메뉴 건너뛰기




Volumn 35, Issue , 2015, Pages

Base-CP proteasome can serve as a platform for stepwise lid formation

Author keywords

19S regulatory particle; 20S core particle; 26S proteasome; Base; Lid; MPN; PCI; rpn11 m1

Indexed keywords

ADENOSINE TRIPHOSPHATASE; PROTEASOME; REGULATORY PARTICLE NON ATPASE 11; REGULATORY PARTICLE NON ATPASE 8; UNCLASSIFIED DRUG; ATP DEPENDENT 26S PROTEASE; PROTEINASE; RPN11 PROTEIN, S CEREVISIAE; RPN6 PROTEIN, S CEREVISIAE; RPN8 PROTEIN, S CEREVISIAE; RPN9 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84929472388     PISSN: 01448463     EISSN: 15734935     Source Type: Journal    
DOI: 10.1042/BSR20140173     Document Type: Article
Times cited : (17)

References (94)
  • 2
    • 70350150000 scopus 로고    scopus 로고
    • The emerging complexity of protein ubiquitination
    • CrossRef PubMed
    • Komander, D. (2009) The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 37, 937-953 CrossRef PubMed
    • (2009) Biochem. Soc. Trans. , vol.37 , pp. 937-953
    • Komander, D.1
  • 3
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • CrossRef PubMed
    • Finley, D. (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 78, 477-513 CrossRef PubMed
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 477-513
    • Finley, D.1
  • 4
    • 0036083396 scopus 로고    scopus 로고
    • The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction
    • PubMed
    • Glickman, M.H. and Ciechanover, A. (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373-428 PubMed
    • (2002) Physiol. Rev. , vol.82 , pp. 373-428
    • Glickman, M.H.1    Ciechanover, A.2
  • 5
    • 0031815994 scopus 로고    scopus 로고
    • The regulatory particle of the Saccharomyces cerevisiae proteasome
    • PubMed
    • Glickman, M.H., Rubin, D.M., Fried, V.A. and Finley, D. (1998) The regulatory particle of the Saccharomyces cerevisiae proteasome. Mol. Cell. Biol. 18, 3149-3162 PubMed
    • (1998) Mol. Cell. Biol. , vol.18 , pp. 3149-3162
    • Glickman, M.H.1    Rubin, D.M.2    Fried, V.A.3    Finley, D.4
  • 6
    • 84859827831 scopus 로고    scopus 로고
    • The proteasome: Molecular machinery and pathophysiological roles
    • CrossRef PubMed
    • Tanaka, K., Mizushima, T. and Saeki, Y. (2012) The proteasome: molecular machinery and pathophysiological roles. Biol. Chem. 393, 217-234 CrossRef PubMed
    • (2012) Biol. Chem. , vol.393 , pp. 217-234
    • Tanaka, K.1    Mizushima, T.2    Saeki, Y.3
  • 7
    • 39149135202 scopus 로고    scopus 로고
    • Protein targeting to ATP-dependent proteases
    • CrossRef PubMed
    • Inobe, T. and Matouschek, A. (2008) Protein targeting to ATP-dependent proteases. Curr. Opin. Struct. Biol. 18, 43-51 CrossRef PubMed
    • (2008) Curr. Opin. Struct. Biol. , vol.18 , pp. 43-51
    • Inobe, T.1    Matouschek, A.2
  • 8
    • 78649289427 scopus 로고    scopus 로고
    • ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation
    • CrossRef PubMed
    • Peth, A., Uchiki, T. and Goldberg, A.L. (2010) ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol. Cell 40, 671-681 CrossRef PubMed
    • (2010) Mol. Cell , vol.40 , pp. 671-681
    • Peth, A.1    Uchiki, T.2    Goldberg, A.L.3
  • 9
    • 84885094614 scopus 로고    scopus 로고
    • The ATP costs and time required to degrade ubiquitinated proteins by the 26 S proteasome
    • CrossRef PubMed
    • Peth, A., Nathan, J.A. and Goldberg, A.L. (2013) The ATP costs and time required to degrade ubiquitinated proteins by the 26 S proteasome. J. Biol. Chem. 288, 29215-29222 CrossRef PubMed
    • (2013) J. Biol. Chem. , vol.288 , pp. 29215-29222
    • Peth, A.1    Nathan, J.A.2    Goldberg, A.L.3
  • 10
    • 0347087494 scopus 로고    scopus 로고
    • Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome
    • CrossRef PubMed
    • Guterman, A. and Glickman, M.H. (2004) Complementary roles for Rpn11 and Ubp6 in deubiquitination and proteolysis by the proteasome. J. Biol. Chem. 279, 1729-1738 CrossRef PubMed
    • (2004) J. Biol. Chem. , vol.279 , pp. 1729-1738
    • Guterman, A.1    Glickman, M.H.2
  • 11
    • 19344362846 scopus 로고    scopus 로고
