-
1
-
-
84891720630
-
In the beginning
-
Summers WC. 2011. In the beginning. Bacteriophage 1:50-51
-
(2011)
Bacteriophage
, vol.1
, pp. 50-51
-
-
Summers, W.C.1
-
2
-
-
84862860490
-
Phage therapy-history from Twort and d'Herelle through Soviet experience to current approaches
-
Chanishvili N. 2012. Phage therapy-history from Twort and d'Herelle through Soviet experience to current approaches. Adv. Virus Res. 83:3-40
-
(2012)
Adv. Virus Res.
, vol.83
, pp. 3-40
-
-
Chanishvili, N.1
-
5
-
-
84863920287
-
Microbial interactions: From networks to models
-
Faust K, Raes J. 2012. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10:538-50
-
(2012)
Nat. Rev. Microbiol.
, vol.10
, pp. 538-550
-
-
Faust, K.1
Raes, J.2
-
6
-
-
0016169589
-
Molecular evolution as predicted by natural selection
-
Van Valen L. 1974. Molecular evolution as predicted by natural selection. J. Mol. Evol. 3:89-101
-
(1974)
J. Mol. Evol.
, vol.3
, pp. 89-101
-
-
Van Valen, L.1
-
7
-
-
77949423965
-
Antagonistic coevolution accelerates molecular evolution
-
Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, et al. 2010. Antagonistic coevolution accelerates molecular evolution. Nature 464:275-78
-
(2010)
Nature
, vol.464
, pp. 275-278
-
-
Paterson, S.1
Vogwill, T.2
Buckling, A.3
Benmayor, R.4
Spiers, A.J.5
-
9
-
-
0033542481
-
Marine viruses and their biogeochemical and ecological effects
-
Fuhrman JA. 1999. Marine viruses and their biogeochemical and ecological effects. Nature 399:541-48
-
(1999)
Nature
, vol.399
, pp. 541-548
-
-
Fuhrman, J.A.1
-
10
-
-
1942486000
-
Ecology of prokaryotic viruses
-
Weinbauer MG. 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28:127-81
-
(2004)
FEMS Microbiol. Rev.
, vol.28
, pp. 127-181
-
-
Weinbauer, M.G.1
-
11
-
-
4544321685
-
Phages and the evolution of bacterial pathogens: From genomic rearrangements to lysogenic conversion
-
Brüssow H, Canchaya C, Hardt WD. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68:560-602
-
(2004)
Microbiol. Mol. Biol. Rev.
, vol.68
, pp. 560-602
-
-
Brüssow, H.1
Canchaya, C.2
Hardt, W.D.3
-
14
-
-
0041819526
-
Threedimensional structure of bacteriophage T4 baseplate
-
Kostyuchenko VA, Leiman PG, Chipman PR, Kanamaru S, van Raaij MJ, et al. 2003. Threedimensional structure of bacteriophage T4 baseplate. Nat. Struct. Biol. 10:688-93
-
(2003)
Nat. Struct. Biol.
, vol.10
, pp. 688-693
-
-
Kostyuchenko, V.A.1
Leiman, P.G.2
Chipman, P.R.3
Kanamaru, S.4
Van Raaij, M.J.5
-
15
-
-
0023050268
-
Evidence that TraT interacts with OmpA of Escherichia coli
-
Riede I, Eschbach ML. 1986. Evidence that TraT interacts with OmpA of Escherichia coli. FEBS Lett. 205:241-45
-
(1986)
FEBS Lett.
, vol.205
, pp. 241-245
-
-
Riede, I.1
Eschbach, M.L.2
-
16
-
-
0017751759
-
Cell-cell interactions in conjugating Escherichia coli: Role of traT protein in surface exclusion
-
Achtman M, Kennedy N, Skurray R. 1977. Cell-cell interactions in conjugating Escherichia coli: role of traT protein in surface exclusion. Proc. Natl. Acad. Sci. USA 74:5104-8
-
(1977)
Proc. Natl. Acad. Sci. USA
, vol.74
, pp. 5104-5108
-
-
Achtman, M.1
Kennedy, N.2
Skurray, R.3
-
17
-
-
0033052932
-
Structural and functional roles of the surface-exposed loops of theβ-barrelmembrane protein OmpA from Escherichia coli
-
Koebnik R. 1999. Structural and functional roles of the surface-exposed loops of theβ-barrelmembrane protein OmpA from Escherichia coli. J. Bacteriol. 181:3688-94
-
(1999)
J. Bacteriol.
, vol.181
, pp. 3688-3694
-
-
Koebnik, R.1
-
18
-
-
0029101472
-
Analysis of a second bacteriophage hyaluronidase gene from Streptococcus pyogenes: Evidence for a third hyaluronidase involved in extracellular enzymatic activity
-
HynesWL, Hancock L, Ferretti JJ. 1995. Analysis of a second bacteriophage hyaluronidase gene from Streptococcus pyogenes: evidence for a third hyaluronidase involved in extracellular enzymatic activity. Infect. Immun. 63:3015-20
-
(1995)
Infect. Immun.
, vol.63
, pp. 3015-3020
-
-
Hynes, W.L.1
Hancock, L.2
Ferretti, J.J.3
-
19
-
-
0035377204
-
Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms
-
Hanlon GW, Denyer SP, Olliff CJ, Ibrahim LJ. 2001. Reduction in exopolysaccharide viscosity as an aid to bacteriophage penetration through Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 67:2746-53
-
(2001)
Appl. Environ. Microbiol.
