhibits stress granule formation through an interaction with Caprin-1 and facilitates viral propagation. J. Virol. 2013, 87:489-502.
    • (2013) J. Virol. , vol.87 , pp. 489-502
    • Katoh, H.1
  • 45
    • 53749086902 scopus 로고    scopus 로고
    • Sendai virus C protein plays a role in restricting PKR activation by limiting the generation of intracellular double-stranded RNA
    • Takeuchi K., et al. Sendai virus C protein plays a role in restricting PKR activation by limiting the generation of intracellular double-stranded RNA. J. Virol. 2008, 82:10102-10110.
    • (2008) J. Virol. , vol.82 , pp. 10102-10110
    • Takeuchi, K.1
  • 46
    • 0036791614 scopus 로고    scopus 로고
    • Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis
    • Iseni F., et al. Sendai virus trailer RNA binds TIAR, a cellular protein involved in virus-induced apoptosis. EMBO J. 2002, 21:5141-5150.
    • (2002) EMBO J. , vol.21 , pp. 5141-5150
    • Iseni, F.1
  • 47
    • 38349138566 scopus 로고    scopus 로고
    • Rotavirus infection induces the phosphorylation of eIF2alpha but prevents the formation of stress granules
    • Montero H., et al. Rotavirus infection induces the phosphorylation of eIF2alpha but prevents the formation of stress granules. J. Virol. 2008, 82:1496-1504.
    • (2008) J. Virol. , vol.82 , pp. 1496-1504
    • Montero, H.1
  • 48
    • 34547456097 scopus 로고    scopus 로고
    • Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly
    • Emara M.M., Brinton M.A. Interaction of TIA-1/TIAR with West Nile and dengue virus products in infected cells interferes with stress granule formation and processing body assembly. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:9041-9046.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 9041-9046
    • Emara, M.M.1    Brinton, M.A.2
  • 49
    • 84897407806 scopus 로고    scopus 로고
    • DHX36 enhances RIG-I signaling by facilitating PKR-mediated antiviral stress granule formation
    • Yoo J.S., et al. DHX36 enhances RIG-I signaling by facilitating PKR-mediated antiviral stress granule formation. PLoS Pathog. 2014, 10:e1004012.
    • (2014) PLoS Pathog. , vol.10
    • Yoo, J.S.1
  • 50
    • 84878171308 scopus 로고    scopus 로고
    • MDA5 localizes to stress granules, but this localization is not required for the induction of type I interferon
    • Langereis M.A., et al. MDA5 localizes to stress granules, but this localization is not required for the induction of type I interferon. J. Virol. 2013, 87:6314-6325.
    • (2013) J. Virol. , vol.87 , pp. 6314-6325
    • Langereis, M.A.1
  • 51
    • 0042307304 scopus 로고    scopus 로고
    • Viral infection switches non-plasmacytoid dendritic cells into high interferon producers
    • Diebold S.S., et al. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 2003, 424:324-328.
    • (2003) Nature , vol.424 , pp. 324-328
    • Diebold, S.S.1
  • 52
    • 0141606673 scopus 로고    scopus 로고
    • PKR's protective role in viral myocarditis
    • Stewart M.J., et al. PKR's protective role in viral myocarditis. Virology 2003, 314:92-100.
    • (2003) Virology , vol.314 , pp. 92-100
    • Stewart, M.J.1
  • 53
    • 35148820081 scopus 로고    scopus 로고
    • West Nile virus-induced interferon production is mediated by the double-stranded RNA-dependent protein kinase PKR
    • Gilfoy F.D., Mason P.W. West Nile virus-induced interferon production is mediated by the double-stranded RNA-dependent protein kinase PKR. J. Virol. 2007, 81:11148-11158.
    • (2007) J. Virol. , vol.81 , pp. 11148-11158
    • Gilfoy, F.D.1    Mason, P.W.2
  • 54
    • 77954856078 scopus 로고    scopus 로고
    • Protein kinase R contributes to immunity against specific viruses by regulating interferon mRNA integrity
    • Schulz O., et al. Protein kinase R contributes to immunity against specific viruses by regulating interferon mRNA integrity. Cell Host Microbe 2010, 7:354-361.