    • The proteasome and the delicate balance between destruction and rescue
    • CrossRef PubMed
    • Glickman, M.H. and Adir, N. (2004) The proteasome and the delicate balance between destruction and rescue. PLoS Biol. 2, E13 CrossRef PubMed
    • (2004) PLoS Biol. , vol.2 , pp. E13
    • Glickman, M.H.1    Adir, N.2
  • 12
    • 84896032345 scopus 로고    scopus 로고
    • Paradigms of protein degradation by the proteasome
    • CrossRef PubMed
    • Inobe, T. and Matouschek, A. (2014) Paradigms of protein degradation by the proteasome. Curr. Opin. Struct. Biol. 24, 156-164 CrossRef PubMed
    • (2014) Curr. Opin. Struct. Biol. , vol.24 , pp. 156-164
    • Inobe, T.1    Matouschek, A.2
  • 14
    • 2442551473 scopus 로고    scopus 로고
    • Deubiquitinating enzymes are IN/(trinsic to proteasome function)
    • CrossRef PubMed
    • Guterman, A. and Glickman, M.H. (2004) Deubiquitinating enzymes are IN/(trinsic to proteasome function). Curr. Protein Pept. Sci. 5, 201-211 CrossRef PubMed
    • (2004) Curr. Protein Pept. Sci. , vol.5 , pp. 201-211
    • Guterman, A.1    Glickman, M.H.2
  • 15
    • 79955470830 scopus 로고    scopus 로고
    • Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes
    • R110.003871 PubMed
    • Lee, M.J., Lee, B.H., Hanna, J., King, R.W. and Finley, D. (2011) Trimming of ubiquitin chains by proteasome-associated deubiquitinating enzymes. Mol. Cell. Proteomics 10, R110.003871 PubMed
    • (2011) Mol. Cell. Proteomics , vol.10
    • Lee, M.J.1    Lee, B.H.2    Hanna, J.3    King, R.W.4    Finley, D.5
  • 16
    • 0032483546 scopus 로고    scopus 로고
    • A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3
    • CrossRef PubMed
    • Glickman, M.H., Rubin, D.M., Coux, O., Wefes, I., Pfeifer, G., Cjeka, Z., Baumeister, W., Fried, V.A. and Finley, D. (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94, 615-623 CrossRef PubMed
    • (1998) Cell , vol.94 , pp. 615-623
    • Glickman, M.H.1    Rubin, D.M.2    Coux, O.3    Wefes, I.4    Pfeifer, G.5    Cjeka, Z.6    Baumeister, W.7    Fried, V.A.8    Finley, D.9
  • 17
    • 84856976866 scopus 로고    scopus 로고
    • Complete subunit architecture of the proteasome regulatory particle
    • PubMed
    • Lander, G.C., Estrin, E., Matyskiela, M.E., Bashore, C., Nogales, E. and Martin, A. (2012) Complete subunit architecture of the proteasome regulatory particle. Nature 482, 186-191 PubMed
    • (2012) Nature , vol.482 , pp. 186-191
    • Lander, G.C.1    Estrin, E.2    Matyskiela, M.E.3    Bashore, C.4    Nogales, E.5    Martin, A.6
  • 19
    • 84860376787 scopus 로고    scopus 로고
    • Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome
    • CrossRef PubMed
    • Rosenzweig, R., Bronner, V., Zhang, D., Fushman, D. and Glickman, M.H. (2012) Rpn1 and Rpn2 coordinate ubiquitin processing factors at proteasome. J. Biol. Chem. 287, 14659-14671 CrossRef PubMed
    • (2012) J. Biol. Chem. , vol.287 , pp. 14659-14671
    • Rosenzweig, R.1    Bronner, V.2    Zhang, D.3    Fushman, D.4    Glickman, M.H.5
  • 20
    • 34248350363 scopus 로고    scopus 로고
    • MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function
    • CrossRef PubMed
    • Maytal-Kivity, V., Reis, N., Hofmann, K. and Glickman, M.H. (2002) MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochem. 3, 28 CrossRef PubMed
    • (2002) BMC Biochem. , vol.3 , pp. 28
    • Maytal-Kivity, V.1    Reis, N.2    Hofmann, K.3    Glickman, M.H.4
  • 21
    • 84895868714 scopus 로고    scopus 로고
    • Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation
    • CrossRef PubMed
    • Worden, E.J., Padovani, C. and Martin, A. (2014) Structure of the Rpn11-Rpn8 dimer reveals mechanisms of substrate deubiquitination during proteasomal degradation. Nat. Struct. Mol. Biol. 21, 220-227 CrossRef PubMed
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 220-227
    • Worden, E.J.1    Padovani, C.2    Martin, A.3
  • 22
    • 19344364762 scopus 로고    scopus 로고
    • JAMM: A metalloprotease-like zinc site in the proteasome and signalosome
    • CrossRef PubMed