, vol.67
, pp. 2746-2753
-
-
Hanlon, G.W.1
Denyer, S.P.2
Olliff, C.J.3
Ibrahim, L.J.4
-
20
-
-
0037362917
-
Molecular organization of exopolysaccharide (EPS) encoding genes on the lactococcal bacteriophage adsorption blocking plasmid, pCI658
-
Forde A, Fitzgerald GF. 2003. Molecular organization of exopolysaccharide (EPS) encoding genes on the lactococcal bacteriophage adsorption blocking plasmid, pCI658. Plasmid 49:130-42
-
(2003)
Plasmid
, vol.49
, pp. 130-142
-
-
Forde, A.1
Fitzgerald, G.F.2
-
21
-
-
23644448769
-
The ironsiderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: Role of the microcin Val11-Pro16 β-hairpin region in the recognition mechanism
-
Destoumieux-Garzon D, Duquesne S, Peduzzi J, Goulard C, Desmadril M, et al. 2005. The ironsiderophore transporter FhuA is the receptor for the antimicrobial peptide microcin J25: role of the microcin Val11-Pro16 β-hairpin region in the recognition mechanism. Biochem. J. 389:869-76
-
(2005)
Biochem. J.
, vol.389
, pp. 869-876
-
-
Destoumieux-Garzon, D.1
Duquesne, S.2
Peduzzi, J.3
Goulard, C.4
Desmadril, M.5
-
22
-
-
84863393863
-
Repeatability and contingency in the evolution of a key innovation in phage λ
-
Meyer JR, Dobias DT,Weitz JS,Barrick JE,Quick RT,LenskiRE. 2012. Repeatability and contingency in the evolution of a key innovation in phage λ. Science 335:428-32
-
(2012)
Science
, vol.335
, pp. 428-432
-
-
Meyer, J.R.1
Dobias, D.T.2
Weitz, J.S.3
Barrick, J.E.4
Quick, R.T.5
Lenski, R.E.6
-
23
-
-
0025285857
-
Biochemistry of endotoxins
-
Raetz CRH. 1990. Biochemistry of endotoxins. Annu. Rev. Biochem. 59:129-70
-
(1990)
Annu. Rev. Biochem.
, vol.59
, pp. 129-170
-
-
Raetz, C.R.H.1
-
25
-
-
84873097195
-
The bacteriophage T7 virion undergoes extensive structural remodeling during infection
-
Hu B, Margolin W, Molineux IJ, Liu J. 2013. The bacteriophage T7 virion undergoes extensive structural remodeling during infection. Science 339:576-79
-
(2013)
Science
, vol.339
, pp. 576-579
-
-
Hu, B.1
Margolin, W.2
Molineux, I.J.3
Liu, J.4
-
27
-
-
0036645702
-
The hyaluronan lyase of Streptococcus pyogenes bacteriophage H4489A
-
Baker JR, Dong S, Pritchard DG. 2002. The hyaluronan lyase of Streptococcus pyogenes bacteriophage H4489A. Biochem. J. 365:317-22
-
(2002)
Biochem. J.
, vol.365
, pp. 317-322
-
-
Baker, J.R.1
Dong, S.2
Pritchard, D.G.3
-
28
-
-
0015858563
-
Abacteriophageinduced depolymerase active on Klebsiella K11 capsular polysaccharide
-
BesslerW,Freund-Mölbert E, Knüfermann H, Rudolph C, Thurow H, Stirm S. 1973.Abacteriophageinduced depolymerase active on Klebsiella K11 capsular polysaccharide. Virology 56:134-51
-
(1973)
Virology
, vol.56
, pp. 134-151
-
-
Bessler, W.1
Freund-Mölbert, E.2
Knüfermann, H.3
Rudolph, C.4
Thurow, H.5
Stirm, S.6
-
29
-
-
74049108861
-
Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa
-
Glonti T, Chanishvili N, Taylor PW. 2010. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J. Appl. Microbiol. 108:695-702
-
(2010)
J. Appl. Microbiol.
, vol.108
, pp. 695-702
-
-
Glonti, T.1
Chanishvili, N.2
Taylor, P.W.3
-
30
-
-
34548608256
-
Hypervariation and phase variation in the bacteriophage "resistome"
-
Hoskisson PA, SmithMC. 2007. Hypervariation and phase variation in the bacteriophage "resistome." Curr. Opin. Microbiol. 10:396-400
-
(2007)
Curr. Opin. Microbiol.
, vol.10
, pp. 396-400
-
-
Hoskisson, P.A.1
Smith, M.C.2
-
31
-
-
53849146767
-
Bistability, epigenetics, and bet-hedging in bacteria
-
Veening JW, SmitsWK, Kuipers OP. 2008. Bistability, epigenetics, and bet-hedging in bacteria. Annu. Rev. Microbiol. 62:193-210
-
(2008)
Annu. Rev. Microbiol.