    • (2010) Cell Host Microbe , vol.7 , pp. 354-361
    • Schulz, O.1
  • 55
    • 59449110836 scopus 로고    scopus 로고
    • The RNA-activated protein kinase enhances the induction of interferon-beta and apoptosis mediated by cytoplasmic RNA sensors
    • McAllister C.S., Samuel C.E. The RNA-activated protein kinase enhances the induction of interferon-beta and apoptosis mediated by cytoplasmic RNA sensors. J. Biol. Chem. 2009, 284:1644-1651.
    • (2009) J. Biol. Chem. , vol.284 , pp. 1644-1651
    • McAllister, C.S.1    Samuel, C.E.2
  • 56
    • 0141703238 scopus 로고    scopus 로고
    • Selective contribution of IFN-alpha/beta signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection
    • Honda K., et al. Selective contribution of IFN-alpha/beta signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:10872-10877.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 10872-10877
    • Honda, K.1
  • 57
    • 0035937802 scopus 로고    scopus 로고
    • IRF3 and IRF7 phosphorylation in virus-infected cells does not require double-stranded RNA-dependent protein kinase R or Ikappa B kinase but is blocked by Vaccinia virus E3L protein
    • Smith E.J., et al. IRF3 and IRF7 phosphorylation in virus-infected cells does not require double-stranded RNA-dependent protein kinase R or Ikappa B kinase but is blocked by Vaccinia virus E3L protein. J. Biol. Chem. 2001, 276:8951-8957.
    • (2001) J. Biol. Chem. , vol.276 , pp. 8951-8957
    • Smith, E.J.1
  • 58
    • 8444226670 scopus 로고    scopus 로고
    • Replication-dependent potent IFN-alpha induction in human plasmacytoid dendritic cells by a single-stranded RNA virus
    • Hornung V., et al. Replication-dependent potent IFN-alpha induction in human plasmacytoid dendritic cells by a single-stranded RNA virus. J. Immunol. 2004, 173:5935-5943.
    • (2004) J. Immunol. , vol.173 , pp. 5935-5943
    • Hornung, V.1
  • 59
    • 3042615308 scopus 로고    scopus 로고
    • C and V proteins of Sendai virus target signaling pathways leading to IRF-3 activation for the negative regulation of interferon-beta production
    • Komatsu T., et al. C and V proteins of Sendai virus target signaling pathways leading to IRF-3 activation for the negative regulation of interferon-beta production. Virology 2004, 325:137-148.
    • (2004) Virology , vol.325 , pp. 137-148
    • Komatsu, T.1
  • 60
    • 22344455246 scopus 로고    scopus 로고
    • Stress granules and processing bodies are dynamically linked sites of mRNP remodeling
    • Kedersha N., et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 2005, 169:871-884.
    • (2005) J. Cell Biol. , vol.169 , pp. 871-884
    • Kedersha, N.1
  • 61
    • 84855875985 scopus 로고    scopus 로고
    • The dependence of viral RNA replication on co-opted host factors
    • Nagy P.D., Pogany J. The dependence of viral RNA replication on co-opted host factors. Nat. Rev. Microbiol. 2012, 10:137-149.
    • (2012) Nat. Rev. Microbiol. , vol.10 , pp. 137-149
    • Nagy, P.D.1    Pogany, J.2
  • 62
    • 80053241157 scopus 로고    scopus 로고
    • Virus-host interactomes and global models of virus-infected cells
    • Friedel C.C., Haas J. Virus-host interactomes and global models of virus-infected cells. Trends Microbiol. 2011, 19:501-508.
    • (2011) Trends Microbiol. , vol.19 , pp. 501-508
    • Friedel, C.C.1    Haas, J.2
  • 63
    • 78651484480 scopus 로고    scopus 로고
    • New insights into the role of RNase L in innate immunity
    • Chakrabarti A., et al. New insights into the role of RNase L in innate immunity. J. Interferon Cytokine Res. 2011, 31:49-57.