    • Ambroggio, X.I., Rees, D.C. and Deshaies, R.J. (2004) JAMM: a metalloprotease-like zinc site in the proteasome and signalosome. PLoS Biol. 2, E2 CrossRef PubMed
    • (2004) PLoS Biol. , vol.2 , pp. E2
    • Ambroggio, X.I.1    Rees, D.C.2    Deshaies, R.J.3
  • 23
    • 34250187773 scopus 로고    scopus 로고
    • The crystal structure of the human Mov34 MPN domain reveals a metal-free dimer
    • CrossRef PubMed
    • Sanches, M., Alves, B.S., Zanchin, N.I. and Guimaraes, B.G. (2007) The crystal structure of the human Mov34 MPN domain reveals a metal-free dimer. J. Mol. Biol. 370, 846-855 CrossRef PubMed
    • (2007) J. Mol. Biol. , vol.370 , pp. 846-855
    • Sanches, M.1    Alves, B.S.2    Zanchin, N.I.3    Guimaraes, B.G.4
  • 25
    • 84894555108 scopus 로고    scopus 로고
    • Regulated protein turnover: Snapshots of the proteasome in action
    • CrossRef PubMed
    • Bhattacharyya, S., Yu, H., Mim, C. and Matouschek, A. (2014) Regulated protein turnover: snapshots of the proteasome in action. Nat. Rev. Mol. Cell. Biol. 15, 122-133 CrossRef PubMed
    • (2014) Nat. Rev. Mol. Cell. Biol. , vol.15 , pp. 122-133
    • Bhattacharyya, S.1    Yu, H.2    Mim, C.3    Matouschek, A.4
  • 26
    • 84880157841 scopus 로고    scopus 로고
    • Conformational switching of the 26S proteasome enables substrate degradation
    • CrossRef PubMed
    • Matyskiela, M.E., Lander, G.C. and Martin, A. (2013) Conformational switching of the 26S proteasome enables substrate degradation. Nat. Struct. Mol. Biol. 20, 781-788 CrossRef PubMed
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 781-788
    • Matyskiela, M.E.1    Lander, G.C.2    Martin, A.3
  • 28
    • 0037131243 scopus 로고    scopus 로고
    • Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome
    • CrossRef PubMed
    • Verma, R., Aravind, L., Oania, R., McDonald, W.H., Yates, 3rd, J.R., Koonin, E.V. and Deshaies, R.J. (2002) Role of Rpn11 metalloprotease in deubiquitination and degradation by the 26S proteasome. Science 298, 611-615 CrossRef PubMed
    • (2002) Science , vol.298 , pp. 611-615
    • Verma, R.1    Aravind, L.2    Oania, R.3    McDonald, W.H.4    Yates, J.R.5    Koonin, E.V.6    Deshaies, R.J.7
  • 29
    • 0037179694 scopus 로고    scopus 로고
    • A cryptic protease couples deubiquitination and degradation by the proteasome
    • CrossRef PubMed
    • Yao, T. and Cohen, R.E. (2002) A cryptic protease couples deubiquitination and degradation by the proteasome. Nature 419, 403-407 CrossRef PubMed
    • (2002) Nature , vol.419 , pp. 403-407
    • Yao, T.1    Cohen, R.E.2
  • 30
    • 84859702750 scopus 로고    scopus 로고
    • Molecular model of the human 26S proteasome
    • CrossRef PubMed
    • da Fonseca, P.C., He, J. and Morris, E.P. (2012) Molecular model of the human 26S proteasome. Mol. Cell 46, 54-66 CrossRef PubMed
    • (2012) Mol. Cell , vol.46 , pp. 54-66
    • Da Fonseca, P.C.1    He, J.2    Morris, E.P.3
  • 31
    • 0037126632 scopus 로고    scopus 로고
    • Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome
    • CrossRef PubMed
    • Fu, H., Reis, N., Lee, Y., Glickman, M.H. and Vierstra, R.D. (2001) Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. EMBO J. 20, 7096-7107 CrossRef PubMed
    • (2001) EMBO J. , vol.20 , pp. 7096-7107
    • Fu, H.1    Reis, N.2    Lee, Y.3    Glickman, M.H.4    Vierstra, R.D.5
  • 32
    • 33747347236 scopus 로고    scopus 로고
    • Structural organization of the 19S proteasome lid: Insights from MS of intact complexes
    • CrossRef PubMed
    • Sharon, M., Taverner, T., Ambroggio, X.I., Deshaies, R.J. and Robinson, C.V. (2006) Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 4, e267 CrossRef PubMed
    • (2006) PLoS Biol. , vol.4 , pp. e267
    • Sharon, M.1    Taverner, T.2    Ambroggio, X.I.3    Deshaies, R.J.4    Robinson, C.V.5
  • 36
    • 68349157358 scopus 로고    scopus 로고
    • PCI complexes: Beyond the proteasome, CSN, and eIF3 Troika
    • CrossRef PubMed
    • Pick, E., Hofmann, K. and Glickman, M.H. (2009) PCI complexes: beyond the proteasome, CSN, and eIF3 Troika. Mol. Cell 35, 260-264 CrossRef PubMed
    • (2009) Mol. Cell , vol.35 , pp. 260-264
    • Pick, E.1    Hofmann, K.2    Glickman, M.H.3