, vol.62
, pp. 193-210
-
-
Veening, J.W.1
Smits, W.K.2
Kuipers, O.P.3
-
32
-
-
84863647217
-
The Bordetella pertussis model of exquisite gene control by the global transcription factor BvgA
-
Decker KB, James TD, Stibitz S, Hinton DM. 2012. The Bordetella pertussis model of exquisite gene control by the global transcription factor BvgA. Microbiology 158:1665-76
-
(2012)
Microbiology
, vol.158
, pp. 1665-1676
-
-
Decker, K.B.1
James, T.D.2
Stibitz, S.3
Hinton, D.M.4
-
33
-
-
0024539059
-
Phase variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system
-
Stibitz S, AaronsonW, Monack D, Falkow S. 1989. Phase variation in Bordetella pertussis by frameshift mutation in a gene for a novel two-component system. Nature 338:266-69
-
(1989)
Nature
, vol.338
, pp. 266-269
-
-
Stibitz, S.1
Aaronson, W.2
Monack, D.3
Falkow, S.4
-
34
-
-
0037085991
-
Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage
-
Liu M, Deora R, Doulatov SR, Gingery M, Eiserling FA, et al. 2002. Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science 295:2091-94
-
(2002)
Science
, vol.295
, pp. 2091-2094
-
-
Liu, M.1
Deora, R.2
Doulatov, S.R.3
Gingery, M.4
Eiserling, F.A.5
-
36
-
-
4644280174
-
Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements
-
Doulatov S, Hodes A, Dai L, Mandhana N, Liu M, et al. 2004. Tropism switching in Bordetella bacteriophage defines a family of diversity-generating retroelements. Nature 431:476-81
-
(2004)
Nature
, vol.431
, pp. 476-481
-
-
Doulatov, S.1
Hodes, A.2
Dai, L.3
Mandhana, N.4
Liu, M.5
-
37
-
-
84877846517
-
Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement
-
Arambula D, Wong W, Medhekar BA, Guo H, Gingery M, et al. 2013. Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement. Proc. Natl. Acad. Sci. USA 110:8212-17
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 8212-8217
-
-
Arambula, D.1
Wong, W.2
Medhekar, B.A.3
Guo, H.4
Gingery, M.5
-
38
-
-
84866921116
-
Phase variableOantigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1
-
Seed KD, Faruque SM,Mekalanos JJ, Calderwood SB,Qadri F, Camilli A. 2012. Phase variableOantigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog. 8:e1002917
-
(2012)
PLoS Pathog.
, vol.8
, pp. e1002917
-
-
Seed, K.D.1
Faruque, S.M.2
Mekalanos, J.J.3
Calderwood, S.B.4
Qadri, F.5
Camilli, A.6
-
39
-
-
84867461986
-
Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium
-
Kim M, Ryu S. 2012. Spontaneous and transient defence against bacteriophage by phase-variable glucosylation of O-antigen in Salmonella enterica serovar Typhimurium. Mol. Microbiol. 86:411-25
-
(2012)
Mol. Microbiol.
, vol.86
, pp. 411-425
-
-
Kim, M.1
Ryu, S.2
-
40
-
-
0037203891
-
Structure of the cell-puncturing device of bacteriophage T4
-
Kanamaru S, Leiman PG, Kostyuchenko VA, Chipman PR, Mesyanzhinov VV, et al. 2002. Structure of the cell-puncturing device of bacteriophage T4. Nature 415:553-57
-
(2002)
Nature
, vol.415
, pp. 553-557
-
-
Kanamaru, S.1
Leiman, P.G.2
Kostyuchenko, V.A.3
Chipman, P.R.4
Mesyanzhinov, V.V.5
-
41
-
-
0024769281
-
Functional relationships and structural determinants of two bacteriophage T4 lysozymes: A soluble (gene e) and a baseplate-associated (gene 5) protein
-
Mosig G, Lin GW, Franklin J, Fan WH. 1989. Functional relationships and structural determinants of two bacteriophage T4 lysozymes: a soluble (gene e) and a baseplate-associated (gene 5) protein. New Biol. 1:171-79
-
(1989)
New Biol.
, vol.1
, pp. 171-179
-
-
Mosig, G.1
Lin, G.W.2
Franklin, J.3
Fan, W.H.4
-
42
-
-
1442300823
-
Peptidoglycan hydrolytic activities associated with bacteriophage virions
-
Moak M, Molineux IJ. 2004. Peptidoglycan hydrolytic activities associated with bacteriophage virions. Mol. Microbiol. 51:1169-83
-
(2004)
Mol. Microbiol.
, vol.51
, pp. 1169-1183
-
-
Moak, M.1
Molineux, I.J.2
-
43
-
-
0028293888
-
Superinfection exclusion by T-even-type coliphages
-
Lu MJ,Henning U. 1994. Superinfection exclusion by T-even-type coliphages. Trends Microbiol. 2:137-39
-
(1994)
Trends Microbiol.
, vol.2
, pp. 137-139
-
-
Lu, M.J.1
Henning, U.2
-
44
-
-
54949083051
-
Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes
-
Mahony J, McGrath S, Fitzgerald GF, van Sinderen D. 2008. Identification and characterization of lactococcal-prophage-carried superinfection exclusion genes. Appl. Environ. Microbiol. 74:6206-15
-
(2008)
Appl. Environ. Microbiol.
, vol.74
, pp. 6206-6215
-
-
Mahony, J.1
McGrath, S.2
Fitzgerald, G.F.3
Van Sinderen, D.4
-
45
-
-
33744910623
-
The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis
-
Sun X, Gohler A, Heller KJ, Neve H. 2006. The ltp gene of temperate Streptococcus thermophilus phage TP-J34 confers superinfection exclusion to Streptococcus thermophilus and Lactococcus lactis. Virology 350:146-57
-
(2006)
Virology
, vol.350
, pp. 146-157
-
-
Sun, X.1
Gohler, A.2
Heller, K.J.3
Neve, H.4
-
46
-
-
84879507534
-
X-ray structure of a superinfection exclusion lipoprotein from phage TP-J34 and identification of the tape measure protein as its target
-
Bebeacua C, Lorenzo Fajardo JC, Blangy S, Spinelli S, Bollmann S, et al. 2013. X-ray structure of a superinfection exclusion lipoprotein from phage TP-J34 and identification of the tape measure protein as its target. Mol. Microbiol. 89:152-65
-
(2013)
Mol. Microbiol.
, vol.89
, pp. 152-165
-
-
Bebeacua, C.1
Lorenzo Fajardo, J.C.2
Blangy, S.3
Spinelli, S.4
Bollmann, S.5
-
47
-
-
22544464152
-
The biology of restriction and anti-restriction
-
Tock MR, Dryden DT. 2005. The biology of restriction and anti-restriction. Curr. Opin. Microbiol. 8:466-72
-
(2005)
Curr. Opin. Microbiol.
