메뉴 건너뛰기




Volumn 20, Issue 7, 2010, Pages 391-401

Assembly, structure, and function of the 26S proteasome

Author keywords

[No Author keywords available]

Indexed keywords

26S PROTEASOME; ADENOSINE TRIPHOSPHATASE; ANAPHASE PROMOTING COMPLEX; CHAPERONE; HETERODIMER; LYSINE; PROTEASOME; PROTEASOME ASSEMBLY CHAPERONE 1; PROTEASOME ASSEMBLY CHAPERONE 2; PROTEASOME ASSEMBLY CHAPERONE 3; PROTEASOME ASSEMBLY CHAPERONE 4; PROTEASOME BIOGENESIS ASSOCIATED PROTEIN 1; PROTEASOME BIOGENESIS ASSOCIATED PROTEIN 2; PROTEASOME BIOGENESIS ASSOCIATED PROTEIN 3; PROTEASOME BIOGENESIS ASSOCIATED PROTEIN 4; RPN1 PROTEIN; RPN10 PROTEIN; RPN13 PROTEIN; RPN2 PROTEIN; RPT1 PROTEIN; RPT2 PROTEIN; RPT3 PROTEIN; RPT4 PROTEIN; RPT5 PROTEIN; RPT6 PROTEIN; UBIQUITIN; UNCLASSIFIED DRUG;

EID: 77954314106     PISSN: 09628924     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tcb.2010.03.007     Document Type: Review
Times cited : (208)

References (111)
  • 1
    • 39349083915 scopus 로고    scopus 로고
    • Adapting proteostasis for disease intervention
    • Balch W.E., et al. Adapting proteostasis for disease intervention. Science 2008, 319:916-919.
    • (2008) Science , vol.319 , pp. 916-919
    • Balch, W.E.1
  • 2
    • 65649115267 scopus 로고    scopus 로고
    • Recognition and processing of ubiquitin-protein conjugates by the proteasome
    • Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78:477-513.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 477-513
    • Finley, D.1
  • 3
    • 58849093135 scopus 로고    scopus 로고
    • Molecular mechanisms of proteasome assembly
    • Murata S., et al. Molecular mechanisms of proteasome assembly. Nat. Rev. Mol. Cell Biol. 2009, 10:104-115.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 104-115
    • Murata, S.1
  • 4
    • 54049107641 scopus 로고    scopus 로고
    • Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis
    • Kusmierczyk A.R., Hochstrasser M. Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis. Biol. Chem. 2008, 389:1143-1151.
    • (2008) Biol. Chem. , vol.389 , pp. 1143-1151
    • Kusmierczyk, A.R.1    Hochstrasser, M.2
  • 5
    • 65249098267 scopus 로고    scopus 로고
    • Catalytic mechanism and assembly of the proteasome
    • Marques A.J., et al. Catalytic mechanism and assembly of the proteasome. Chem. Rev. 2009, 109:1509-1536.
    • (2009) Chem. Rev. , vol.109 , pp. 1509-1536
    • Marques, A.J.1
  • 6
    • 11844287006 scopus 로고    scopus 로고
    • Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors
    • Rechsteiner M., Hill C.P. Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol. 2005, 15:27-33.
    • (2005) Trends Cell Biol. , vol.15 , pp. 27-33
    • Rechsteiner, M.1    Hill, C.P.2
  • 7
    • 3042543354 scopus 로고    scopus 로고
    • The alpha4 and alpha7 subunits and assembly of the 20S proteasome
    • Apcher G.S., et al. The alpha4 and alpha7 subunits and assembly of the 20S proteasome. FEBS Lett. 2004, 569:211-216.
    • (2004) FEBS Lett. , vol.569 , pp. 211-216
    • Apcher, G.S.1
  • 8
    • 0030950435 scopus 로고    scopus 로고
    • The human alpha-type proteasomal subunit HsC8 forms a double ringlike structure, but does not assemble into proteasome-like particles with the beta-type subunits HsDelta or HsBPROS26
    • Gerards W.L., et al. The human alpha-type proteasomal subunit HsC8 forms a double ringlike structure, but does not assemble into proteasome-like particles with the beta-type subunits HsDelta or HsBPROS26. J. Biol. Chem. 1997, 272:10080-10086.
    • (1997) J. Biol. Chem. , vol.272 , pp. 10080-10086
    • Gerards, W.L.1
  • 9
    • 0033408417 scopus 로고    scopus 로고
    • Alpha5 subunit in Trypanosoma brucei proteasome can self-assemble to form a cylinder of four stacked heptamer rings
    • Yao Y., et al. alpha5 subunit in Trypanosoma brucei proteasome can self-assemble to form a cylinder of four stacked heptamer rings. Biochem. J. 1999, 344:349-358.