  • 37
    • 0032104227 scopus 로고    scopus 로고
    • The PCI domain: A common theme in three multi-protein complexes
    • CrossRef PubMed
    • Hofmann, K. and Bucher, P. (1998) The PCI domain: a common theme in three multi-protein complexes. Trends Biochem. Sci. 23, 204-205 CrossRef PubMed
    • (1998) Trends Biochem. Sci. , vol.23 , pp. 204-205
    • Hofmann, K.1    Bucher, P.2
  • 38
    • 84893717532 scopus 로고    scopus 로고
    • The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis
    • CrossRef PubMed
    • Tomko, Jr, R.J. and Hochstrasser, M. (2014) The intrinsically disordered Sem1 protein functions as a molecular tether during proteasome lid biogenesis. Mol. Cell 53, 433-443 CrossRef PubMed
    • (2014) Mol. Cell , vol.53 , pp. 433-443
    • Tomko, R.J.1    Hochstrasser, M.2
  • 39
    • 77953291910 scopus 로고    scopus 로고
    • Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae
    • CrossRef PubMed
    • Fukunaga, K., Kudo, T., Toh-e, A., Tanaka, K. and Saeki, Y. (2010) Dissection of the assembly pathway of the proteasome lid in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 396, 1048-1053 CrossRef PubMed
    • (2010) Biochem. Biophys. Res. Commun. , vol.396 , pp. 1048-1053
    • Fukunaga, K.1    Kudo, T.2    Toh-e, A.3    Tanaka, K.4    Saeki, Y.5
  • 42
    • 3142723187 scopus 로고    scopus 로고
    • Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain
    • CrossRef PubMed
    • Rinaldi, T., Pick, E., Gambadoro, A., Zilli, S., Maytal-Kivity, V., Frontali, L. and Glickman, M.H. (2004) Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain. Biochem. J. 381, 275-285 CrossRef PubMed
    • (2004) Biochem. J. , vol.381 , pp. 275-285
    • Rinaldi, T.1    Pick, E.2    Gambadoro, A.3    Zilli, S.4    Maytal-Kivity, V.5    Frontali, L.6    Glickman, M.H.7
  • 43
    • 41649083740 scopus 로고    scopus 로고
    • Dissection of the carboxyl-terminal domain of the proteasomal subunit Rpn11 in maintenance of mitochondrial structure and function
    • CrossRef PubMed
    • Rinaldi, T., Hofmann, L., Gambadoro, A., Cossard, R., Livnat-Levanon, N., Glickman, M.H., Frontali, L. and Delahodde, A. (2008) Dissection of the carboxyl-terminal domain of the proteasomal subunit Rpn11 in maintenance of mitochondrial structure and function. Mol. Biol. Cell 19, 1022-1031 CrossRef PubMed
    • (2008) Mol. Biol. Cell , vol.19 , pp. 1022-1031
    • Rinaldi, T.1    Hofmann, L.2    Gambadoro, A.3    Cossard, R.4    Livnat-Levanon, N.5    Glickman, M.H.6    Frontali, L.7    Delahodde, A.8
  • 44
    • 77954314106 scopus 로고    scopus 로고
    • Assembly, structure, and function of the 26S proteasome
    • CrossRef PubMed
    • Bedford, L., Paine, S., Sheppard, P.W., Mayer, R.J. and Roelofs, J. (2010) Assembly, structure, and function of the 26S proteasome. Trends Cell Biol. 20, 391-401 CrossRef PubMed
    • (2010) Trends Cell Biol. , vol.20 , pp. 391-401
    • Bedford, L.1    Paine, S.2    Sheppard, P.W.3    Mayer, R.J.4    Roelofs, J.5
  • 45
    • 76449099938 scopus 로고    scopus 로고
    • Chaperone-assisted assembly of the proteasome core particle
    • CrossRef PubMed
    • Matias, A.C., Ramos, P.C. and Dohmen, R.J. (2010) Chaperone-assisted assembly of the proteasome core particle. Biochem. Soc. Trans. 38, 29-33 CrossRef PubMed
    • (2010) Biochem. Soc. Trans. , vol.38 , pp. 29-33
    • Matias, A.C.1    Ramos, P.C.2    Dohmen, R.J.3
  • 46
    • 53849136910 scopus 로고    scopus 로고
    • Chaperone-driven proteasome assembly
    • CrossRef PubMed
    • Rosenzweig, R. and Glickman, M.H. (2008) Chaperone-driven proteasome assembly. Biochem. Soc. Trans. 36, 807-812 CrossRef PubMed
    • (2008) Biochem. Soc. Trans. , vol.36 , pp. 807-812
    • Rosenzweig, R.1    Glickman, M.H.2
  • 47
    • 58849093135 scopus 로고    scopus 로고
    • Molecular mechanisms of proteasome assembly
    • CrossRef PubMed
    • Murata, S., Yashiroda, H. and Tanaka, K. (2009) Molecular mechanisms of proteasome assembly. Nat. Rev. Mol. Cell. Biol. 10, 104-115 CrossRef PubMed
    • (2009) Nat. Rev. Mol. Cell. Biol. , vol.10 , pp. 104-115
    • Murata, S.1    Yashiroda, H.2    Tanaka, K.3