, vol.8
, pp. 466-472
-
-
Tock, M.R.1
Dryden, D.T.2
-
48
-
-
0033625345
-
Novel Type i restriction specificities through domain shuffling of HsdS subunits in Lactococcus lactis
-
O'Sullivan D, Twomey DP, Coffey A, Hill C, Fitzgerald GF, Ross RP. 2000. Novel Type I restriction specificities through domain shuffling of HsdS subunits in Lactococcus lactis. Mol. Microbiol. 36:866-75
-
(2000)
Mol. Microbiol.
, vol.36
, pp. 866-875
-
-
O'sullivan, D.1
Twomey, D.P.2
Coffey, A.3
Hill, C.4
Fitzgerald, G.F.5
Ross, R.P.6
-
50
-
-
0036161805
-
Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA
-
Walkinshaw MD, Taylor P, Sturrock SS, Atanasiu C, Berge T, et al. 2002. Structure of Ocr from bacteriophage T7, a protein that mimics B-form DNA. Mol. Cell 9:187-94
-
(2002)
Mol. Cell
, vol.9
, pp. 187-194
-
-
Walkinshaw, M.D.1
Taylor, P.2
Sturrock, S.S.3
Atanasiu, C.4
Berge, T.5
-
51
-
-
0022345598
-
Inhibition of the Type i restrictionmodification enzymes EcoB and EcoKby the gene 0. 3 protein of bacteriophageT7
-
Bandyopadhyay PK, Studier FW, Hamilton DL, Yuan R. 1985. Inhibition of the Type I restrictionmodification enzymes EcoB and EcoKby the gene 0.3 protein of bacteriophageT7. J. Mol. Biol. 182:567-78
-
(1985)
J. Mol. Biol.
, vol.182
, pp. 567-578
-
-
Bandyopadhyay, P.K.1
Studier, F.W.2
Hamilton, D.L.3
Yuan, R.4
-
52
-
-
0034640130
-
Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme
-
Stewart FJ, Panne D, Bickle TA, Raleigh EA. 2000. Methyl-specific DNA binding by McrBC, a modification-dependent restriction enzyme. J. Mol. Biol. 298:611-22
-
(2000)
J. Mol. Biol.
, vol.298
, pp. 611-622
-
-
Stewart, F.J.1
Panne, D.2
Bickle, T.A.3
Raleigh, E.A.4
-
53
-
-
0026634757
-
McrBC: A multisubunit GTP-dependent restriction endonuclease
-
Sutherland E, Coe L, Raleigh EA. 1992. McrBC: a multisubunit GTP-dependent restriction endonuclease. J. Mol. Biol. 225:327-48
-
(1992)
J. Mol. Biol.
, vol.225
, pp. 327-348
-
-
Sutherland, E.1
Coe, L.2
Raleigh, E.A.3
-
54
-
-
0028040618
-
Molecular cloning and expression of a novel hydroxymethylcytosine-specific restriction enzyme (PvuRts1I) modulated by glucosylation of DNA
-
Janosi L, Yonemitsu H, Hong H, Kaji A. 1994. Molecular cloning and expression of a novel hydroxymethylcytosine-specific restriction enzyme (PvuRts1I) modulated by glucosylation of DNA. J. Mol. Biol. 242:45-61
-
(1994)
J. Mol. Biol.
, vol.242
, pp. 45-61
-
-
Janosi, L.1
Yonemitsu, H.2
Hong, H.3
Kaji, A.4
-
55
-
-
0020389798
-
Genetic characteristics of a new phage resistance trait in Streptomyces coelicolor A3(2)
-
in Russian
-
Chinenova TA, Mkrtumian NM, Lomovskaia ND. 1982. Genetic characteristics of a new phage resistance trait in Streptomyces coelicolor A3(2). Genetika 18:1945-52 (in Russian)
-
(1982)
Genetika
, vol.18
, pp. 1945-1952
-
-
Chinenova, T.A.1
Mkrtumian, N.M.2
Lomovskaia, N.D.3
-
56
-
-
0038105036
-
Phase variation in the phage growth limitation system of Streptomyces coelicolor A3(2)
-
Sumby P, Smith MC. 2003. Phase variation in the phage growth limitation system of Streptomyces coelicolor A3(2). J. Bacteriol. 185:4558-63
-
(2003)
J. Bacteriol.
, vol.185
, pp. 4558-4563
-
-
Sumby, P.1
Smith, M.C.2
-
57
-
-
0036225822
-
Genetics of the phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2)
-
Sumby P, Smith MC. 2002. Genetics of the phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2). Mol. Microbiol. 44:489-500
-
(2002)
Mol. Microbiol.
, vol.44
, pp. 489-500
-
-
Sumby, P.1
Smith, M.C.2
-
58
-
-
0027473182
-
Genetic analysis of thePdblC31-specific phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2)
-
Laity C, Chater KF, Lewis CG, Buttner MJ. 1993. Genetic analysis of thePdblC31-specific phage growth limitation (Pgl) system of Streptomyces coelicolor A3(2). Mol. Microbiol. 7:329-36
-
(1993)
Mol. Microbiol.
, vol.7
, pp. 329-336
-
-
Laity, C.1
Chater, K.F.2
Lewis, C.G.3
Buttner, M.J.4
-
59
-
-
70849123800
-
Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements
-
Makarova KS,Wolf YI, van der Oost J, Koonin EV. 2009. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol. Direct. 4:29
-
(2009)
Biol. Direct.