    • (1999) Biochem. J. , vol.344 , pp. 349-358
    • Yao, Y.1
  • 10
    • 1442264792 scopus 로고    scopus 로고
    • Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast
    • Velichutina I., et al. Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast. EMBO J. 2004, 23:500-510.
    • (2004) EMBO J. , vol.23 , pp. 500-510
    • Velichutina, I.1
  • 11
    • 27644554700 scopus 로고    scopus 로고
    • A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes
    • Hirano Y., et al. A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 2005, 437:1381-1385.
    • (2005) Nature , vol.437 , pp. 1381-1385
    • Hirano, Y.1
  • 12
    • 33845681479 scopus 로고    scopus 로고
    • Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes
    • Hirano Y., et al. Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol. Cell 2006, 24:977-984.
    • (2006) Mol. Cell , vol.24 , pp. 977-984
    • Hirano, Y.1
  • 13
    • 49949109912 scopus 로고    scopus 로고
    • Dissecting beta-ring assembly pathway of the mammalian 20S proteasome
    • Hirano Y., et al. Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J. 2008, 27:2204-2213.
    • (2008) EMBO J. , vol.27 , pp. 2204-2213
    • Hirano, Y.1
  • 14
    • 40949117574 scopus 로고    scopus 로고
    • A multimeric assembly factor controls the formation of alternative 20S proteasomes
    • Kusmierczyk A.R., et al. A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat. Struct. Mol. Biol. 2008, 15:237-244.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 237-244
    • Kusmierczyk, A.R.1
  • 15
    • 34547838178 scopus 로고    scopus 로고
    • 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals
    • Le Tallec B., et al. 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol. Cell 2007, 27:660-674.
    • (2007) Mol. Cell , vol.27 , pp. 660-674
    • Le Tallec, B.1
  • 16
    • 40949120953 scopus 로고    scopus 로고
    • Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes
    • Yashiroda H., et al. Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat. Struct. Mol. Biol. 2008, 15:228-236.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 228-236
    • Yashiroda, H.1
  • 17
    • 60849118366 scopus 로고    scopus 로고
    • Electron microscopic evidence in support of alpha-solenoid models of proteasomal subunits, Rpn1 and Rpn2
    • Effantin G., et al. Electron microscopic evidence in support of alpha-solenoid models of proteasomal subunits, Rpn1 and Rpn2. J. Mol. Biol. 2009, 386:1204-1211.
    • (2009) J. Mol. Biol. , vol.386 , pp. 1204-1211
    • Effantin, G.1
  • 18
    • 36849059755 scopus 로고    scopus 로고
    • Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites
    • Kleijnen M.F., et al. Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat. Struct. Mol. Biol. 2007, 14:1180-1188.
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 1180-1188
    • Kleijnen, M.F.1
  • 19
    • 69949136026 scopus 로고    scopus 로고
    • Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity
    • Thompson D., et al. Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity. J. Biol. Chem. 2009, 284:24891-24903.
    • (2009) J. Biol. Chem. , vol.284 , pp. 24891-24903
    • Thompson, D.1
  • 20
    • 59849083960 scopus 로고    scopus 로고
    • Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome
    • Le Tallec B., et al. Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol. Cell. 2009, 33:389-399.
    • (2009) Mol. Cell. , vol.33 , pp. 389-399
    • Le Tallec, B.1
  • 21
    • 67149121057 scopus 로고    scopus 로고
    • Hexameric assembly of the proteasomal ATPases is templated through their C termini
    • Park S., et al. Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 2009, 459:866-870.
    • (2009) Nature , vol.459 , pp. 866-870
    • Park, S.1
  • 22
    • 67349089027 scopus 로고    scopus 로고
    • Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base
    • Funakoshi M., et al. Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 2009, 137:887-899.
    • (2009) Cell , vol.137 , pp. 887-899
    • Funakoshi, M.1
  • 23
    • 65849101541 scopus 로고    scopus 로고
    • Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle
    • Saeki Y., et al. Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 2009, 137:900-913.
    • (2009) Cell , vol.137 , pp. 900-913
    • Saeki, Y.1
  • 24
    • 65849109465 scopus 로고    scopus 로고
    • Assembly pathway of the mammalian proteasome base subcomplex is mediated by multiple specific chaperones
    • Kaneko T., et al. Assembly pathway of the mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 2009, 137:914-925.
    • (2009) Cell , vol.137 , pp. 914-925
    • Kaneko, T.1
  • 25
    • 67149112112 scopus 로고    scopus 로고
    • Chaperone-mediated pathway of proteasome regulatory particle assembly
    • Roelofs J., et al. Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 2009, 459:861-865.