    • (2011) J. Interferon Cytokine Res. , vol.31 , pp. 49-57
    • Chakrabarti, A.1
  • 64
    • 34547960175 scopus 로고    scopus 로고
    • Small self-RNA generated by RNase L amplifies antiviral innate immunity
    • Malathi K., et al. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 2007, 448:816-819.
    • (2007) Nature , vol.448 , pp. 816-819
    • Malathi, K.1
  • 65
    • 84883324602 scopus 로고    scopus 로고
    • A distinct role of Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses
    • Oshiumi H., et al. A distinct role of Riplet-mediated K63-Linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. PLoS Pathog. 2013, 9:e1003533.
    • (2013) PLoS Pathog. , vol.9
    • Oshiumi, H.1
  • 66
    • 84898776236 scopus 로고    scopus 로고
    • Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity
    • Kuniyoshi K., et al. Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:5646-5651.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 5646-5651
    • Kuniyoshi, K.1
  • 67
    • 77949389673 scopus 로고    scopus 로고
    • Stable formation of compositionally unique stress granules in virus-infected cells
    • Piotrowska J., et al. Stable formation of compositionally unique stress granules in virus-infected cells. J. Virol. 2010, 84:3654-3665.
    • (2010) J. Virol. , vol.84 , pp. 3654-3665
    • Piotrowska, J.1
  • 68
    • 0024639409 scopus 로고
    • Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs
    • Nover L., et al. Cytoplasmic heat shock granules are formed from precursor particles and are associated with a specific set of mRNAs. Mol. Cell. Biol. 1989, 9:1298-1308.
    • (1989) Mol. Cell. Biol. , vol.9 , pp. 1298-1308
    • Nover, L.1
  • 69
    • 0023007393 scopus 로고
    • The dynamic state of heat shock proteins in chicken embryo fibroblasts
    • Collier N.C., Schlesinger M.J. The dynamic state of heat shock proteins in chicken embryo fibroblasts. J. Cell Biol. 1986, 103:1495-1507.
    • (1986) J. Cell Biol. , vol.103 , pp. 1495-1507
    • Collier, N.C.1    Schlesinger, M.J.2
  • 70
    • 0037101945 scopus 로고    scopus 로고
    • Stressful initiations
    • Anderson P., Kedersha N. Stressful initiations. J. Cell Sci. 2002, 115:3227-3234.
    • (2002) J. Cell Sci. , vol.115 , pp. 3227-3234
    • Anderson, P.1    Kedersha, N.2
  • 71
    • 33847417585 scopus 로고    scopus 로고
    • P bodies and the control of mRNA translation and degradation
    • Parker R., Sheth U. P bodies and the control of mRNA translation and degradation. Mol. Cell 2007, 25:635-646.
    • (2007) Mol. Cell , vol.25 , pp. 635-646
    • Parker, R.1    Sheth, U.2
  • 72
    • 33845809231 scopus 로고    scopus 로고
    • P bodies: at the crossroads of post-transcriptional pathways
    • Eulalio A., et al. P bodies: at the crossroads of post-transcriptional pathways. Nat. Rev. Mol. Cell Biol. 2007, 8:9-22.
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 9-22
    • Eulalio, A.1
  • 73
    • 38449123517 scopus 로고    scopus 로고
    • Mammalian stress granules and processing bodies
    • Kedersha N., Anderson P. Mammalian stress granules and processing bodies. Methods Enzymol. 2007, 431:61-81.
    • (2007) Methods Enzymol. , vol.431 , pp. 61-81
    • Kedersha, N.1    Anderson, P.2
  • 74
    • 0033611157 scopus 로고    scopus 로고
    • RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules
    • Kedersha N.L., et al. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2 alpha to the assembly of mammalian stress granules. J. Cell Biol. 1999, 147:1431-1442.
    • (1999) J. Cell Biol. , vol.147 , pp. 1431-1442
    • Kedersha, N.L.1
  • 75
    • 0037451173 scopus 로고    scopus 로고
    • The RasGAP-associated endoribonuclease G3BP assembles stress granules
    • Tourriere H., et al. The RasGAP-associated endoribonuclease G3BP assembles stress granules. J. Cell Biol. 2003, 160:823-831.