, vol.4
, pp. 29
-
-
Makarova, K.S.1
Wolf, Y.I.2
Van Der Oost, J.3
Koonin, E.V.4
-
60
-
-
84896316351
-
DNA-guided DNA interference by a prokaryotic Argonaute
-
Swarts DC, Jore MM, Westra ER, Zhu YF, Janssen JH, et al. 2014. DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507:258-61
-
(2014)
Nature
, vol.507
, pp. 258-261
-
-
Swarts, D.C.1
Jore, M.M.2
Westra, E.R.3
Zhu, Y.F.4
Janssen, J.H.5
-
61
-
-
84892612595
-
Structure-based cleavagemechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage
-
Sheng G, Zhao H, Wang J, Rao Y,Tian W, et al. 2014. Structure-based cleavagemechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc. Natl. Acad. Sci. USA 111:652-57
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. 652-657
-
-
Sheng, G.1
Zhao, H.2
Wang, J.3
Rao, Y.4
Tian, W.5
-
62
-
-
84883752794
-
Bacterial Argonaute samples the transcriptome to identify foreign DNA
-
Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin AA. 2013. Bacterial Argonaute samples the transcriptome to identify foreign DNA. Mol. Cell 51:594-605
-
(2013)
Mol. Cell
, vol.51
, pp. 594-605
-
-
Olovnikov, I.1
Chan, K.2
Sachidanandam, R.3
Newman, D.K.4
Aravin, A.A.5
-
63
-
-
84868118560
-
Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems
-
Richter C, Chang JT, Fineran PC. 2012. Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated (Cas) systems. Viruses 4:2291-311
-
(2012)
Viruses
, vol.4
, pp. 2291-2311
-
-
Richter, C.1
Chang, J.T.2
Fineran, P.C.3
-
64
-
-
84878936806
-
CRISPR-mediated adaptive immune systems in bacteria and archaea
-
Sorek R, Lawrence CM, Wiedenheft B. 2013. CRISPR-mediated adaptive immune systems in bacteria and archaea. Annu. Rev. Biochem. 82:237-66
-
(2013)
Annu. Rev. Biochem.
, vol.82
, pp. 237-266
-
-
Sorek, R.1
Lawrence, C.M.2
Wiedenheft, B.3
-
66
-
-
84870180587
-
The CRISPRs, they are a-changin': How prokaryotes generate adaptive immunity
-
Westra ER, Swarts DC, Staals RHJ, Jore MM, Brouns SJJ, van der Oost J. 2012. The CRISPRs, they are a-changin': how prokaryotes generate adaptive immunity. Annu. Rev. Genet. 46:311-39
-
(2012)
Annu. Rev. Genet.
, vol.46
, pp. 311-339
-
-
Westra, E.R.1
Swarts, D.C.2
Staals, R.H.J.3
Jore, M.M.4
Brouns, S.J.J.5
Van Der Oost, J.6
-
67
-
-
79956157571
-
Evolution and classification of the CRISPR-Cas systems
-
Makarova KS, Haft DH, Barrangou R, Brouns SJJ, Charpentier E, et al. 2011. Evolution and classification of the CRISPR-Cas systems. Nat. Rev. Microbiol. 9:467-77
-
(2011)
Nat. Rev. Microbiol.
, vol.9
, pp. 467-477
-
-
Makarova, K.S.1
Haft, D.H.2
Barrangou, R.3
Brouns, S.J.J.4
Charpentier, E.5
-
68
-
-
84864864464
-
Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system
-
Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E. 2012. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 3:945
-
(2012)
Nat. Commun.
, vol.3
, pp. 945
-
-
Datsenko, K.A.1
Pougach, K.2
Tikhonov, A.3
Wanner, B.L.4
Severinov, K.5
Semenova, E.6
-
69
-
-
84861639567
-
Proteins andDNAelements essential for the CRISPR adaptation process in Escherichia coli
-
Yosef I,Goren MG,QimronU. 2012. Proteins andDNAelements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res. 40:5569-76
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 5569-5576
-
-
Yosef, I.1
Goren, M.G.2
Qimron, U.3
-
70
-
-
70449753811
-
RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
-
Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, et al. 2009. RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945-56
-
(2009)
Cell
, vol.139
, pp. 945-956
-
-
Hale, C.R.1
Zhao, P.2
Olson, S.3
Duff, M.O.4
Graveley, B.R.5
-
71
-
-
34047118522
-
CRISPR provides acquired resistance against viruses in prokaryotes
-
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709-12
-
(2007)
Science
, vol.315
, pp. 1709-1712
-
-
Barrangou, R.1
Fremaux, C.2
Deveau, H.3
Richards, M.4
Boyaval, P.5
-
72
-
-
84870718176
-
Memory of viral infections by CRISPR-Cas adaptive immune systems: Acquisition of new information
-
Fineran PC, Charpentier E. 2012. Memory of viral infections by CRISPR-Cas adaptive immune systems: acquisition of new information. Virology 434:202-9
-
(2012)
Virology
, vol.434
, pp. 202-209
-
-
Fineran, P.C.1
Charpentier, E.2
-
73
-
-
44449133775
-
Virus population dynamics and acquired virus resistance in natural microbial communities
-
Andersson AF, Banfield JF. 2008. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320:1047-50
-
(2008)
Science
, vol.320
, pp. 1047-1050
-
-
Andersson, A.F.1
Banfield, J.F.2
-
74
-
-
78651482834
-
Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time
-
Pride DT, Sun CL, Salzman J, Rao N, Loomer P, et al. 2011. Analysis of streptococcal CRISPRs from human saliva reveals substantial sequence diversity within and between subjects over time. Genome Res. 21:126-36
-
(2011)
Genome Res.