  • 48
    • 67349089027 scopus 로고    scopus 로고
    • Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base
    • CrossRef PubMed
    • Funakoshi, M., Tomko, R.J., Jr., Kobayashi, H. and Hochstrasser, M. (2009) Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 137, 887-899 CrossRef PubMed
    • (2009) Cell , vol.137 , pp. 887-899
    • Funakoshi, M.1    Tomko, R.J.2    Kobayashi, H.3    Hochstrasser, M.4
  • 49
    • 67149121057 scopus 로고    scopus 로고
    • Hexameric assembly of the proteasomal ATPases is templated through their C termini
    • CrossRef PubMed
    • Park, S., Roelofs, J., Kim, W., Robert, J., Schmidt, M., Gygi, S.P. and Finley, D. (2009) Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 459, 866-870 CrossRef PubMed
    • (2009) Nature , vol.459 , pp. 866-870
    • Park, S.1    Roelofs, J.2    Kim, W.3    Robert, J.4    Schmidt, M.5    Gygi, S.P.6    Finley, D.7
  • 50
    • 77951945222 scopus 로고    scopus 로고
    • Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: Implications for proteasome structure and assembly
    • CrossRef PubMed
    • Tomko, R.J., Jr., Funakoshi, M., Schneider, K., Wang, J. and Hochstrasser, M. (2010) Heterohexameric ring arrangement of the eukaryotic proteasomal ATPases: implications for proteasome structure and assembly. Mol. Cell 38, 393-403 CrossRef PubMed
    • (2010) Mol. Cell , vol.38 , pp. 393-403
    • Tomko, R.J.1    Funakoshi, M.2    Schneider, K.3    Wang, J.4    Hochstrasser, M.5
  • 53
    • 0038686574 scopus 로고    scopus 로고
    • Proteasome disassembly and downregulation is correlated with viability during stationary phase
    • CrossRef PubMed
    • Bajorek, M., Finley, D. and Glickman, M.H. (2003) Proteasome disassembly and downregulation is correlated with viability during stationary phase. Curr. Biol. 13, 1140-1144 CrossRef PubMed
    • (2003) Curr. Biol. , vol.13 , pp. 1140-1144
    • Bajorek, M.1    Finley, D.2    Glickman, M.H.3
  • 54
    • 0030742610 scopus 로고    scopus 로고
    • Difference between PA700-like proteasome activator complex and the regulatory complex dissociated from the 26S proteasome implies the involvement of modulating factors in the 26S proteasome assembly
    • CrossRef PubMed
    • Sawada, H., Akaishi, T., Katsu, M. and Yokosawa, H. (1997) Difference between PA700-like proteasome activator complex and the regulatory complex dissociated from the 26S proteasome implies the involvement of modulating factors in the 26S proteasome assembly. FEBS Lett. 412, 521-525 CrossRef PubMed
    • (1997) FEBS Lett. , vol.412 , pp. 521-525
    • Sawada, H.1    Akaishi, T.2    Katsu, M.3    Yokosawa, H.4
  • 56
    • 84885428073 scopus 로고    scopus 로고
    • Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA + unfoldase
    • CrossRef PubMed
    • Beckwith, R., Estrin, E., Worden, E.J. and Martin, A. (2013) Reconstitution of the 26S proteasome reveals functional asymmetries in its AAA + unfoldase. Nat. Struct. Mol. Biol. 20, 1164-1172 CrossRef PubMed
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 1164-1172
    • Beckwith, R.1    Estrin, E.2    Worden, E.J.3    Martin, A.4
  • 58
    • 13544259975 scopus 로고    scopus 로고
    • Sem1, the yeast ortholog of a human BRCA2-binding protein, is a component of the proteasome regulatory particle that enhances proteasome stability
    • CrossRef PubMed
    • Funakoshi, M., Li, X., Velichutina, I., Hochstrasser, M. and Kobayashi, H. (2004) Sem1, the yeast ortholog of a human BRCA2-binding protein, is a component of the proteasome regulatory particle that enhances proteasome stability. J. Cell. Sci. 117, 6447-6454 CrossRef PubMed
    • (2004) J. Cell. Sci. , vol.117 , pp. 6447-6454
    • Funakoshi, M.1    Li, X.2    Velichutina, I.3    Hochstrasser, M.4    Kobayashi, H.5
  • 59
    • 3042799223 scopus 로고    scopus 로고
    • Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae
    • CrossRef PubMed
    • Sone, T., Saeki, Y., Toh-e, A. and Yokosawa, H. (2004) Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae. J. Biol. Chem. 279, 28807-28816 CrossRef PubMed
    • (2004) J. Biol. Chem. , vol.279 , pp. 28807-28816
