-
1
-
-
39349083915
-
Adapting proteostasis for disease intervention
-
Balch W.E., et al. Adapting proteostasis for disease intervention. Science 2008, 319:916-919.
-
(2008)
Science
, vol.319
, pp. 916-919
-
-
Balch, W.E.1
-
2
-
-
65649115267
-
Recognition and processing of ubiquitin-protein conjugates by the proteasome
-
Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu. Rev. Biochem. 2009, 78:477-513.
-
(2009)
Annu. Rev. Biochem.
, vol.78
, pp. 477-513
-
-
Finley, D.1
-
3
-
-
58849093135
-
Molecular mechanisms of proteasome assembly
-
Murata S., et al. Molecular mechanisms of proteasome assembly. Nat. Rev. Mol. Cell Biol. 2009, 10:104-115.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 104-115
-
-
Murata, S.1
-
4
-
-
54049107641
-
Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis
-
Kusmierczyk A.R., Hochstrasser M. Some assembly required: dedicated chaperones in eukaryotic proteasome biogenesis. Biol. Chem. 2008, 389:1143-1151.
-
(2008)
Biol. Chem.
, vol.389
, pp. 1143-1151
-
-
Kusmierczyk, A.R.1
Hochstrasser, M.2
-
5
-
-
65249098267
-
Catalytic mechanism and assembly of the proteasome
-
Marques A.J., et al. Catalytic mechanism and assembly of the proteasome. Chem. Rev. 2009, 109:1509-1536.
-
(2009)
Chem. Rev.
, vol.109
, pp. 1509-1536
-
-
Marques, A.J.1
-
6
-
-
11844287006
-
Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors
-
Rechsteiner M., Hill C.P. Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol. 2005, 15:27-33.
-
(2005)
Trends Cell Biol.
, vol.15
, pp. 27-33
-
-
Rechsteiner, M.1
Hill, C.P.2
-
7
-
-
3042543354
-
The alpha4 and alpha7 subunits and assembly of the 20S proteasome
-
Apcher G.S., et al. The alpha4 and alpha7 subunits and assembly of the 20S proteasome. FEBS Lett. 2004, 569:211-216.
-
(2004)
FEBS Lett.
, vol.569
, pp. 211-216
-
-
Apcher, G.S.1
-
8
-
-
0030950435
-
The human alpha-type proteasomal subunit HsC8 forms a double ringlike structure, but does not assemble into proteasome-like particles with the beta-type subunits HsDelta or HsBPROS26
-
Gerards W.L., et al. The human alpha-type proteasomal subunit HsC8 forms a double ringlike structure, but does not assemble into proteasome-like particles with the beta-type subunits HsDelta or HsBPROS26. J. Biol. Chem. 1997, 272:10080-10086.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 10080-10086
-
-
Gerards, W.L.1
-
9
-
-
0033408417
-
Alpha5 subunit in Trypanosoma brucei proteasome can self-assemble to form a cylinder of four stacked heptamer rings
-
Yao Y., et al. alpha5 subunit in Trypanosoma brucei proteasome can self-assemble to form a cylinder of four stacked heptamer rings. Biochem. J. 1999, 344:349-358.
-
(1999)
Biochem. J.
, vol.344
, pp. 349-358
-
-
Yao, Y.1
-
10
-
-
1442264792
-
Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast
-
Velichutina I., et al. Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast. EMBO J. 2004, 23:500-510.
-
(2004)
EMBO J.
, vol.23
, pp. 500-510
-
-
Velichutina, I.1
-
11
-
-
27644554700
-
A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes
-
Hirano Y., et al. A heterodimeric complex that promotes the assembly of mammalian 20S proteasomes. Nature 2005, 437:1381-1385.
-
(2005)
Nature
, vol.437
, pp. 1381-1385
-
-
Hirano, Y.1
-
12
-
-
33845681479
-
Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes
-
Hirano Y., et al. Cooperation of multiple chaperones required for the assembly of mammalian 20S proteasomes. Mol. Cell 2006, 24:977-984.
-
(2006)
Mol. Cell
, vol.24
, pp. 977-984
-
-
Hirano, Y.1
-
13
-
-
49949109912
-
Dissecting beta-ring assembly pathway of the mammalian 20S proteasome
-
Hirano Y., et al. Dissecting beta-ring assembly pathway of the mammalian 20S proteasome. EMBO J. 2008, 27:2204-2213.
-
(2008)
EMBO J.