, vol.21
, pp. 126-136
-
-
Pride, D.T.1
Sun, C.L.2
Salzman, J.3
Rao, N.4
Loomer, P.5
-
75
-
-
84879032247
-
CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli
-
Diez-Villasenor C, Guzman NM, Almendros C, Garcia-Martinez J, Mojica FJ. 2013. CRISPR-spacer integration reporter plasmids reveal distinct genuine acquisition specificities among CRISPR-Cas I-E variants of Escherichia coli. RNA Biol. 10:792-802
-
(2013)
RNA Biol.
, vol.10
, pp. 792-802
-
-
Diez-Villasenor, C.1
Guzman, N.M.2
Almendros, C.3
Garcia-Martinez, J.4
Mojica, F.J.5
-
76
-
-
38949123143
-
Phage response to CRISPRencoded resistance in Streptococcus thermophilus
-
Deveau H, Barrangou R, Garneau JE, Labonte J, Fremaux C, et al. 2008. Phage response to CRISPRencoded resistance in Streptococcus thermophilus. J. Bacteriol. 190:1390-400
-
(2008)
J. Bacteriol.
, vol.190
, pp. 1390-1400
-
-
Deveau, H.1
Barrangou, R.2
Garneau, J.E.3
Labonte, J.4
Fremaux, C.5
-
79
-
-
84883338164
-
DNA motifs determining the efficiency of adaptation into the Escherichia coli CRISPR array
-
Yosef I, Shitrit D, Goren MG, Burstein D, Pupko T, Qimron U. 2013. DNA motifs determining the efficiency of adaptation into the Escherichia coli CRISPR array. Proc. Natl. Acad. Sci. USA 110:14396-401
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 14396-14401
-
-
Yosef, I.1
Shitrit, D.2
Goren, M.G.3
Burstein, D.4
Pupko, T.5
Qimron, U.6
-
80
-
-
84876845227
-
Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands
-
Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T, et al. 2013. Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet. 9:e1003454
-
(2013)
PLoS Genet.
, vol.9
, pp. e1003454
-
-
Vercoe, R.B.1
Chang, J.T.2
Dy, R.L.3
Taylor, C.4
Gristwood, T.5
-
81
-
-
49649114086
-
Small CRISPR RNAs guide antiviral defense in prokaryotes
-
Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, et al. 2008. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960-64
-
(2008)
Science
, vol.321
, pp. 960-964
-
-
Brouns, S.J.J.1
Jore, M.M.2
Lundgren, M.3
Westra, E.R.4
Slijkhuis, R.J.H.5
-
82
-
-
58049191229
-
Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes
-
Carte J,Wang R, Li H, Terns RM, Terns MP. 2008. Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev. 22:3489-96
-
(2008)
Genes Dev.
, vol.22
, pp. 3489-3496
-
-
Carte, J.1
Wang, R.2
Li, H.3
Terns, R.M.4
Terns, M.P.5
-
83
-
-
77956498326
-
Sequence-and structure-specific RNA processing by a CRISPR endonuclease
-
Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA. 2010. Sequence-and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355-58
-
(2010)
Science
, vol.329
, pp. 1355-1358
-
-
Haurwitz, R.E.1
Jinek, M.2
Wiedenheft, B.3
Zhou, K.4
Doudna, J.A.5
-
84
-
-
79956084965
-
Csy4 is responsible for CRISPR RNA processing in Pectobacterium atrosepticum
-
Przybilski R, Richter C, Gristwood T, Clulow JS, Vercoe RB, Fineran PC. 2011. Csy4 is responsible for CRISPR RNA processing in Pectobacterium atrosepticum. RNA Biol. 8:517-28
-
(2011)
RNA Biol.
, vol.8
, pp. 517-528
-
-
Przybilski, R.1
Richter, C.2
Gristwood, T.3
Clulow, J.S.4
Vercoe, R.B.5
Fineran, P.C.6
-
85
-
-
84879014174
-
CRISPRTarget: Bioinformatic prediction and analysis of crRNA targets
-
Biswas A, Gagnon JN, Brouns SJJ, Fineran PC, Brown CM. 2013. CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol. 10:817-27
-
(2013)
RNA Biol.
, vol.10
, pp. 817-827
-
-
Biswas, A.1
Gagnon, J.N.2
Brouns, S.J.J.3
Fineran, P.C.4
Brown, C.M.5
-
86
-
-
75749118174
-
Self versus non-self discrimination duringCRISPR RNA-directed immunity
-
Marraffini LA, Sontheimer EJ. 2010. Self versus non-self discrimination duringCRISPR RNA-directed immunity. Nature 463:568-71
-
(2010)
Nature
, vol.463
, pp. 568-571
-
-
Marraffini, L.A.1
Sontheimer, E.J.2
-
87
-
-
84884687531
-
Type I-E CRISPR-Cas systems discriminate target from non-targetDNAthrough base pairing-independent PAMrecognition
-
Westra ER, Semenova E,DatsenkoKA, Jackson RN, Wiedenheft B, et al. 2013. Type I-E CRISPR-Cas systems discriminate target from non-targetDNAthrough base pairing-independent PAMrecognition. PLoS Genet. 9:e1003742
-
(2013)
PLoS Genet.