    • (2009) Nature , vol.459 , pp. 861-865
    • Roelofs, J.1
  • 26
    • 3042646350 scopus 로고    scopus 로고
    • Rpn7 Is required for the structural integrity of the 26 S proteasome of Saccharomyces cerevisiae
    • Isono E., et al. Rpn7 Is required for the structural integrity of the 26 S proteasome of Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279:27168-27176.
    • (2004) J. Biol. Chem. , vol.279 , pp. 27168-27176
    • Isono, E.1
  • 27
    • 0030042442 scopus 로고    scopus 로고
    • Identification, purification, and characterization of a PA700-dependent activator of the proteasome
    • DeMartino G.N., et al. Identification, purification, and characterization of a PA700-dependent activator of the proteasome. J. Biol. Chem. 1996, 271:3112-3118.
    • (1996) J. Biol. Chem. , vol.271 , pp. 3112-3118
    • DeMartino, G.N.1
  • 28
    • 0032104261 scopus 로고    scopus 로고
    • CDNA cloning and characterization of a human proteasomal modulator subunit, p27 (PSMD9)
    • Watanabe T.K., et al. cDNA cloning and characterization of a human proteasomal modulator subunit, p27 (PSMD9). Genomics 1998, 50:241-250.
    • (1998) Genomics , vol.50 , pp. 241-250
    • Watanabe, T.K.1
  • 29
    • 0033972319 scopus 로고    scopus 로고
    • Mapping subunit contacts in the regulatory complex of the 26 S proteasome. S2 and S5b form a tetramer with ATPase subunits S4 and S7
    • Gorbea C., et al. Mapping subunit contacts in the regulatory complex of the 26 S proteasome. S2 and S5b form a tetramer with ATPase subunits S4 and S7. J. Biol. Chem. 2000, 275:875-882.
    • (2000) J. Biol. Chem. , vol.275 , pp. 875-882
    • Gorbea, C.1
  • 30
    • 0032541323 scopus 로고    scopus 로고
    • CDNA cloning and functional analysis of p28 (Nas6p) and p40.5 (Nas7p), two novel regulatory subunits of the 26S proteasome
    • Hori T., et al. cDNA cloning and functional analysis of p28 (Nas6p) and p40.5 (Nas7p), two novel regulatory subunits of the 26S proteasome. Gene 1998, 216:113-122.
    • (1998) Gene , vol.216 , pp. 113-122
    • Hori, T.1
  • 31
    • 0033791447 scopus 로고    scopus 로고
    • Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes
    • Verma R., et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 2000, 11:3425-3439.
    • (2000) Mol. Biol. Cell , vol.11 , pp. 3425-3439
    • Verma, R.1
  • 32
    • 0037192842 scopus 로고    scopus 로고
    • Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome
    • Dawson S., et al. Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome. J. Biol. Chem. 2002, 277:10893-10902.
    • (2002) J. Biol. Chem. , vol.277 , pp. 10893-10902
    • Dawson, S.1
  • 33
    • 17644421410 scopus 로고    scopus 로고
    • Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases
    • Park Y., et al. Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases. Mol. Cell Biol. 2005, 25:3842-3853.
    • (2005) Mol. Cell Biol. , vol.25 , pp. 3842-3853
    • Park, Y.1
  • 34
    • 33846658069 scopus 로고    scopus 로고
    • The proteasome regulates HIV-1 transcription by both proteolytic and nonproteolytic mechanisms
    • Lassot I., et al. The proteasome regulates HIV-1 transcription by both proteolytic and nonproteolytic mechanisms. Mol. Cell 2007, 25:369-383.
    • (2007) Mol. Cell , vol.25 , pp. 369-383
    • Lassot, I.1
  • 35
    • 33646542006 scopus 로고    scopus 로고
    • Gankyrin: a new oncoprotein and regulator of pRb and p53
    • Dawson S., et al. Gankyrin: a new oncoprotein and regulator of pRb and p53. Trends Cell Biol. 2006, 16:229-233.
    • (2006) Trends Cell Biol. , vol.16 , pp. 229-233
    • Dawson, S.1
  • 36
    • 0032568655 scopus 로고    scopus 로고
    • SMART, a simple modular architecture research tool: identification of signaling domains
    • Schultz J., et al. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. U. S. A. 1998, 95:5857-5864.
    • (1998) Proc. Natl. Acad. Sci. U. S. A. , vol.95 , pp. 5857-5864
    • Schultz, J.1
  • 37
    • 58149194624 scopus 로고    scopus 로고
    • SMART 6: recent updates and new developments
    • Letunic I., et al. SMART 6: recent updates and new developments. Nucleic Acids Res. 2009, 37:D229-D232.