, vol.27
, pp. 2204-2213
-
-
Hirano, Y.1
-
14
-
-
40949117574
-
A multimeric assembly factor controls the formation of alternative 20S proteasomes
-
Kusmierczyk A.R., et al. A multimeric assembly factor controls the formation of alternative 20S proteasomes. Nat. Struct. Mol. Biol. 2008, 15:237-244.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 237-244
-
-
Kusmierczyk, A.R.1
-
15
-
-
34547838178
-
20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals
-
Le Tallec B., et al. 20S proteasome assembly is orchestrated by two distinct pairs of chaperones in yeast and in mammals. Mol. Cell 2007, 27:660-674.
-
(2007)
Mol. Cell
, vol.27
, pp. 660-674
-
-
Le Tallec, B.1
-
16
-
-
40949120953
-
Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes
-
Yashiroda H., et al. Crystal structure of a chaperone complex that contributes to the assembly of yeast 20S proteasomes. Nat. Struct. Mol. Biol. 2008, 15:228-236.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 228-236
-
-
Yashiroda, H.1
-
17
-
-
60849118366
-
Electron microscopic evidence in support of alpha-solenoid models of proteasomal subunits, Rpn1 and Rpn2
-
Effantin G., et al. Electron microscopic evidence in support of alpha-solenoid models of proteasomal subunits, Rpn1 and Rpn2. J. Mol. Biol. 2009, 386:1204-1211.
-
(2009)
J. Mol. Biol.
, vol.386
, pp. 1204-1211
-
-
Effantin, G.1
-
18
-
-
36849059755
-
Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites
-
Kleijnen M.F., et al. Stability of the proteasome can be regulated allosterically through engagement of its proteolytic active sites. Nat. Struct. Mol. Biol. 2007, 14:1180-1188.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 1180-1188
-
-
Kleijnen, M.F.1
-
19
-
-
69949136026
-
Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity
-
Thompson D., et al. Subcomplexes of PA700, the 19 S regulator of the 26 S proteasome, reveal relative roles of AAA subunits in 26 S proteasome assembly and activation and ATPase activity. J. Biol. Chem. 2009, 284:24891-24903.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 24891-24903
-
-
Thompson, D.1
-
20
-
-
59849083960
-
Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome
-
Le Tallec B., et al. Hsm3/S5b participates in the assembly pathway of the 19S regulatory particle of the proteasome. Mol. Cell. 2009, 33:389-399.
-
(2009)
Mol. Cell.
, vol.33
, pp. 389-399
-
-
Le Tallec, B.1
-
21
-
-
67149121057
-
Hexameric assembly of the proteasomal ATPases is templated through their C termini
-
Park S., et al. Hexameric assembly of the proteasomal ATPases is templated through their C termini. Nature 2009, 459:866-870.
-
(2009)
Nature
, vol.459
, pp. 866-870
-
-
Park, S.1
-
22
-
-
67349089027
-
Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base
-
Funakoshi M., et al. Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 2009, 137:887-899.
-
(2009)
Cell
, vol.137
, pp. 887-899
-
-
Funakoshi, M.1
-
23
-
-
65849101541
-
Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle
-
Saeki Y., et al. Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 2009, 137:900-913.
-
(2009)
Cell
, vol.137
, pp. 900-913
-
-
Saeki, Y.1
-
24
-
-
65849109465
-
Assembly pathway of the mammalian proteasome base subcomplex is mediated by multiple specific chaperones
-
Kaneko T., et al. Assembly pathway of the mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 2009, 137:914-925.
-
(2009)
Cell
, vol.137
, pp. 914-925
-
-
Kaneko, T.1
-
25
-
-
67149112112
-
Chaperone-mediated pathway of proteasome regulatory particle assembly
-
Roelofs J., et al. Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 2009, 459:861-865.
-
(2009)
Nature
, vol.459
, pp. 861-865
-
-
Roelofs, J.1
-
26
-
-
3042646350
-
Rpn7 Is required for the structural integrity of the 26 S proteasome of Saccharomyces cerevisiae
-
Isono E., et al. Rpn7 Is required for the structural integrity of the 26 S proteasome of Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279:27168-27176.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 27168-27176
-
-
Isono, E.1
-
27
-
-
0030042442
-
Identification, purification, and characterization of a PA700-dependent activator of the proteasome
-
DeMartino G.N., et al. Identification, purification, and characterization of a PA700-dependent activator of the proteasome. J. Biol. Chem. 1996, 271:3112-3118.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 3112-3118
-
-
DeMartino, G.N.1
-
28
-
-
0032104261
-
CDNA cloning and characterization of a human proteasomal modulator subunit, p27 (PSMD9)
-
Watanabe T.K., et al. cDNA cloning and characterization of a human proteasomal modulator subunit, p27 (PSMD9). Genomics 1998, 50:241-250.