, vol.9
, pp. e1003742
-
-
Westra, E.R.1
Semenova, E.2
Datsenko, K.A.3
Jackson, R.N.4
Wiedenheft, B.5
-
88
-
-
80053169737
-
Structures of the RNA-guided surveillance complex from a bacterial immune system
-
Wiedenheft B, Lander GC, Zhou K, Jore MM, Brouns SJJ, et al. 2011. Structures of the RNA-guided surveillance complex from a bacterial immune system. Nature 477:486-89
-
(2011)
Nature
, vol.477
, pp. 486-489
-
-
Wiedenheft, B.1
Lander, G.C.2
Zhou, K.3
Jore, M.M.4
Brouns, S.J.J.5
-
89
-
-
79960029056
-
RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions
-
Wiedenheft B, van Duijn E, Bultema JB, Waghmare SP, Zhou K, et al. 2011. RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc. Natl. Acad. Sci. USA 108:10092-97
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 10092-10097
-
-
Wiedenheft, B.1
Van Duijn, E.2
Bultema, J.B.3
Waghmare, S.P.4
Zhou, K.5
-
90
-
-
84865704094
-
Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/DvulgCRISPR-Cas system
-
Nam KH, Haitjema C, Liu X, Ding F,Wang H, et al. 2012. Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/DvulgCRISPR-Cas system. Structure 20:1574-84
-
(2012)
Structure
, vol.20
, pp. 1574-1584
-
-
Nam, K.H.1
Haitjema, C.2
Liu, X.3
Ding, F.4
Wang, H.5
-
91
-
-
84870688524
-
In vivo protein interactions and complex formation in the Pectobacterium atrosepticum subtype I-F CRISPR/Cas system
-
Richter C, Gristwood T, Clulow JS, Fineran PC. 2012. In vivo protein interactions and complex formation in the Pectobacterium atrosepticum subtype I-F CRISPR/Cas system. PLoS ONE 7:e49549
-
(2012)
PLoS ONE
, vol.7
, pp. e49549
-
-
Richter, C.1
Gristwood, T.2
Clulow, J.S.3
Fineran, P.C.4
-
92
-
-
84885355637
-
Structure of an RNA silencing complex of the CRISPR-Cas immune system
-
Spilman M, Cocozaki A, Hale C, Shao Y, Ramia N, et al. 2013. Structure of an RNA silencing complex of the CRISPR-Cas immune system. Mol. Cell 52:146-52
-
(2013)
Mol. Cell
, vol.52
, pp. 146-152
-
-
Spilman, M.1
Cocozaki, A.2
Hale, C.3
Shao, Y.4
Ramia, N.5
-
93
-
-
84885334898
-
Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus
-
Staals RHJ, Agari Y, Maki-Yonekura S, Zhu Y, Taylor DW, et al. 2013. Structure and activity of the RNA-targeting Type III-B CRISPR-Cas complex of Thermus thermophilus. Mol. Cell 52:135-45
-
(2013)
Mol. Cell
, vol.52
, pp. 135-145
-
-
Staals, R.H.J.1
Agari, Y.2
Maki-Yonekura, S.3
Zhu, Y.4
Taylor, D.W.5
-
94
-
-
84885336337
-
Structure of the CRISPR interference complex CSM reveals key similarities with cascade
-
Rouillon C, Zhou M, Zhang J, Politis A, Beilsten-Edmands V, et al. 2013. Structure of the CRISPR interference complex CSM reveals key similarities with cascade. Mol. Cell 52:124-34
-
(2013)
Mol. Cell
, vol.52
, pp. 124-134
-
-
Rouillon, C.1
Zhou, M.2
Zhang, J.3
Politis, A.4
Beilsten-Edmands, V.5
-
95
-
-
84855475577
-
Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site
-
Hatoum-Aslan A, Maniv I, Marraffini LA. 2011. Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proc. Natl. Acad. Sci. USA 108:21218-22
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 21218-21222
-
-
Hatoum-Aslan, A.1
Maniv, I.2
Marraffini, L.A.3
-
96
-
-
79953250082
-
CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III
-
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602-7
-
(2011)
Nature
, vol.471
, pp. 602-607
-
-
Deltcheva, E.1
Chylinski, K.2
Sharma, C.M.3
Gonzales, K.4
Chao, Y.5
-
97
-
-
78149261827
-
The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA
-
Garneau JE, DupuisME, VillionM, Romero DA, Barrangou R, et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67-71
-
(2010)
Nature
, vol.468
, pp. 67-71
-
-
Garneau, J.E.1
Dupuis, M.E.2
Villion, M.3
Romero, D.A.4
Barrangou, R.5
-
98
-
-
84865070369
-
A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
-
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816-21
-
(2012)
Science
, vol.337
, pp. 816-821
-
-
Jinek, M.1
Chylinski, K.2
Fonfara, I.3
Hauer, M.4
Doudna, J.A.5
Charpentier, E.6
-
99
-
-
79955574254
-
Structural basis for CRISPR RNA-guided DNA recognition by Cascade
-
Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, et al. 2011. Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat. Struct. Mol. Biol. 18:529-36
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 529-536
-
-
Jore, M.M.1
Lundgren, M.2
Van Duijn, E.3
Bultema, J.B.4
Westra, E.R.5
-
100
-
-
84879584456
-
CRISPR interference: A structural perspective
-
Reeks J, Naismith JH, White MF. 2013. CRISPR interference: a structural perspective. Biochem. J. 453:155-66
-
(2013)
Biochem. J.