    • (2009) Nucleic Acids Res. , vol.37
    • Letunic, I.1
  • 38
    • 33749236397 scopus 로고    scopus 로고
    • Classification of AAA+ proteins
    • Ammelburg M., et al. Classification of AAA+ proteins. J. Struct. Biol. 2006, 156:2-11.
    • (2006) J. Struct. Biol. , vol.156 , pp. 2-11
    • Ammelburg, M.1
  • 39
    • 0038475879 scopus 로고    scopus 로고
    • Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture
    • Davey M.J., et al. Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture. J. Biol. Chem. 2003, 278:4491-4499.
    • (2003) J. Biol. Chem. , vol.278 , pp. 4491-4499
    • Davey, M.J.1
  • 40
    • 57649140340 scopus 로고    scopus 로고
    • Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome
    • Gillette T.G., et al. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J. Biol. Chem. 2008, 283:31813-31822.
    • (2008) J. Biol. Chem. , vol.283 , pp. 31813-31822
    • Gillette, T.G.1
  • 41
    • 42949096020 scopus 로고    scopus 로고
    • Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
    • Rabl J., et al. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 2008, 30:360-368.
    • (2008) Mol. Cell , vol.30 , pp. 360-368
    • Rabl, J.1
  • 42
    • 34548274872 scopus 로고    scopus 로고
    • Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
    • Smith D.M., et al. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol. Cell 2007, 27:731-744.
    • (2007) Mol. Cell , vol.27 , pp. 731-744
    • Smith, D.M.1
  • 43
    • 0035242489 scopus 로고    scopus 로고
    • Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking
    • Hartmann-Petersen R., et al. Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking. Arch. Biochem. Biophys. 2001, 386:89-94.
    • (2001) Arch. Biochem. Biophys. , vol.386 , pp. 89-94
    • Hartmann-Petersen, R.1
  • 44
    • 69249217672 scopus 로고    scopus 로고
    • An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome
    • Forster F., et al. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome. Biochem. Biophys. Res. Commun. 2009, 388:228-233.
    • (2009) Biochem. Biophys. Res. Commun. , vol.388 , pp. 228-233
    • Forster, F.1
  • 45
    • 70350542583 scopus 로고    scopus 로고
    • The 20S proteasome as an assembly platform for the 19S regulatory complex
    • Hendil K.B., et al. The 20S proteasome as an assembly platform for the 19S regulatory complex. J. Mol. Biol. 2009, 394:320-328.
    • (2009) J. Mol. Biol. , vol.394 , pp. 320-328
    • Hendil, K.B.1
  • 46
    • 0042313977 scopus 로고    scopus 로고
    • The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome
    • Imai J., et al. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J. 2003, 22:3557-3567.
    • (2003) EMBO J. , vol.22 , pp. 3557-3567
    • Imai, J.1
  • 47
    • 0037115555 scopus 로고    scopus 로고
    • Nob1p is required for biogenesis of the 26S proteasome and degraded upon its maturation in Saccharomyces cerevisiae
    • Tone Y., Toh E.A. Nob1p is required for biogenesis of the 26S proteasome and degraded upon its maturation in Saccharomyces cerevisiae. Genes Dev. 2002, 16:3142-3157.
    • (2002) Genes Dev. , vol.16 , pp. 3142-3157
    • Tone, Y.1    Toh, E.A.2
  • 48
    • 0037369912 scopus 로고    scopus 로고
    • Nob1p is required for cleavage of the 3' end of 18S rRNA
    • Fatica A., et al. Nob1p is required for cleavage of the 3' end of 18S rRNA. Mol. Cell Biol. 2003, 23:1798-1807.
    • (2003) Mol. Cell Biol. , vol.23 , pp. 1798-1807
    • Fatica, A.1
  • 49
    • 0036753063 scopus 로고    scopus 로고
    • Multiple associated proteins regulate proteasome structure and function
    • Leggett D.S., et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 2002, 10:495-507.
    • (2002) Mol. Cell , vol.10 , pp. 495-507
    • Leggett, D.S.1
  • 50
    • 36849024844 scopus 로고    scopus 로고
    • The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation
    • Marques A.J., et al. The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J. Biol. Chem. 2007, 282:34869-34876.
    • (2007) J. Biol. Chem. , vol.282 , pp. 34869-34876
    • Marques, A.J.1
  • 51
    • 0030897031 scopus 로고    scopus 로고
    • Structure of 20S proteasome from yeast at 2.4 A resolution
    • Groll M., et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 1997, 386:463-471.
    • (1997) Nature , vol.386 , pp. 463-471
    • Groll, M.1
  • 52
    • 0034597824 scopus 로고    scopus 로고
    • Structural basis for the activation of 20S proteasomes by 11S regulators
    • Whitby F.G., et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 2000, 408:115-120.