-
(1998)
Genomics
, vol.50
, pp. 241-250
-
-
Watanabe, T.K.1
-
29
-
-
0033972319
-
Mapping subunit contacts in the regulatory complex of the 26 S proteasome. S2 and S5b form a tetramer with ATPase subunits S4 and S7
-
Gorbea C., et al. Mapping subunit contacts in the regulatory complex of the 26 S proteasome. S2 and S5b form a tetramer with ATPase subunits S4 and S7. J. Biol. Chem. 2000, 275:875-882.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 875-882
-
-
Gorbea, C.1
-
30
-
-
0032541323
-
CDNA cloning and functional analysis of p28 (Nas6p) and p40.5 (Nas7p), two novel regulatory subunits of the 26S proteasome
-
Hori T., et al. cDNA cloning and functional analysis of p28 (Nas6p) and p40.5 (Nas7p), two novel regulatory subunits of the 26S proteasome. Gene 1998, 216:113-122.
-
(1998)
Gene
, vol.216
, pp. 113-122
-
-
Hori, T.1
-
31
-
-
0033791447
-
Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes
-
Verma R., et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 2000, 11:3425-3439.
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 3425-3439
-
-
Verma, R.1
-
32
-
-
0037192842
-
Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome
-
Dawson S., et al. Gankyrin is an ankyrin-repeat oncoprotein that interacts with CDK4 kinase and the S6 ATPase of the 26 S proteasome. J. Biol. Chem. 2002, 277:10893-10902.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 10893-10902
-
-
Dawson, S.1
-
33
-
-
17644421410
-
Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases
-
Park Y., et al. Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases. Mol. Cell Biol. 2005, 25:3842-3853.
-
(2005)
Mol. Cell Biol.
, vol.25
, pp. 3842-3853
-
-
Park, Y.1
-
34
-
-
33846658069
-
The proteasome regulates HIV-1 transcription by both proteolytic and nonproteolytic mechanisms
-
Lassot I., et al. The proteasome regulates HIV-1 transcription by both proteolytic and nonproteolytic mechanisms. Mol. Cell 2007, 25:369-383.
-
(2007)
Mol. Cell
, vol.25
, pp. 369-383
-
-
Lassot, I.1
-
35
-
-
33646542006
-
Gankyrin: a new oncoprotein and regulator of pRb and p53
-
Dawson S., et al. Gankyrin: a new oncoprotein and regulator of pRb and p53. Trends Cell Biol. 2006, 16:229-233.
-
(2006)
Trends Cell Biol.
, vol.16
, pp. 229-233
-
-
Dawson, S.1
-
36
-
-
0032568655
-
SMART, a simple modular architecture research tool: identification of signaling domains
-
Schultz J., et al. SMART, a simple modular architecture research tool: identification of signaling domains. Proc. Natl. Acad. Sci. U. S. A. 1998, 95:5857-5864.
-
(1998)
Proc. Natl. Acad. Sci. U. S. A.
, vol.95
, pp. 5857-5864
-
-
Schultz, J.1
-
37
-
-
58149194624
-
SMART 6: recent updates and new developments
-
Letunic I., et al. SMART 6: recent updates and new developments. Nucleic Acids Res. 2009, 37:D229-D232.
-
(2009)
Nucleic Acids Res.
, vol.37
-
-
Letunic, I.1
-
38
-
-
33749236397
-
Classification of AAA+ proteins
-
Ammelburg M., et al. Classification of AAA+ proteins. J. Struct. Biol. 2006, 156:2-11.
-
(2006)
J. Struct. Biol.
, vol.156
, pp. 2-11
-
-
Ammelburg, M.1
-
39
-
-
0038475879
-
Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture
-
Davey M.J., et al. Reconstitution of the Mcm2-7p heterohexamer, subunit arrangement, and ATP site architecture. J. Biol. Chem. 2003, 278:4491-4499.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 4491-4499
-
-
Davey, M.J.1
-
40
-
-
57649140340
-
Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome
-
Gillette T.G., et al. Differential roles of the COOH termini of AAA subunits of PA700 (19 S regulator) in asymmetric assembly and activation of the 26 S proteasome. J. Biol. Chem. 2008, 283:31813-31822.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 31813-31822
-
-
Gillette, T.G.1
-
41
-
-
42949096020
-
Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases
-
Rabl J., et al. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol. Cell 2008, 30:360-368.
-
(2008)
Mol. Cell
, vol.30
, pp. 360-368
-
-
Rabl, J.1
-
42
-
-
34548274872
-
Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry
-
Smith D.M., et al. Docking of the proteasomal ATPases' carboxyl termini in the 20S proteasome's alpha ring opens the gate for substrate entry. Mol. Cell 2007, 27:731-744.