    • Sone, T.1    Saeki, Y.2    Toh-e, A.3    Yokosawa, H.4
  • 60
    • 84255162055 scopus 로고    scopus 로고
    • Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining
    • CrossRef PubMed
    • Tomko, Jr, R.J. and Hochstrasser, M. (2011) Incorporation of the Rpn12 subunit couples completion of proteasome regulatory particle lid assembly to lid-base joining. Mol. Cell 44, 907-917 CrossRef PubMed
    • (2011) Mol. Cell , vol.44 , pp. 907-917
    • Tomko, R.J.1    Hochstrasser, M.2
  • 61
    • 84883488318 scopus 로고    scopus 로고
    • Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid
    • CrossRef PubMed
    • Estrin, E., Lopez-Blanco, J.R., Chacon, P. and Martin, A. (2013) Formation of an intricate helical bundle dictates the assembly of the 26S proteasome lid. Structure 21, 1624-1635 CrossRef PubMed
    • (2013) Structure , vol.21 , pp. 1624-1635
    • Estrin, E.1    Lopez-Blanco, J.R.2    Chacon, P.3    Martin, A.4
  • 62
    • 0029053890 scopus 로고
    • A Saccharomyces cerevisiae gene essential for viability has been conserved in evolution
    • CrossRef PubMed
    • Rinaldi, T., Bolotin-Fukuhara, M. and Frontali, L. (1995) A Saccharomyces cerevisiae gene essential for viability has been conserved in evolution. Gene 160, 135-136 CrossRef PubMed
    • (1995) Gene , vol.160 , pp. 135-136
    • Rinaldi, T.1    Bolotin-Fukuhara, M.2    Frontali, L.3
  • 63
    • 0031709394 scopus 로고    scopus 로고
    • A mutation in a novel yeast proteasomal gene, RPN11/MPR1, produces a cell cycle arrest, overreplication of nuclear and mitochondrial DNA, and an altered mitochondrial morphology
    • CrossRef PubMed
    • Rinaldi, T., Ricci, C., Porro, D., Bolotin-Fukuhara, M. and Frontali, L. (1998) A mutation in a novel yeast proteasomal gene, RPN11/MPR1, produces a cell cycle arrest, overreplication of nuclear and mitochondrial DNA, and an altered mitochondrial morphology. Mol. Biol. Cell 9, 2917-2931 CrossRef PubMed
    • (1998) Mol. Biol. Cell , vol.9 , pp. 2917-2931
    • Rinaldi, T.1    Ricci, C.2    Porro, D.3    Bolotin-Fukuhara, M.4    Frontali, L.5
  • 64
    • 0037029053 scopus 로고    scopus 로고
    • Mitochondrial effects of the pleiotropic proteasomal mutation mpr1/rpn11: Uncoupling from cell cycle defects in extragenic revertants
    • CrossRef PubMed
    • Rinaldi, T., Ricordy, R., Bolotin-Fukuhara, M. and Frontali, L. (2002) Mitochondrial effects of the pleiotropic proteasomal mutation mpr1/rpn11: uncoupling from cell cycle defects in extragenic revertants. Gene 286, 43-51 CrossRef PubMed
    • (2002) Gene , vol.286 , pp. 43-51
    • Rinaldi, T.1    Ricordy, R.2    Bolotin-Fukuhara, M.3    Frontali, L.4
  • 65
    • 0032826785 scopus 로고    scopus 로고
    • Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast
    • PubMed
    • Bailly, E. and Reed, S.I. (1999) Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast. Mol. Cell. Biol. 19, 6872-6890 PubMed
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 6872-6890
    • Bailly, E.1    Reed, S.I.2
  • 66
    • 14844303699 scopus 로고    scopus 로고
    • Functional analysis of Rpn6p, a lid component of the 26 S proteasome, using temperature-sensitive rpn6 mutants of the yeast Saccharomyces cerevisiae
    • CrossRef PubMed
    • Isono, E., Saito, N., Kamata, N., Saeki, Y. and Toh, E.A. (2005) Functional analysis of Rpn6p, a lid component of the 26 S proteasome, using temperature-sensitive rpn6 mutants of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 280, 6537-6547 CrossRef PubMed
    • (2005) J. Biol. Chem. , vol.280 , pp. 6537-6547
    • Isono, E.1    Saito, N.2    Kamata, N.3    Saeki, Y.4    Toh, E.A.5
  • 67
    • 3042646350 scopus 로고    scopus 로고
    • Rpn7 is required for the structural integrity of the 26 S proteasome of Saccharomyces cerevisiae
    • CrossRef PubMed
    • Isono, E., Saeki, Y., Yokosawa, H. and Toh-e, A. (2004) Rpn7 is required for the structural integrity of the 26 S proteasome of Saccharomyces cerevisiae. J. Biol. Chem. 279, 27168-27176 CrossRef PubMed
    • (2004) J. Biol. Chem. , vol.279 , pp. 27168-27176
    • Isono, E.1    Saeki, Y.2    Yokosawa, H.3    Toh-e, A.4