    • (2000) Nature , vol.408 , pp. 115-120
    • Whitby, F.G.1
  • 53
    • 77649243592 scopus 로고    scopus 로고
    • Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening
    • Sadre-Bazzaz, K. et al. (2010) Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol. Cell 37, 728-735.
    • (2010) Mol. Cell , vol.37 , pp. 728-735
    • Sadre-Bazzaz, K.1
  • 54
    • 44849121398 scopus 로고    scopus 로고
    • The central unit within the 19S regulatory particle of the proteasome
    • Rosenzweig R., et al. The central unit within the 19S regulatory particle of the proteasome. Nat. Struct. Mol. Biol. 2008, 15:573-580.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 573-580
    • Rosenzweig, R.1
  • 55
    • 67749095289 scopus 로고    scopus 로고
    • Insights into the molecular architecture of the 26S proteasome
    • Nickell S., et al. Insights into the molecular architecture of the 26S proteasome. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:11943-11947.
    • (2009) Proc. Natl. Acad. Sci. U. S. A. , vol.106 , pp. 11943-11947
    • Nickell, S.1
  • 56
    • 0031927996 scopus 로고    scopus 로고
    • 26S proteasome structure revealed by three-dimensional electron microscopy
    • Walz J., et al. 26S proteasome structure revealed by three-dimensional electron microscopy. J. Struct. Biol. 1998, 121:19-29.
    • (1998) J. Struct. Biol. , vol.121 , pp. 19-29
    • Walz, J.1
  • 57
    • 0033976299 scopus 로고    scopus 로고
    • Regulatory subunit interactions of the 26S proteasome, a complex problem
    • Ferrell K., et al. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem. Sci. 2000, 25:83-88.
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 83-88
    • Ferrell, K.1
  • 58
    • 66449131251 scopus 로고    scopus 로고
    • Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases
    • Djuranovic S., et al. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol. Cell 2009, 34:580-590.
    • (2009) Mol. Cell , vol.34 , pp. 580-590
    • Djuranovic, S.1
  • 59
    • 65649091692 scopus 로고    scopus 로고
    • Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
    • Zhang F., et al. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 2009, 34:473-484.
    • (2009) Mol. Cell , vol.34 , pp. 473-484
    • Zhang, F.1
  • 61
    • 21144450049 scopus 로고    scopus 로고
    • ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle
    • Babbitt S.E., et al. ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle. Cell 2005, 121:553-565.
    • (2005) Cell , vol.121 , pp. 553-565
    • Babbitt, S.E.1
  • 62
    • 53549088611 scopus 로고    scopus 로고
    • Mammalian 26S proteasomes remain intact during protein degradation
    • Kriegenburg F., et al. Mammalian 26S proteasomes remain intact during protein degradation. Cell 2008, 135:355-365.
    • (2008) Cell , vol.135 , pp. 355-365
    • Kriegenburg, F.1
  • 63
    • 34547963061 scopus 로고    scopus 로고
    • ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea
    • Horwitz A.A., et al. ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea. J. Biol. Chem. 2007, 282:22921-22929.
    • (2007) J. Biol. Chem. , vol.282 , pp. 22921-22929
    • Horwitz, A.A.1
  • 64
  • 65
    • 4344559454 scopus 로고    scopus 로고
    • An unstructured initiation site is required for efficient proteasome-mediated degradation
    • Prakash S., et al. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 2004, 11:830-837.
    • (2004) Nat. Struct. Mol. Biol. , vol.11 , pp. 830-837
    • Prakash, S.1
  • 66
    • 57749102552 scopus 로고    scopus 로고
    • Substrate selection by the proteasome during degradation of protein complexes
    • Prakash S., et al. Substrate selection by the proteasome during degradation of protein complexes. Nat. Chem. Biol. 2009, 5:29-36.
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 29-36
    • Prakash, S.1
  • 67
    • 59649104242 scopus 로고    scopus 로고
    • Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome
    • Bech-Otschir D., et al. Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome. Nat. Struct. Mol. Biol. 2009, 16:219-225.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 219-225
    • Bech-Otschir, D.1
  • 68
    • 0031890210 scopus 로고    scopus 로고
    • Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1
    • Fu H., et al. Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J. Biol. Chem. 1998, 273:1970-1981.
    • (1998) J. Biol. Chem. , vol.273 , pp. 1970-1981
    • Fu, H.1
  • 69
    • 55049090325 scopus 로고    scopus 로고
    • Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome
    • Matiuhin Y., et al. Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. Mol. Cell 2008, 32:415-425.