-
(2007)
Mol. Cell
, vol.27
, pp. 731-744
-
-
Smith, D.M.1
-
43
-
-
0035242489
-
Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking
-
Hartmann-Petersen R., et al. Quaternary structure of the ATPase complex of human 26S proteasomes determined by chemical cross-linking. Arch. Biochem. Biophys. 2001, 386:89-94.
-
(2001)
Arch. Biochem. Biophys.
, vol.386
, pp. 89-94
-
-
Hartmann-Petersen, R.1
-
44
-
-
69249217672
-
An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome
-
Forster F., et al. An atomic model AAA-ATPase/20S core particle sub-complex of the 26S proteasome. Biochem. Biophys. Res. Commun. 2009, 388:228-233.
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.388
, pp. 228-233
-
-
Forster, F.1
-
45
-
-
70350542583
-
The 20S proteasome as an assembly platform for the 19S regulatory complex
-
Hendil K.B., et al. The 20S proteasome as an assembly platform for the 19S regulatory complex. J. Mol. Biol. 2009, 394:320-328.
-
(2009)
J. Mol. Biol.
, vol.394
, pp. 320-328
-
-
Hendil, K.B.1
-
46
-
-
0042313977
-
The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome
-
Imai J., et al. The molecular chaperone Hsp90 plays a role in the assembly and maintenance of the 26S proteasome. EMBO J. 2003, 22:3557-3567.
-
(2003)
EMBO J.
, vol.22
, pp. 3557-3567
-
-
Imai, J.1
-
47
-
-
0037115555
-
Nob1p is required for biogenesis of the 26S proteasome and degraded upon its maturation in Saccharomyces cerevisiae
-
Tone Y., Toh E.A. Nob1p is required for biogenesis of the 26S proteasome and degraded upon its maturation in Saccharomyces cerevisiae. Genes Dev. 2002, 16:3142-3157.
-
(2002)
Genes Dev.
, vol.16
, pp. 3142-3157
-
-
Tone, Y.1
Toh, E.A.2
-
48
-
-
0037369912
-
Nob1p is required for cleavage of the 3' end of 18S rRNA
-
Fatica A., et al. Nob1p is required for cleavage of the 3' end of 18S rRNA. Mol. Cell Biol. 2003, 23:1798-1807.
-
(2003)
Mol. Cell Biol.
, vol.23
, pp. 1798-1807
-
-
Fatica, A.1
-
49
-
-
0036753063
-
Multiple associated proteins regulate proteasome structure and function
-
Leggett D.S., et al. Multiple associated proteins regulate proteasome structure and function. Mol. Cell 2002, 10:495-507.
-
(2002)
Mol. Cell
, vol.10
, pp. 495-507
-
-
Leggett, D.S.1
-
50
-
-
36849024844
-
The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation
-
Marques A.J., et al. The C-terminal extension of the beta7 subunit and activator complexes stabilize nascent 20 S proteasomes and promote their maturation. J. Biol. Chem. 2007, 282:34869-34876.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 34869-34876
-
-
Marques, A.J.1
-
51
-
-
0030897031
-
Structure of 20S proteasome from yeast at 2.4 A resolution
-
Groll M., et al. Structure of 20S proteasome from yeast at 2.4 A resolution. Nature 1997, 386:463-471.
-
(1997)
Nature
, vol.386
, pp. 463-471
-
-
Groll, M.1
-
52
-
-
0034597824
-
Structural basis for the activation of 20S proteasomes by 11S regulators
-
Whitby F.G., et al. Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 2000, 408:115-120.
-
(2000)
Nature
, vol.408
, pp. 115-120
-
-
Whitby, F.G.1
-
53
-
-
77649243592
-
Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening
-
Sadre-Bazzaz, K. et al. (2010) Structure of a Blm10 complex reveals common mechanisms for proteasome binding and gate opening. Mol. Cell 37, 728-735.
-
(2010)
Mol. Cell
, vol.37
, pp. 728-735
-
-
Sadre-Bazzaz, K.1
-
54
-
-
44849121398
-
The central unit within the 19S regulatory particle of the proteasome
-
Rosenzweig R., et al. The central unit within the 19S regulatory particle of the proteasome. Nat. Struct. Mol. Biol. 2008, 15:573-580.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 573-580
-
-
Rosenzweig, R.1
-
55
-
-
67749095289
-
Insights into the molecular architecture of the 26S proteasome
-
Nickell S., et al. Insights into the molecular architecture of the 26S proteasome. Proc. Natl. Acad. Sci. U. S. A. 2009, 106:11943-11947.