    • (2003) J. Cell Biol. , vol.160 , pp. 823-831
    • Tourriere, H.1
  • 76
    • 9444279617 scopus 로고    scopus 로고
    • Stress granule assembly is mediated by prion-like aggregation of TIA-1
    • Gilks N., et al. Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol. Biol. Cell 2004, 15:5383-5398.
    • (2004) Mol. Biol. Cell , vol.15 , pp. 5383-5398
    • Gilks, N.1
  • 77
    • 84857394407 scopus 로고    scopus 로고
    • Tudor-SN and ADAR1 are components of cytoplasmic stress granules
    • Weissbach R., Scadden A.D. Tudor-SN and ADAR1 are components of cytoplasmic stress granules. RNA 2012, 18:462-471.
    • (2012) RNA , vol.18 , pp. 462-471
    • Weissbach, R.1    Scadden, A.D.2
  • 78
    • 33947210861 scopus 로고    scopus 로고
    • Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs
    • Solomon S., et al. Distinct structural features of caprin-1 mediate its interaction with G3BP-1 and its induction of phosphorylation of eukaryotic translation initiation factor 2alpha, entry to cytoplasmic stress granules, and selective interaction with a subset of mRNAs. Mol. Cell. Biol. 2007, 27:2324-2342.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 2324-2342
    • Solomon, S.1
  • 79
    • 0037302958 scopus 로고    scopus 로고
    • Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes
    • Kimball S.R., et al. Mammalian stress granules represent sites of accumulation of stalled translation initiation complexes. Am. J. Physiol. Cell Physiol. 2003, 284:C273-C284.
    • (2003) Am. J. Physiol. Cell Physiol. , vol.284 , pp. C273-C284
    • Kimball, S.R.1
  • 80
    • 37449030154 scopus 로고    scopus 로고
    • The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response
    • Kwon S., et al. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev. 2007, 21:3381-3394.
    • (2007) Genes Dev. , vol.21 , pp. 3381-3394
    • Kwon, S.1
  • 81
    • 0034724339 scopus 로고    scopus 로고
    • HuR binding to cytoplasmic mRNA is perturbed by heat shock
    • Gallouzi I.E., et al. HuR binding to cytoplasmic mRNA is perturbed by heat shock. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:3073-3078.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 3073-3078
    • Gallouzi, I.E.1
  • 82
    • 77950686223 scopus 로고    scopus 로고
    • OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress
    • Wehner K.A., et al. OGFOD1, a novel modulator of eukaryotic translation initiation factor 2alpha phosphorylation and the cellular response to stress. Mol. Cell. Biol. 2010, 30:2006-2016.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 2006-2016
    • Wehner, K.A.1
  • 83
    • 44949255018 scopus 로고    scopus 로고
    • Ribonomic analysis of human Pum1 reveals cis-trans conservation across species despite evolution of diverse mRNA target sets
    • Morris A.R., et al. Ribonomic analysis of human Pum1 reveals cis-trans conservation across species despite evolution of diverse mRNA target sets. Mol. Cell. Biol. 2008, 28:4093-4103.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 4093-4103
    • Morris, A.R.1
  • 84
    • 33745791191 scopus 로고    scopus 로고
    • Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules
    • Vessey J.P., et al. Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules. J. Neurosci. 2006, 26:6496-6508.
    • (2006) J. Neurosci. , vol.26 , pp. 6496-6508
    • Vessey, J.P.1
  • 85
    • 58049192398 scopus 로고    scopus 로고
    • Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain
    • Chalupnikova K., et al. Recruitment of the RNA helicase RHAU to stress granules via a unique RNA-binding domain. J. Biol. Chem. 2008, 283:35186-35198.
    • (2008) J. Biol. Chem. , vol.283 , pp. 35186-35198
    • Chalupnikova, K.1
  • 86
    • 0346095163 scopus 로고    scopus 로고
    • Rpp20 interacts with SMN and is re-distributed into SMN granules in response to stress
    • Hua Y., Zhou J. Rpp20 interacts with SMN and is re-distributed into SMN granules in response to stress. Biochem. Biophys. Res. Commun. 2004, 314:268-276.