    • (2008) Mol. Cell , vol.32 , pp. 415-425
    • Matiuhin, Y.1
  • 70
    • 70349441058 scopus 로고    scopus 로고
    • Ubiquitin-binding domains - from structures to functions
    • Dikic I., et al. Ubiquitin-binding domains - from structures to functions. Nat. Rev. Mol. Cell Biol. 2009, 10:659-671.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 659-671
    • Dikic, I.1
  • 71
    • 68049084674 scopus 로고    scopus 로고
    • Breaking the chains: structure and function of the deubiquitinases
    • Komander D., et al. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 2009, 10:550-563.
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 550-563
    • Komander, D.1
  • 72
    • 59649086030 scopus 로고    scopus 로고
    • Nonproteolytic functions of ubiquitin in cell signaling
    • Chen Z.J., Sun L.J. Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell 2009, 33:275-286.
    • (2009) Mol. Cell , vol.33 , pp. 275-286
    • Chen, Z.J.1    Sun, L.J.2
  • 73
    • 60549107173 scopus 로고    scopus 로고
    • Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome
    • Saeki Y., et al. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J. 2009, 28:359-371.
    • (2009) EMBO J. , vol.28 , pp. 359-371
    • Saeki, Y.1
  • 74
    • 63049125531 scopus 로고    scopus 로고
    • Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
    • Xu P., et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009, 137:133-145.
    • (2009) Cell , vol.137 , pp. 133-145
    • Xu, P.1
  • 75
    • 43049162227 scopus 로고    scopus 로고
    • Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex
    • Jin L., et al. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 2008, 133:653-665.
    • (2008) Cell , vol.133 , pp. 653-665
    • Jin, L.1
  • 76
    • 52649138958 scopus 로고    scopus 로고
    • UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover
    • Alexandru G., et al. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell 2008, 134:804-816.
    • (2008) Cell , vol.134 , pp. 804-816
    • Alexandru, G.1
  • 77
    • 56449111307 scopus 로고    scopus 로고
    • VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder
    • Kimonis V.E., et al. VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochim. Biophys. Acta 2008, 1782:744-748.
    • (2008) Biochim. Biophys. Acta , vol.1782 , pp. 744-748
    • Kimonis, V.E.1
  • 78
    • 55949136614 scopus 로고    scopus 로고
    • Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry
    • Meierhofer D., et al. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J. Proteome Res. 2008, 7:4566-4576.
    • (2008) J. Proteome Res. , vol.7 , pp. 4566-4576
    • Meierhofer, D.1
  • 79
    • 34547807613 scopus 로고    scopus 로고
    • Global changes to the ubiquitin system in Huntington's disease
    • Bennett E.J., et al. Global changes to the ubiquitin system in Huntington's disease. Nature 2007, 448:704-708.
    • (2007) Nature , vol.448 , pp. 704-708
    • Bennett, E.J.1
  • 80
    • 67449131894 scopus 로고    scopus 로고
    • Immunoreactivity to Lys63-linked polyubiquitin is a feature of neurodegeneration
    • Paine S., et al. Immunoreactivity to Lys63-linked polyubiquitin is a feature of neurodegeneration. Neurosci. Lett. 2009, 460:205-208.
    • (2009) Neurosci. Lett. , vol.460 , pp. 205-208
    • Paine, S.1
  • 81
    • 56549127365 scopus 로고    scopus 로고
    • Is malfunction of the ubiquitin proteasome system the primary cause of alpha-synucleinopathies and other chronic human neurodegenerative disease?
    • Bedford L., et al. Is malfunction of the ubiquitin proteasome system the primary cause of alpha-synucleinopathies and other chronic human neurodegenerative disease?. Biochim. Biophys. Acta 2008, 1782:683-690.
    • (2008) Biochim. Biophys. Acta , vol.1782 , pp. 683-690
    • Bedford, L.1
  • 82
    • 51149121890 scopus 로고    scopus 로고
    • Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies
    • Bedford L., et al. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J. Neurosci. 2008, 28:8189-8198.
    • (2008) J. Neurosci. , vol.28 , pp. 8189-8198
    • Bedford, L.1
  • 83
    • 51749093587 scopus 로고    scopus 로고
    • Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis
    • Guerrero C., et al. Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:13333-13338.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 13333-13338
    • Guerrero, C.1
  • 84
    • 56849094282 scopus 로고    scopus 로고
    • A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing
    • Wilmes G.M., et al. A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol. Cell 2008, 32:735-746.
    • (2008) Mol. Cell , vol.32 , pp. 735-746
    • Wilmes, G.M.1
  • 85
    • 64049087859 scopus 로고    scopus 로고
    • Sem1 is a functional component of the nuclear pore complex-associated messenger RNA export machinery
    • Faza M.B., et al. Sem1 is a functional component of the nuclear pore complex-associated messenger RNA export machinery. J. Cell Biol. 2009, 184:833-846.