  • 68
    • 0032823312 scopus 로고    scopus 로고
    • Rpn9 is required for efficient assembly of the yeast 26S proteasome
    • PubMed
    • Takeuchi, J., Fujimuro, M., Yokosawa, H., Tanaka, K. and Toh-e, A. (1999) Rpn9 is required for efficient assembly of the yeast 26S proteasome. Mol. Cell. Biol. 19, 6575-6584 PubMed
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 6575-6584
    • Takeuchi, J.1    Fujimuro, M.2    Yokosawa, H.3    Tanaka, K.4    Toh-e, A.5
  • 69
    • 20344370277 scopus 로고    scopus 로고
    • Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast
    • PubMed
    • Leggett, D.S., Glickman, M.H. and Finley, D. (2005) Purification of proteasomes, proteasome subcomplexes, and proteasome-associated proteins from budding yeast. Methods Mol. Biol. 301, 57-70 PubMed
    • (2005) Methods Mol. Biol. , vol.301 , pp. 57-70
    • Leggett, D.S.1    Glickman, M.H.2    Finley, D.3
  • 70
    • 43149097612 scopus 로고    scopus 로고
    • Purification and characterization of proteasomes from Saccharomyces cerevisiae
    • Chapter 21, Unit 21.5
    • Glickman, M. and Coux, O. (2001) Purification and characterization of proteasomes from Saccharomyces cerevisiae. Curr. Protoc. Protein Sci. Chapter 21, Unit 21.5
    • (2001) Curr. Protoc. Protein Sci.
    • Glickman, M.1    Coux, O.2
  • 71
    • 44849121398 scopus 로고    scopus 로고
    • The central unit within the 19S regulatory particle of the proteasome
    • CrossRef PubMed
    • Rosenzweig, R., Osmulski, P.A., Gaczynska, M. and Glickman, M.H. (2008) The central unit within the 19S regulatory particle of the proteasome. Nat. Struct. Mol. Biol. 15, 573-580 CrossRef PubMed
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 573-580
    • Rosenzweig, R.1    Osmulski, P.A.2    Gaczynska, M.3    Glickman, M.H.4
  • 72
    • 33746930864 scopus 로고    scopus 로고
    • A uniform proteomics MS/MS analysis platform utilizing open XML file formats
    • 2005 0017 CrossRef PubMed
    • Keller, A., Eng, J., Zhang, N., Li, X.J. and Aebersold, R. (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol. Syst. Biol. 1, 2005 0017 CrossRef PubMed
    • (2005) Mol. Syst. Biol. , vol.1
    • Keller, A.1    Eng, J.2    Zhang, N.3    Li, X.J.4    Aebersold, R.5
  • 73
    • 80455123843 scopus 로고    scopus 로고
    • Nonenzymatic assembly of natural polyubiquitin chains of any linkage composition and isotopic labeling scheme
    • CrossRef PubMed
    • Castaneda, C., Liu, J., Chaturvedi, A., Nowicka, U., Cropp, T.A. and Fushman, D. (2011) Nonenzymatic assembly of natural polyubiquitin chains of any linkage composition and isotopic labeling scheme. J. Am. Chem. Soc. 133, 17855-17868 CrossRef PubMed
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 17855-17868
    • Castaneda, C.1    Liu, J.2    Chaturvedi, A.3    Nowicka, U.4    Cropp, T.A.5    Fushman, D.6
  • 75
    • 28744459541 scopus 로고    scopus 로고
    • Chemical and genetic strategies for manipulating polyubiquitin chain structure
    • CrossRef PubMed
    • Volk, S., Wang, M. and Pickart, C.M. (2005) Chemical and genetic strategies for manipulating polyubiquitin chain structure. Methods Enzymol. 399, 3-20 CrossRef PubMed
    • (2005) Methods Enzymol. , vol.399 , pp. 3-20
    • Volk, S.1    Wang, M.2    Pickart, C.M.3
  • 76
    • 84879834151 scopus 로고    scopus 로고
    • Unique structural, dynamical, and functional properties of k11-linked polyubiquitin chains
    • CrossRef PubMed
    • Castaneda, C.A., Kashyap, T.R., Nakasone, M.A., Krueger, S. and Fushman, D. (2013) Unique structural, dynamical, and functional properties of k11-linked polyubiquitin chains. Structure 21, 1168-1181 CrossRef PubMed
    • (2013) Structure , vol.21 , pp. 1168-1181
    • Castaneda, C.A.1    Kashyap, T.R.2    Nakasone, M.A.3    Krueger, S.4    Fushman, D.5
  • 78
    • 77950909032 scopus 로고    scopus 로고
    • Proteasome assembly influences interaction with ubiquitinated proteins and shuttle factors
    • CrossRef PubMed
    • Chandra, A., Chen, L., Liang, H. and Madura, K. (2010) Proteasome assembly influences interaction with ubiquitinated proteins and shuttle factors. J. Biol. Chem. 285, 8330-8339 CrossRef PubMed