    • (2004) Biochem. Biophys. Res. Commun. , vol.314 , pp. 268-276
    • Hua, Y.1    Zhou, J.2
  • 87
    • 4143097170 scopus 로고    scopus 로고
    • Survival motor neuron protein facilitates assembly of stress granules
    • Hua Y., Zhou J. Survival motor neuron protein facilitates assembly of stress granules. FEBS Lett. 2004, 572:69-74.
    • (2004) FEBS Lett. , vol.572 , pp. 69-74
    • Hua, Y.1    Zhou, J.2
  • 88
    • 11144317267 scopus 로고    scopus 로고
    • Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes
    • Thomas M.G., et al. Staufen recruitment into stress granules does not affect early mRNA transport in oligodendrocytes. Mol. Biol. Cell 2005, 16:405-420.
    • (2005) Mol. Biol. Cell , vol.16 , pp. 405-420
    • Thomas, M.G.1
  • 89
    • 33751036837 scopus 로고    scopus 로고
    • ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains
    • Deigendesch N., et al. ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains. Nucleic Acids Res. 2006, 34:5007-5020.
    • (2006) Nucleic Acids Res. , vol.34 , pp. 5007-5020
    • Deigendesch, N.1
  • 90
    • 17844371700 scopus 로고    scopus 로고
    • A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies
    • Andrei M.A., et al. A role for eIF4E and eIF4E-transporter in targeting mRNPs to mammalian processing bodies. RNA 2005, 11:717-727.
    • (2005) RNA , vol.11 , pp. 717-727
    • Andrei, M.A.1
  • 91
    • 2442566370 scopus 로고    scopus 로고
    • Cytoplasmic foci are sites of mRNA decay in human cells
    • Cougot N., et al. Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell Biol. 2004, 165:31-40.
    • (2004) J. Cell Biol. , vol.165 , pp. 31-40
    • Cougot, N.1
  • 92
    • 0036909093 scopus 로고    scopus 로고
    • The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci
    • Ingelfinger D., et al. The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA 2002, 8:1489-1501.
    • (2002) RNA , vol.8 , pp. 1489-1501
    • Ingelfinger, D.1
  • 93
    • 28344456221 scopus 로고    scopus 로고
    • Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body
    • Yu J.H., et al. Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA 2005, 11:1795-1802.
    • (2005) RNA , vol.11 , pp. 1795-1802
    • Yu, J.H.1
  • 94
    • 29144481702 scopus 로고    scopus 로고
    • Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping
    • Fenger-Gron M., et al. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol. Cell 2005, 20:905-915.
    • (2005) Mol. Cell , vol.20 , pp. 905-915
    • Fenger-Gron, M.1
  • 95
    • 0036223709 scopus 로고    scopus 로고
    • A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles
    • Eystathioy T., et al. A phosphorylated cytoplasmic autoantigen, GW182, associates with a unique population of human mRNAs within novel cytoplasmic speckles. Mol. Biol. Cell 2002, 13:1338-1351.
    • (2002) Mol. Biol. Cell , vol.13 , pp. 1338-1351
    • Eystathioy, T.1
  • 96
    • 0141856112 scopus 로고    scopus 로고
    • The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies
    • Eystathioy T., et al. The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA 2003, 9:1171-1173.
    • (2003) RNA , vol.9 , pp. 1171-1173
    • Eystathioy, T.1
  • 97
    • 0037968357 scopus 로고    scopus 로고
    • Decapping and decay of messenger RNA occur in cytoplasmic processing bodies
    • Sheth U., Parker R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 2003, 300:805-808.
    • (2003) Science , vol.300 , pp. 805-808
    • Sheth, U.1    Parker, R.2
  • 98
    • 33646924568 scopus 로고    scopus 로고
    • Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies
    • Wichroski M.J., et al. Human retroviral host restriction factors APOBEC3G and APOBEC3F localize to mRNA processing bodies. PLoS Pathog. 2006, 2:e41.
    • (2006) PLoS Pathog. , vol.2
    • Wichroski, M.J.1
  • 99
    • 33847193509 scopus 로고    scopus 로고
    • Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules
    • Gallois-Montbrun S., et al. Antiviral protein APOBEC3G localizes to ribonucleoprotein complexes found in P bodies and stress granules. J. Virol. 2007, 81:2165-2178.