    • (2009) J. Cell Biol. , vol.184 , pp. 833-846
    • Faza, M.B.1
  • 86
    • 3042799223 scopus 로고    scopus 로고
    • Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae
    • Sone T., et al. Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279:28807-28816.
    • (2004) J. Biol. Chem. , vol.279 , pp. 28807-28816
    • Sone, T.1
  • 87
    • 13544259975 scopus 로고    scopus 로고
    • Sem1, the yeast ortholog of a human BRCA2-binding protein, is a component of the proteasome regulatory particle that enhances proteasome stability
    • Funakoshi M., et al. Sem1, the yeast ortholog of a human BRCA2-binding protein, is a component of the proteasome regulatory particle that enhances proteasome stability. J. Cell. Sci. 2004, 117:6447-6454.
    • (2004) J. Cell. Sci. , vol.117 , pp. 6447-6454
    • Funakoshi, M.1
  • 88
    • 52949126319 scopus 로고    scopus 로고
    • Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation
    • Wei S.J., et al. Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation. J. Mol. Biol. 2008, 383:693-712.
    • (2008) J. Mol. Biol. , vol.383 , pp. 693-712
    • Wei, S.J.1
  • 89
    • 33747347236 scopus 로고    scopus 로고
    • Structural organization of the 19S proteasome lid: insights from MS of intact complexes
    • Sharon M., et al. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 2006, 4:e267.
    • (2006) PLoS Biol. , vol.4
    • Sharon, M.1
  • 90
    • 19944388882 scopus 로고    scopus 로고
    • Proteasome involvement in the repair of DNA double-strand breaks
    • Krogan N.J., et al. Proteasome involvement in the repair of DNA double-strand breaks. Mol. Cell 2004, 16:1027-1034.
    • (2004) Mol. Cell , vol.16 , pp. 1027-1034
    • Krogan, N.J.1
  • 91
    • 0033026065 scopus 로고    scopus 로고
    • Interaction between the product of the breast cancer susceptibility gene BRCA2 and DSS1, a protein functionally conserved from yeast to mammals
    • Marston N.J., et al. Interaction between the product of the breast cancer susceptibility gene BRCA2 and DSS1, a protein functionally conserved from yeast to mammals. Mol. Cell Biol. 1999, 19:4633-4642.
    • (1999) Mol. Cell Biol. , vol.19 , pp. 4633-4642
    • Marston, N.J.1
  • 92
    • 18544372595 scopus 로고    scopus 로고
    • BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure
    • Yang H., et al. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science 2002, 297:1837-1848.
    • (2002) Science , vol.297 , pp. 1837-1848
    • Yang, H.1
  • 93
    • 0242361315 scopus 로고    scopus 로고
    • The BRCA2-interacting protein DSS1 is vital for DNA repair, recombination, and genome stability in Ustilago maydis
    • Kojic M., et al. The BRCA2-interacting protein DSS1 is vital for DNA repair, recombination, and genome stability in Ustilago maydis. Mol. Cell 2003, 12:1043-1049.
    • (2003) Mol. Cell , vol.12 , pp. 1043-1049
    • Kojic, M.1
  • 94
    • 0345276495 scopus 로고    scopus 로고
    • Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair
    • Dong Y., et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol. Cell 2003, 12:1087-1099.
    • (2003) Mol. Cell , vol.12 , pp. 1087-1099
    • Dong, Y.1
  • 95
    • 64549083597 scopus 로고    scopus 로고
    • Sem1p and Ubp6p orchestrate telomeric silencing by modulating histone H2B ubiquitination and H3 acetylation
    • Qin S., et al. Sem1p and Ubp6p orchestrate telomeric silencing by modulating histone H2B ubiquitination and H3 acetylation. Nucleic Acids Res. 2009, 37:1843-1853.
    • (2009) Nucleic Acids Res. , vol.37 , pp. 1843-1853
    • Qin, S.1
  • 96
    • 0033978257 scopus 로고    scopus 로고
    • Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas
    • Higashitsuji H., et al. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat. Med. 2000, 6:96-99.
    • (2000) Nat. Med. , vol.6 , pp. 96-99
    • Higashitsuji, H.1
  • 97
    • 22244486994 scopus 로고    scopus 로고
    • The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53
    • Higashitsuji H., et al. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell 2005, 8:75-87.
    • (2005) Cancer Cell , vol.8 , pp. 75-87
    • Higashitsuji, H.1
  • 98
    • 34848912223 scopus 로고    scopus 로고
    • The oncoprotein gankyrin interacts with RelA and suppresses NF-kappaB activity
    • Higashitsuji H., et al. The oncoprotein gankyrin interacts with RelA and suppresses NF-kappaB activity. Biochem. Biophys. Res. Commun. 2007, 363:879-884.