    • (2010) J. Biol. Chem. , vol.285 , pp. 8330-8339
    • Chandra, A.1    Chen, L.2    Liang, H.3    Madura, K.4
  • 79
    • 78649328672 scopus 로고    scopus 로고
    • Synthetic lethality of rpn11-1 rpn10Delta is linked to altered proteasome assembly and activity
    • CrossRef PubMed
    • Chandra, A., Chen, L. and Madura, K. (2010) Synthetic lethality of rpn11-1 rpn10Delta is linked to altered proteasome assembly and activity. Curr. Genet. 56, 543-557 CrossRef PubMed
    • (2010) Curr. Genet. , vol.56 , pp. 543-557
    • Chandra, A.1    Chen, L.2    Madura, K.3
  • 80
    • 20444384416 scopus 로고    scopus 로고
    • Proteasome plasticity
    • CrossRef PubMed
    • Glickman, M.H. and Raveh, D. (2005) Proteasome plasticity. FEBS Lett. 579, 3214-3223 CrossRef PubMed
    • (2005) FEBS Lett. , vol.579 , pp. 3214-3223
    • Glickman, M.H.1    Raveh, D.2
  • 81
    • 84890203542 scopus 로고    scopus 로고
    • Regulation of proteasome activity in health and disease
    • CrossRef PubMed
    • Schmidt, M. and Finley, D. (2014) Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta 1843, 13-25 CrossRef PubMed
    • (2014) Biochim. Biophys. Acta , vol.1843 , pp. 13-25
    • Schmidt, M.1    Finley, D.2
  • 82
    • 79959503365 scopus 로고    scopus 로고
    • A proteasome assembly defect in rpn3 mutants is associated with Rpn11 instability and increased sensitivity to stress
    • CrossRef PubMed
    • Joshi, K.K., Chen, L., Torres, N., Tournier, V. and Madura, K. (2011) A proteasome assembly defect in rpn3 mutants is associated with Rpn11 instability and increased sensitivity to stress. J. Mol. Biol. 410, 383-399 CrossRef PubMed
    • (2011) J. Mol. Biol. , vol.410 , pp. 383-399
    • Joshi, K.K.1    Chen, L.2    Torres, N.3    Tournier, V.4    Madura, K.5
  • 83
    • 0032168508 scopus 로고    scopus 로고
    • Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome
    • CrossRef PubMed
    • Rubin, D.M., Glickman, M.H., Larsen, C.N., Dhruvakumar, S. and Finley, D. (1998) Active site mutants in the six regulatory particle ATPases reveal multiple roles for ATP in the proteasome. EMBO J. 17, 4909-4919 CrossRef PubMed
    • (1998) EMBO J. , vol.17 , pp. 4909-4919
    • Rubin, D.M.1    Glickman, M.H.2    Larsen, C.N.3    Dhruvakumar, S.4    Finley, D.5
  • 84
    • 80051925536 scopus 로고    scopus 로고
    • The defective proteasome but not substrate recognition function is responsible for the null phenotypes of the Arabidopsis proteasome subunit RPN10
    • CrossRef PubMed
    • Lin, Y.L., Sung, S.C., Tsai, H.L., Yu, T.T., Radjacommare, R., Usharani, R., Fatimababy, A.S., Lin, H.Y., Wang, Y.Y. and Fu, H. (2011) The defective proteasome but not substrate recognition function is responsible for the null phenotypes of the Arabidopsis proteasome subunit RPN10. Plant Cell. 23, 2754-2773 CrossRef PubMed
    • (2011) Plant Cell. , vol.23 , pp. 2754-2773
    • Lin, Y.L.1    Sung, S.C.2    Tsai, H.L.3    Yu, T.T.4    Radjacommare, R.5    Usharani, R.6    Fatimababy, A.S.7    Lin, H.Y.8    Wang, Y.Y.9    Fu, H.10
  • 90
    • 59449095881 scopus 로고    scopus 로고
    • Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process
    • CrossRef PubMed
    • Tonoki, A., Kuranaga, E., Tomioka, T., Hamazaki, J., Murata, S., Tanaka, K. and Miura, M. (2009) Genetic evidence linking age-dependent attenuation of the 26S proteasome with the aging process. Mol. Cell. Biol. 29, 1095-1106 CrossRef PubMed
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 1095-1106
    • Tonoki, A.1    Kuranaga, E.2    Tomioka, T.3    Hamazaki, J.4    Murata, S.5    Tanaka, K.6    Miura, M.7
  • 92
    • 69949136026 scopus 로고    scopus 로고
    • Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity
    • CrossRef PubMed
    • Thompson, D., Hakala, K. and DeMartino, G.N. (2009) Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity. J. Biol. Chem. 284, 24891-24903 CrossRef PubMed
    • (2009) J. Biol. Chem. , vol.284 , pp. 24891-24903
    • Thompson, D.1    Hakala, K.2    DeMartino, G.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.