-
(2009)
Proc. Natl. Acad. Sci. U. S. A.
, vol.106
, pp. 11943-11947
-
-
Nickell, S.1
-
56
-
-
0031927996
-
26S proteasome structure revealed by three-dimensional electron microscopy
-
Walz J., et al. 26S proteasome structure revealed by three-dimensional electron microscopy. J. Struct. Biol. 1998, 121:19-29.
-
(1998)
J. Struct. Biol.
, vol.121
, pp. 19-29
-
-
Walz, J.1
-
57
-
-
0033976299
-
Regulatory subunit interactions of the 26S proteasome, a complex problem
-
Ferrell K., et al. Regulatory subunit interactions of the 26S proteasome, a complex problem. Trends Biochem. Sci. 2000, 25:83-88.
-
(2000)
Trends Biochem. Sci.
, vol.25
, pp. 83-88
-
-
Ferrell, K.1
-
58
-
-
66449131251
-
Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases
-
Djuranovic S., et al. Structure and activity of the N-terminal substrate recognition domains in proteasomal ATPases. Mol. Cell 2009, 34:580-590.
-
(2009)
Mol. Cell
, vol.34
, pp. 580-590
-
-
Djuranovic, S.1
-
59
-
-
65649091692
-
Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii
-
Zhang F., et al. Structural insights into the regulatory particle of the proteasome from Methanocaldococcus jannaschii. Mol. Cell 2009, 34:473-484.
-
(2009)
Mol. Cell
, vol.34
, pp. 473-484
-
-
Zhang, F.1
-
61
-
-
21144450049
-
ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle
-
Babbitt S.E., et al. ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle. Cell 2005, 121:553-565.
-
(2005)
Cell
, vol.121
, pp. 553-565
-
-
Babbitt, S.E.1
-
62
-
-
53549088611
-
Mammalian 26S proteasomes remain intact during protein degradation
-
Kriegenburg F., et al. Mammalian 26S proteasomes remain intact during protein degradation. Cell 2008, 135:355-365.
-
(2008)
Cell
, vol.135
, pp. 355-365
-
-
Kriegenburg, F.1
-
63
-
-
34547963061
-
ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea
-
Horwitz A.A., et al. ATP-induced structural transitions in PAN, the proteasome-regulatory ATPase complex in Archaea. J. Biol. Chem. 2007, 282:22921-22929.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 22921-22929
-
-
Horwitz, A.A.1
-
65
-
-
4344559454
-
An unstructured initiation site is required for efficient proteasome-mediated degradation
-
Prakash S., et al. An unstructured initiation site is required for efficient proteasome-mediated degradation. Nat. Struct. Mol. Biol. 2004, 11:830-837.
-
(2004)
Nat. Struct. Mol. Biol.
, vol.11
, pp. 830-837
-
-
Prakash, S.1
-
66
-
-
57749102552
-
Substrate selection by the proteasome during degradation of protein complexes
-
Prakash S., et al. Substrate selection by the proteasome during degradation of protein complexes. Nat. Chem. Biol. 2009, 5:29-36.
-
(2009)
Nat. Chem. Biol.
, vol.5
, pp. 29-36
-
-
Prakash, S.1
-
67
-
-
59649104242
-
Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome
-
Bech-Otschir D., et al. Polyubiquitin substrates allosterically activate their own degradation by the 26S proteasome. Nat. Struct. Mol. Biol. 2009, 16:219-225.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 219-225
-
-
Bech-Otschir, D.1
-
68
-
-
0031890210
-
Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1
-
Fu H., et al. Multiubiquitin chain binding and protein degradation are mediated by distinct domains within the 26 S proteasome subunit Mcb1. J. Biol. Chem. 1998, 273:1970-1981.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 1970-1981
-
-
Fu, H.1
-
69
-
-
55049090325
-
Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome
-
Matiuhin Y., et al. Extraproteasomal Rpn10 restricts access of the polyubiquitin-binding protein Dsk2 to proteasome. Mol. Cell 2008, 32:415-425.
-
(2008)
Mol. Cell
, vol.32
, pp. 415-425
-
-
Matiuhin, Y.1
-
70
-
-
70349441058
-
Ubiquitin-binding domains - from structures to functions
-
Dikic I., et al. Ubiquitin-binding domains - from structures to functions. Nat. Rev. Mol. Cell Biol. 2009, 10:659-671.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 659-671
-
-
Dikic, I.1
-
71
-
-
68049084674
-
Breaking the chains: structure and function of the deubiquitinases
-
Komander D., et al. Breaking the chains: structure and function of the deubiquitinases. Nat. Rev. Mol. Cell Biol. 2009, 10:550-563.