    • (2007) J. Virol. , vol.81 , pp. 2165-2178
    • Gallois-Montbrun, S.1
  • 100
    • 33845295461 scopus 로고    scopus 로고
    • Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules
    • Leung A.K., et al. Quantitative analysis of Argonaute protein reveals microRNA-dependent localization to stress granules. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:18125-18130.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 18125-18130
    • Leung, A.K.1
  • 101
    • 20444427566 scopus 로고    scopus 로고
    • Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies
    • Sen G.L., Blau H.M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat. Cell Biol. 2005, 7:633-636.
    • (2005) Nat. Cell Biol. , vol.7 , pp. 633-636
    • Sen, G.L.1    Blau, H.M.2
  • 102
    • 16844365216 scopus 로고    scopus 로고
    • The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules
    • Wilczynska A., et al. The translational regulator CPEB1 provides a link between dcp1 bodies and stress granules. J. Cell Sci. 2005, 118:981-992.
    • (2005) J. Cell Sci. , vol.118 , pp. 981-992
    • Wilczynska, A.1
  • 103
    • 55549107531 scopus 로고    scopus 로고
    • The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control
    • Lai M.C., et al. The DEAD-box RNA helicase DDX3 associates with export messenger ribonucleoproteins as well as tip-associated protein and participates in translational control. Mol. Biol. Cell 2008, 19:3847-3858.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 3847-3858
    • Lai, M.C.1
  • 104
    • 84875113292 scopus 로고    scopus 로고
    • Determination of the role of DDX3 a factor involved in mammalian RNAi pathway using an shRNA-expression library
    • Kasim V., et al. Determination of the role of DDX3 a factor involved in mammalian RNAi pathway using an shRNA-expression library. PLoS ONE 2013, 8:e59445.
    • (2013) PLoS ONE , vol.8
    • Kasim, V.1
  • 105
    • 67449126871 scopus 로고    scopus 로고
    • Cellular microRNA and P bodies modulate host-HIV-1 interactions
    • Nathans R., et al. Cellular microRNA and P bodies modulate host-HIV-1 interactions. Mol. Cell 2009, 34:696-709.
    • (2009) Mol. Cell , vol.34 , pp. 696-709
    • Nathans, R.1
  • 106
    • 33645465546 scopus 로고    scopus 로고
    • RNA-associated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules
    • Yang W.H., et al. RNA-associated protein 55 (RAP55) localizes to mRNA processing bodies and stress granules. RNA 2006, 12:547-554.
    • (2006) RNA , vol.12 , pp. 547-554
    • Yang, W.H.1
  • 107
    • 34347225099 scopus 로고    scopus 로고
    • The dsRNA protein kinase PKR: virus and cell control
    • Garcia M.A., et al. The dsRNA protein kinase PKR: virus and cell control. Biochimie 2007, 89:799-811.
    • (2007) Biochimie , vol.89 , pp. 799-811
    • Garcia, M.A.1
  • 108
    • 0033230617 scopus 로고    scopus 로고
    • PKR; a sentinel kinase for cellular stress
    • Williams B.R. PKR; a sentinel kinase for cellular stress. Oncogene 1999, 18:6112-6120.
    • (1999) Oncogene , vol.18 , pp. 6112-6120
    • Williams, B.R.1
  • 109
    • 0031755020 scopus 로고    scopus 로고
    • Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control
    • Shi Y., et al. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol. Cell. Biol. 1998, 18:7499-7509.
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 7499-7509
    • Shi, Y.1
  • 110
    • 0033590451 scopus 로고    scopus 로고
    • Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase
    • Harding H.P., et al. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 1999, 397:271-274.
    • (1999) Nature , vol.397 , pp. 271-274
    • Harding, H.P.1
  • 111
    • 0036837864 scopus 로고    scopus 로고
    • Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha
    • Koumenis C., et al. Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol. Cell. Biol. 2002, 22:7405-7416.