    • (2007) Biochem. Biophys. Res. Commun. , vol.363 , pp. 879-884
    • Higashitsuji, H.1
  • 99
    • 41649083740 scopus 로고    scopus 로고
    • Dissection of the carboxyl-terminal domain of the proteasomal subunit Rpn11 in maintenance of mitochondrial structure and function
    • Rinaldi T., et al. Dissection of the carboxyl-terminal domain of the proteasomal subunit Rpn11 in maintenance of mitochondrial structure and function. Mol. Biol. Cell 2008, 19:1022-1031.
    • (2008) Mol. Biol. Cell , vol.19 , pp. 1022-1031
    • Rinaldi, T.1
  • 100
    • 3142723187 scopus 로고    scopus 로고
    • Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain
    • Rinaldi T., et al. Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain. Biochem. J. 2004, 381:275-285.
    • (2004) Biochem. J. , vol.381 , pp. 275-285
    • Rinaldi, T.1
  • 101
    • 45749117188 scopus 로고    scopus 로고
    • Mitochondrial fragmentation in neurodegeneration
    • Knott A.B., et al. Mitochondrial fragmentation in neurodegeneration. Nat. Rev. Neurosci. 2008, 9:505-518.
    • (2008) Nat. Rev. Neurosci. , vol.9 , pp. 505-518
    • Knott, A.B.1
  • 102
    • 59649115172 scopus 로고    scopus 로고
    • Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination
    • Baugh J.M., et al. Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination. J. Mol. Biol. 2009, 386:814-827.
    • (2009) J. Mol. Biol. , vol.386 , pp. 814-827
    • Baugh, J.M.1
  • 103
    • 44949218293 scopus 로고    scopus 로고
    • Limited degradation of oxidized calmodulin by proteasome: formation of peptides
    • Strosova M., et al. Limited degradation of oxidized calmodulin by proteasome: formation of peptides. Arch. Biochem. Biophys. 2008, 475:50-54.
    • (2008) Arch. Biochem. Biophys. , vol.475 , pp. 50-54
    • Strosova, M.1
  • 104
    • 58149350129 scopus 로고    scopus 로고
    • The proteasome and its role in the degradation of oxidized proteins
    • Jung T., Grune T. The proteasome and its role in the degradation of oxidized proteins. IUBMB Life 2008, 60:743-752.
    • (2008) IUBMB Life , vol.60 , pp. 743-752
    • Jung, T.1    Grune, T.2
  • 105
    • 61649121516 scopus 로고    scopus 로고
    • The UPS and autophagy in chronic neurodegenerative disease: six of one and half a dozen of the other - or not?
    • Bedford L., et al. The UPS and autophagy in chronic neurodegenerative disease: six of one and half a dozen of the other - or not?. Autophagy 2009, 5:224-227.
    • (2009) Autophagy , vol.5 , pp. 224-227
    • Bedford, L.1
  • 106
    • 33644867538 scopus 로고    scopus 로고
    • The proteasome: a utility tool for transcription?
    • Collins G.A., Tansey W.P. The proteasome: a utility tool for transcription?. Curr. Opin. Genet. Dev. 2006, 16:197-202.
    • (2006) Curr. Opin. Genet. Dev. , vol.16 , pp. 197-202
    • Collins, G.A.1    Tansey, W.P.2
  • 107
    • 0024972956 scopus 로고
    • The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria
    • Dahlmann B., et al. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett. 1989, 251:125-131.
    • (1989) FEBS Lett. , vol.251 , pp. 125-131
    • Dahlmann, B.1
  • 108
    • 33745593049 scopus 로고    scopus 로고
    • Activity-dependent dynamics and sequestration of proteasomes in dendritic spines
    • Bingol B., Schuman E.M. Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 2006, 441:1144-1148.
    • (2006) Nature , vol.441 , pp. 1144-1148
    • Bingol, B.1    Schuman, E.M.2
  • 109
    • 76749131595 scopus 로고    scopus 로고
    • Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines
    • Cell
    • Bingol, B. et al. (2010) Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140, 567-578.
    • (2010) , vol.140 , pp. 567-578
    • Bingol, B.1
  • 110
    • 69949093459 scopus 로고    scopus 로고
    • Direct activation of protein kinases by unanchored polyubiquitin chains
    • Xia Z.P., et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 2009, 461:114-119.
    • (2009) Nature , vol.461 , pp. 114-119
    • Xia, Z.P.1
  • 111
    • 23144449208 scopus 로고    scopus 로고
    • Ubiquitin and ubiquitin-like proteins as multifunctional signals
    • Welchman R.L., et al. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 2005, 6:599-609.
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 599-609
    • Welchman, R.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.