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 550-563
-
-
Komander, D.1
-
72
-
-
59649086030
-
Nonproteolytic functions of ubiquitin in cell signaling
-
Chen Z.J., Sun L.J. Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell 2009, 33:275-286.
-
(2009)
Mol. Cell
, vol.33
, pp. 275-286
-
-
Chen, Z.J.1
Sun, L.J.2
-
73
-
-
60549107173
-
Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome
-
Saeki Y., et al. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. EMBO J. 2009, 28:359-371.
-
(2009)
EMBO J.
, vol.28
, pp. 359-371
-
-
Saeki, Y.1
-
74
-
-
63049125531
-
Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
-
Xu P., et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009, 137:133-145.
-
(2009)
Cell
, vol.137
, pp. 133-145
-
-
Xu, P.1
-
75
-
-
43049162227
-
Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex
-
Jin L., et al. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 2008, 133:653-665.
-
(2008)
Cell
, vol.133
, pp. 653-665
-
-
Jin, L.1
-
76
-
-
52649138958
-
UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover
-
Alexandru G., et al. UBXD7 binds multiple ubiquitin ligases and implicates p97 in HIF1alpha turnover. Cell 2008, 134:804-816.
-
(2008)
Cell
, vol.134
, pp. 804-816
-
-
Alexandru, G.1
-
77
-
-
56449111307
-
VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder
-
Kimonis V.E., et al. VCP disease associated with myopathy, Paget disease of bone and frontotemporal dementia: review of a unique disorder. Biochim. Biophys. Acta 2008, 1782:744-748.
-
(2008)
Biochim. Biophys. Acta
, vol.1782
, pp. 744-748
-
-
Kimonis, V.E.1
-
78
-
-
55949136614
-
Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry
-
Meierhofer D., et al. Quantitative analysis of global ubiquitination in HeLa cells by mass spectrometry. J. Proteome Res. 2008, 7:4566-4576.
-
(2008)
J. Proteome Res.
, vol.7
, pp. 4566-4576
-
-
Meierhofer, D.1
-
79
-
-
34547807613
-
Global changes to the ubiquitin system in Huntington's disease
-
Bennett E.J., et al. Global changes to the ubiquitin system in Huntington's disease. Nature 2007, 448:704-708.
-
(2007)
Nature
, vol.448
, pp. 704-708
-
-
Bennett, E.J.1
-
80
-
-
67449131894
-
Immunoreactivity to Lys63-linked polyubiquitin is a feature of neurodegeneration
-
Paine S., et al. Immunoreactivity to Lys63-linked polyubiquitin is a feature of neurodegeneration. Neurosci. Lett. 2009, 460:205-208.
-
(2009)
Neurosci. Lett.
, vol.460
, pp. 205-208
-
-
Paine, S.1
-
81
-
-
56549127365
-
Is malfunction of the ubiquitin proteasome system the primary cause of alpha-synucleinopathies and other chronic human neurodegenerative disease?
-
Bedford L., et al. Is malfunction of the ubiquitin proteasome system the primary cause of alpha-synucleinopathies and other chronic human neurodegenerative disease?. Biochim. Biophys. Acta 2008, 1782:683-690.
-
(2008)
Biochim. Biophys. Acta
, vol.1782
, pp. 683-690
-
-
Bedford, L.1
-
82
-
-
51149121890
-
Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies
-
Bedford L., et al. Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J. Neurosci. 2008, 28:8189-8198.
-
(2008)
J. Neurosci.
, vol.28
, pp. 8189-8198
-
-
Bedford, L.1
-
83
-
-
51749093587
-
Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis
-
Guerrero C., et al. Characterization of the proteasome interaction network using a QTAX-based tag-team strategy and protein interaction network analysis. Proc. Natl. Acad. Sci. U. S. A. 2008, 105:13333-13338.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 13333-13338
-
-
Guerrero, C.1
-
84
-
-
56849094282
-
A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing
-
Wilmes G.M., et al. A genetic interaction map of RNA-processing factors reveals links between Sem1/Dss1-containing complexes and mRNA export and splicing. Mol. Cell 2008, 32:735-746.
-
(2008)
Mol. Cell
, vol.32
, pp. 735-746
-
-
Wilmes, G.M.1
-
85
-
-
64049087859
-
Sem1 is a functional component of the nuclear pore complex-associated messenger RNA export machinery
-
Faza M.B., et al. Sem1 is a functional component of the nuclear pore complex-associated messenger RNA export machinery. J. Cell Biol. 2009, 184:833-846.