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 7405-7416
    • Koumenis, C.1
  • 112
    • 0033635215 scopus 로고    scopus 로고
    • Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain
    • Dong J., et al. Uncharged tRNA activates GCN2 by displacing the protein kinase moiety from a bipartite tRNA-binding domain. Mol. Cell 2000, 6:269-279.
    • (2000) Mol. Cell , vol.6 , pp. 269-279
    • Dong, J.1
  • 113
    • 20144378698 scopus 로고    scopus 로고
    • Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure
    • McEwen E., et al. Heme-regulated inhibitor kinase-mediated phosphorylation of eukaryotic translation initiation factor 2 inhibits translation, induces stress granule formation, and mediates survival upon arsenite exposure. J. Biol. Chem. 2005, 280:16925-16933.
    • (2005) J. Biol. Chem. , vol.280 , pp. 16925-16933
    • McEwen, E.1
  • 114
    • 0028935374 scopus 로고
    • Regulation of protein synthesis by heme-regulated eIF-2 alpha kinase
    • Chen J.J., London I.M. Regulation of protein synthesis by heme-regulated eIF-2 alpha kinase. Trends Biochem. Sci. 1995, 20:105-108.
    • (1995) Trends Biochem. Sci. , vol.20 , pp. 105-108
    • Chen, J.J.1    London, I.M.2
  • 115
    • 84855956076 scopus 로고    scopus 로고
    • Analysis of subcellular G3BP redistribution during rubella virus infection
    • Matthews J.D., Frey T.K. Analysis of subcellular G3BP redistribution during rubella virus infection. J. Gen. Virol. 2012, 93:267-274.
    • (2012) J. Gen. Virol. , vol.93 , pp. 267-274
    • Matthews, J.D.1    Frey, T.K.2
  • 116
    • 0036888883 scopus 로고    scopus 로고
    • Cell proteins TIA-1 and TIAR interact with the 3' stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication
    • Li W., et al. Cell proteins TIA-1 and TIAR interact with the 3' stem-loop of the West Nile virus complementary minus-strand RNA and facilitate virus replication. J. Virol. 2002, 76:11989-12000.
    • (2002) J. Virol. , vol.76 , pp. 11989-12000
    • Li, W.1
  • 117
    • 84871702135 scopus 로고    scopus 로고
    • Modulation of hepatitis C virus RNA abundance and virus release by dispersion of processing bodies and enrichment of stress granules
    • Pager C.T., et al. Modulation of hepatitis C virus RNA abundance and virus release by dispersion of processing bodies and enrichment of stress granules. Virology 2013, 435:472-484.
    • (2013) Virology , vol.435 , pp. 472-484
    • Pager, C.T.1
  • 118
    • 79960389571 scopus 로고    scopus 로고
    • Hepatitis C virus hijacks P-body and stress granule components around lipid droplets
    • Ariumi Y., et al. Hepatitis C virus hijacks P-body and stress granule components around lipid droplets. J. Virol. 2011, 85:6882-6892.
    • (2011) J. Virol. , vol.85 , pp. 6882-6892
    • Ariumi, Y.1
  • 119
    • 79955387045 scopus 로고    scopus 로고
    • The polypyrimidine tract-binding protein affects coronavirus RNA accumulation levels and relocalizes viral RNAs to novel cytoplasmic domains different from replication-transcription sites
    • Sola I., et al. The polypyrimidine tract-binding protein affects coronavirus RNA accumulation levels and relocalizes viral RNAs to novel cytoplasmic domains different from replication-transcription sites. J. Virol. 2011, 85:5136-5149.
    • (2011) J. Virol. , vol.85 , pp. 5136-5149
    • Sola, I.1
  • 120
    • 34547883878 scopus 로고    scopus 로고
    • Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies
    • Raaben M., et al. Mouse hepatitis coronavirus replication induces host translational shutoff and mRNA decay, with concomitant formation of stress granules and processing bodies. Cell. Microbiol. 2007, 9:2218-2229.
    • (2007) Cell. Microbiol. , vol.9 , pp. 2218-2229
    • Raaben, M.1
  • 121
    • 84871984378 scopus 로고    scopus 로고
    • Induction of stress granule-like structures in vesicular stomatitis virus-infected cells
    • Dinh P.X., et al. Induction of stress granule-like structures in vesicular stomatitis virus-infected cells. J. Virol. 2013, 87:372-383.