-
(2009)
J. Cell Biol.
, vol.184
, pp. 833-846
-
-
Faza, M.B.1
-
86
-
-
3042799223
-
Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae
-
Sone T., et al. Sem1p is a novel subunit of the 26 S proteasome from Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279:28807-28816.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 28807-28816
-
-
Sone, T.1
-
87
-
-
13544259975
-
Sem1, the yeast ortholog of a human BRCA2-binding protein, is a component of the proteasome regulatory particle that enhances proteasome stability
-
Funakoshi M., et al. Sem1, the yeast ortholog of a human BRCA2-binding protein, is a component of the proteasome regulatory particle that enhances proteasome stability. J. Cell. Sci. 2004, 117:6447-6454.
-
(2004)
J. Cell. Sci.
, vol.117
, pp. 6447-6454
-
-
Funakoshi, M.1
-
88
-
-
52949126319
-
Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation
-
Wei S.J., et al. Identification of a specific motif of the DSS1 protein required for proteasome interaction and p53 protein degradation. J. Mol. Biol. 2008, 383:693-712.
-
(2008)
J. Mol. Biol.
, vol.383
, pp. 693-712
-
-
Wei, S.J.1
-
89
-
-
33747347236
-
Structural organization of the 19S proteasome lid: insights from MS of intact complexes
-
Sharon M., et al. Structural organization of the 19S proteasome lid: insights from MS of intact complexes. PLoS Biol. 2006, 4:e267.
-
(2006)
PLoS Biol.
, vol.4
-
-
Sharon, M.1
-
90
-
-
19944388882
-
Proteasome involvement in the repair of DNA double-strand breaks
-
Krogan N.J., et al. Proteasome involvement in the repair of DNA double-strand breaks. Mol. Cell 2004, 16:1027-1034.
-
(2004)
Mol. Cell
, vol.16
, pp. 1027-1034
-
-
Krogan, N.J.1
-
91
-
-
0033026065
-
Interaction between the product of the breast cancer susceptibility gene BRCA2 and DSS1, a protein functionally conserved from yeast to mammals
-
Marston N.J., et al. Interaction between the product of the breast cancer susceptibility gene BRCA2 and DSS1, a protein functionally conserved from yeast to mammals. Mol. Cell Biol. 1999, 19:4633-4642.
-
(1999)
Mol. Cell Biol.
, vol.19
, pp. 4633-4642
-
-
Marston, N.J.1
-
92
-
-
18544372595
-
BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure
-
Yang H., et al. BRCA2 function in DNA binding and recombination from a BRCA2-DSS1-ssDNA structure. Science 2002, 297:1837-1848.
-
(2002)
Science
, vol.297
, pp. 1837-1848
-
-
Yang, H.1
-
93
-
-
0242361315
-
The BRCA2-interacting protein DSS1 is vital for DNA repair, recombination, and genome stability in Ustilago maydis
-
Kojic M., et al. The BRCA2-interacting protein DSS1 is vital for DNA repair, recombination, and genome stability in Ustilago maydis. Mol. Cell 2003, 12:1043-1049.
-
(2003)
Mol. Cell
, vol.12
, pp. 1043-1049
-
-
Kojic, M.1
-
94
-
-
0345276495
-
Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair
-
Dong Y., et al. Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol. Cell 2003, 12:1087-1099.
-
(2003)
Mol. Cell
, vol.12
, pp. 1087-1099
-
-
Dong, Y.1
-
95
-
-
64549083597
-
Sem1p and Ubp6p orchestrate telomeric silencing by modulating histone H2B ubiquitination and H3 acetylation
-
Qin S., et al. Sem1p and Ubp6p orchestrate telomeric silencing by modulating histone H2B ubiquitination and H3 acetylation. Nucleic Acids Res. 2009, 37:1843-1853.
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 1843-1853
-
-
Qin, S.1
-
96
-
-
0033978257
-
Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas
-
Higashitsuji H., et al. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas. Nat. Med. 2000, 6:96-99.
-
(2000)
Nat. Med.
, vol.6
, pp. 96-99
-
-
Higashitsuji, H.1
-
97
-
-
22244486994
-
The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53
-
Higashitsuji H., et al. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell 2005, 8:75-87.
-
(2005)
Cancer Cell
, vol.8
, pp. 75-87
-
-
Higashitsuji, H.1
-
98
-
-
34848912223
-
The oncoprotein gankyrin interacts with RelA and suppresses NF-kappaB activity
-
Higashitsuji H., et al. The oncoprotein gankyrin interacts with RelA and suppresses NF-kappaB activity. Biochem. Biophys. Res. Commun. 2007, 363:879-884.
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.363
, pp. 879-884
-
-
Higashitsuji, H.1
-
99
-
-
41649083740
-
Dissection of the carboxyl-terminal domain of the proteasomal subunit Rpn11 in maintenance of mitochondrial structure and function
-
Rinaldi T., et al. Dissection of the carboxyl-terminal domain of the proteasomal subunit Rpn11 in maintenance of mitochondrial structure and function. Mol. Biol. Cell 2008, 19:1022-1031.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 1022-1031
-
-
Rinaldi, T.1
-
100
-
-
3142723187
-
Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain
-
Rinaldi T., et al. Participation of the proteasomal lid subunit Rpn11 in mitochondrial morphology and function is mapped to a distinct C-terminal domain. Biochem. J. 2004, 381:275-285.
-
(2004)
Biochem. J.
, vol.381
, pp. 275-285
-
-
Rinaldi, T.1
-
101
-
-
45749117188
-
Mitochondrial fragmentation in neurodegeneration
-
Knott A.B., et al. Mitochondrial fragmentation in neurodegeneration. Nat. Rev. Neurosci. 2008, 9:505-518.
-
(2008)
Nat. Rev. Neurosci.
, vol.9
, pp. 505-518
-
-
Knott, A.B.1
-
102
-
-
59649115172
-
Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination
-
Baugh J.M., et al. Proteasomes can degrade a significant proportion of cellular proteins independent of ubiquitination. J. Mol. Biol. 2009, 386:814-827.
-
(2009)
J. Mol. Biol.
, vol.386
, pp. 814-827
-
-
Baugh, J.M.1
-
103
-
-
44949218293
-
Limited degradation of oxidized calmodulin by proteasome: formation of peptides
-
Strosova M., et al. Limited degradation of oxidized calmodulin by proteasome: formation of peptides. Arch. Biochem. Biophys. 2008, 475:50-54.
-
(2008)
Arch. Biochem. Biophys.
, vol.475
, pp. 50-54
-
-
Strosova, M.1
-
104
-
-
58149350129
-
The proteasome and its role in the degradation of oxidized proteins
-
Jung T., Grune T. The proteasome and its role in the degradation of oxidized proteins. IUBMB Life 2008, 60:743-752.
-
(2008)
IUBMB Life
, vol.60
, pp. 743-752
-
-
Jung, T.1
Grune, T.2
-
105
-
-
61649121516
-
The UPS and autophagy in chronic neurodegenerative disease: six of one and half a dozen of the other - or not?
-
Bedford L., et al. The UPS and autophagy in chronic neurodegenerative disease: six of one and half a dozen of the other - or not?. Autophagy 2009, 5:224-227.
-
(2009)
Autophagy
, vol.5
, pp. 224-227
-
-
Bedford, L.1
-
106
-
-
33644867538
-
The proteasome: a utility tool for transcription?
-
Collins G.A., Tansey W.P. The proteasome: a utility tool for transcription?. Curr. Opin. Genet. Dev. 2006, 16:197-202.
-
(2006)
Curr. Opin. Genet. Dev.
, vol.16
, pp. 197-202
-
-
Collins, G.A.1
Tansey, W.P.2
-
107
-
-
0024972956
-
The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria
-
Dahlmann B., et al. The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteria. FEBS Lett. 1989, 251:125-131.
-
(1989)
FEBS Lett.
, vol.251
, pp. 125-131
-
-
Dahlmann, B.1
-
108
-
-
33745593049
-
Activity-dependent dynamics and sequestration of proteasomes in dendritic spines
-
Bingol B., Schuman E.M. Activity-dependent dynamics and sequestration of proteasomes in dendritic spines. Nature 2006, 441:1144-1148.
-
(2006)
Nature
, vol.441
, pp. 1144-1148
-
-
Bingol, B.1
Schuman, E.M.2
-
109
-
-
76749131595
-
Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines
-
Cell
-
Bingol, B. et al. (2010) Autophosphorylated CaMKIIalpha acts as a scaffold to recruit proteasomes to dendritic spines. Cell 140, 567-578.
-
(2010)
, vol.140
, pp. 567-578
-
-
Bingol, B.1
-
110
-
-
69949093459
-
Direct activation of protein kinases by unanchored polyubiquitin chains
-
Xia Z.P., et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 2009, 461:114-119.
-
(2009)
Nature
, vol.461
, pp. 114-119
-
-
Xia, Z.P.1
-
111
-
-
23144449208
-
Ubiquitin and ubiquitin-like proteins as multifunctional signals
-
Welchman R.L., et al. Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat. Rev. Mol. Cell Biol. 2005, 6:599-609.
-
(2005)
Nat. Rev. Mol. Cell Biol.
, vol.6
, pp. 599-609
-
-
Welchman, R.L.1
|