    • (2013) J. Virol. , vol.87 , pp. 372-383
    • Dinh, P.X.1
  • 122
    • 78049506923 scopus 로고    scopus 로고
    • Respiratory syncytial virus induces host RNA stress granules to facilitate viral replication
    • Lindquist M.E., et al. Respiratory syncytial virus induces host RNA stress granules to facilitate viral replication. J. Virol. 2010, 84:12274-12284.
    • (2010) J. Virol. , vol.84 , pp. 12274-12284
    • Lindquist, M.E.1
  • 123
    • 79953107370 scopus 로고    scopus 로고
    • Activation of protein kinase R is required for induction of stress granules by respiratory syncytial virus but dispensable for viral replication
    • Lindquist M.E., et al. Activation of protein kinase R is required for induction of stress granules by respiratory syncytial virus but dispensable for viral replication. Virology 2011, 413:103-110.
    • (2011) Virology , vol.413 , pp. 103-110
    • Lindquist, M.E.1
  • 124
    • 79953117981 scopus 로고    scopus 로고
    • Roles of the respiratory syncytial virus trailer region: effects of mutations on genome production and stress granule formation
    • Hanley L.L., et al. Roles of the respiratory syncytial virus trailer region: effects of mutations on genome production and stress granule formation. Virology 2010, 406:241-252.
    • (2010) Virology , vol.406 , pp. 241-252
    • Hanley, L.L.1
  • 125
    • 84868107839 scopus 로고    scopus 로고
    • Arenavirus infection induces discrete cytosolic structures for RNA replication
    • Baird N.L., et al. Arenavirus infection induces discrete cytosolic structures for RNA replication. J. Virol. 2012, 86:11301-11310.
    • (2012) J. Virol. , vol.86 , pp. 11301-11310
    • Baird, N.L.1
  • 126
    • 80052330905 scopus 로고    scopus 로고
    • Mammalian orthoreovirus escape from host translational shutoff correlates with stress granule disruption and is independent of eIF2alpha phosphorylation and PKR
    • Qin Q., et al. Mammalian orthoreovirus escape from host translational shutoff correlates with stress granule disruption and is independent of eIF2alpha phosphorylation and PKR. J. Virol. 2011, 85:8798-8810.
    • (2011) J. Virol. , vol.85 , pp. 8798-8810
    • Qin, Q.1
  • 127
    • 32444441933 scopus 로고    scopus 로고
    • Reovirus induces and benefits from an integrated cellular stress response
    • Smith J.A., et al. Reovirus induces and benefits from an integrated cellular stress response. J. Virol. 2006, 80:2019-2033.
    • (2006) J. Virol. , vol.80 , pp. 2019-2033
    • Smith, J.A.1
  • 128
    • 78951489060 scopus 로고    scopus 로고
    • Formation of antiviral cytoplasmic granules during orthopoxvirus infection
    • Simpson-Holley M., et al. Formation of antiviral cytoplasmic granules during orthopoxvirus infection. J. Virol. 2011, 85:1581-1593.
    • (2011) J. Virol. , vol.85 , pp. 1581-1593
    • Simpson-Holley, M.1
  • 129
    • 34848865040 scopus 로고    scopus 로고
    • Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions
    • Katsafanas G.C., Moss B. Colocalization of transcription and translation within cytoplasmic poxvirus factories coordinates viral expression and subjugates host functions. Cell Host Microbe 2007, 2:221-228.
    • (2007) Cell Host Microbe , vol.2 , pp. 221-228
    • Katsafanas, G.C.1    Moss, B.2
  • 130
    • 78951492184 scopus 로고    scopus 로고
    • Modulation of stress granules and P bodies during dicistrovirus infection
    • Khong A., Jan E. Modulation of stress granules and P bodies during dicistrovirus infection. J. Virol. 2011, 85:1439-1451.
    • (2011) J. Virol. , vol.85 , pp. 1439-1451
    • Khong, A.1    Jan, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.