, vol.453
, pp. 155-166
-
-
Reeks, J.1
Naismith, J.H.2
White, M.F.3
-
101
-
-
84861990812
-
Mechanism of foreign DNA selection in a bacterial adaptive immune system
-
Sashital DG, Wiedenheft B, Doudna JA. 2012. Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol. Cell 46:606-15
-
(2012)
Mol. Cell
, vol.46
, pp. 606-615
-
-
Sashital, D.G.1
Wiedenheft, B.2
Doudna, J.A.3
-
102
-
-
79959963663
-
Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence
-
Semenova E, Jore MM, Datsenko KA, Semenova A,Westra ER, et al. 2011. Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc. Natl. Acad. Sci. USA 108:10098-103
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 10098-10103
-
-
Semenova, E.1
Jore, M.M.2
Datsenko, K.A.3
Semenova, A.4
Westra, E.R.5
-
103
-
-
84861996069
-
CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
-
Westra ER, van Erp PBG, Künne T, Wong SP, Staals RHJ, et al. 2012. CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol. Cell 46:595-605
-
(2012)
Mol. Cell
, vol.46
, pp. 595-605
-
-
Westra, E.R.1
Van Erp, P.B.G.2
Künne, T.3
Wong, S.P.4
Staals, R.H.J.5
-
104
-
-
84895823059
-
Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process
-
Li M, Wang R, Zhao D, Xiang H. 2014. Adaptation of the Haloarcula hispanica CRISPR-Cas system to a purified virus strictly requires a priming process. Nucleic Acids Res. 42:2483-92
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 2483-2492
-
-
Li, M.1
Wang, R.2
Zhao, D.3
Xiang, H.4
-
105
-
-
84905594146
-
Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer
-
In press
-
Richter C, Dy RL, McKenzie RE, Watson BNJ, Taylor C, et al. 2014. Priming in the Type I-F CRISPR-Cas system triggers strand-independent spacer acquisition, bi-directionally from the primed protospacer. Nucleic Acids Res. In press. doi: 10.1093/nar/gku527
-
(2014)
Nucleic Acids Res.
-
-
Richter, C.1
Dy, R.L.2
McKenzie, R.E.3
Watson, B.N.J.4
Taylor, C.5
-
106
-
-
84899087750
-
Degenerate target sites mediate rapid primed CRISPR adaptation
-
Fineran PC, Gerritzen MJH, Suárez-Diez M, Künne T, Boekhorst J, et al. 2014. Degenerate target sites mediate rapid primed CRISPR adaptation. Proc. Natl. Acad. Sci. USA 111:E1629-38
-
(2014)
Proc. Natl. Acad. Sci. USA
, vol.111
, pp. E1629-E1638
-
-
Fineran, P.C.1
Gerritzen, M.J.H.2
Suárez-Diez, M.3
Künne, T.4
Boekhorst, J.5
-
107
-
-
84872607723
-
Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system
-
Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR. 2013. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429-32
-
(2013)
Nature
, vol.493
, pp. 429-432
-
-
Bondy-Denomy, J.1
Pawluk, A.2
Maxwell, K.L.3
Davidson, A.R.4
-
108
-
-
79956214651
-
Phage encoded H-NS: A potential Achilles heel in the bacterial defence system
-
Skennerton CT, Angly FE, Breitbart M, Bragg L, He S, et al. 2011. Phage encoded H-NS: a potential Achilles heel in the bacterial defence system. PLoS ONE 6:e20095
-
(2011)
PLoS ONE
, vol.6
, pp. e20095
-
-
Skennerton, C.T.1
Angly, F.E.2
Breitbart, M.3
Bragg, L.4
He, S.5
-
109
-
-
77949398275
-
Identification and characterization of E. Coli CRISPR-Cas promoters and their silencing by H-NS
-
PulU,Wurm R, Arslan Z, Geissen R,Hofmann N, Wagner R. 2010. Identification and characterization of E. coli CRISPR-Cas promoters and their silencing by H-NS. Mol. Microbiol. 75:1495-512
-
(2010)
Mol. Microbiol.
, vol.75
, pp. 1495-1512
-
-
Pul, U.1
Wurm, R.2
Arslan, Z.3
Geissen, R.4
Hofmann, N.5
Wagner, R.6
-
110
-
-
77956621546
-
H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO
-
Westra ER, Pul U, Heidrich N, Jore MM, Lundgren M, et al. 2010. H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol. Microbiol. 77:1380-93
-
(2010)
Mol. Microbiol.
, vol.77
, pp. 1380-1393
-
-
Westra, E.R.1
Pul, U.2
Heidrich, N.3
Jore, M.M.4
Lundgren, M.5
-
111
-
-
33745550745
-
The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome
-
Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, et al. 2006. The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat. Genet. 38:779-86
-
(2006)
Nat. Genet.
, vol.38
, pp. 779-786
-
-
Sebaihia, M.1
Wren, B.W.2
Mullany, P.3
Fairweather, N.F.4
Minton, N.5
-
112
-
-
84874388110
-
A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity
-
Seed KD, Lazinski DW, Calderwood SB, Camilli A. 2013. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494:489-91
-
(2013)
Nature
, vol.494
, pp. 489-491
-
-
Seed, K.D.1
Lazinski, D.W.2
Calderwood, S.B.3
Camilli, A.4
-
113
-
-
84859748733
-
Success of a suicidal defense strategy against infection in a structured habitat
-
Fukuyo M, Sasaki A, Kobayashi I. 2012. Success of a suicidal defense strategy against infection in a structured habitat. Sci. Rep. 2:238
-
(2012)
Sci. Rep.
, vol.2
, pp. 238
-
-
Fukuyo, M.1
Sasaki, A.2
Kobayashi, I.3
-
114
-
-
0024730583
-
The rex genes of bacteriophage λ can inhibit cell function without phage superinfection
-
Snyder L, McWilliams K. 1989. The rex genes of bacteriophage λ can inhibit cell function without phage superinfection. Gene 81:17-24
-
(1989)
Gene
, vol.81
, pp. 17-24
-
-
Snyder, L.1
McWilliams, K.2
-
115
-
-
0020440474
-
The rex region of bacteriophage λ: Two genes under threeway control
-
Landsmann J, Kroger M, Hobom G. 1982. The rex region of bacteriophage λ: two genes under threeway control. Gene 20:11-24
-
(1982)
Gene
, vol.20
, pp. 11-24
-
-
Landsmann, J.1
Kroger, M.2
Hobom, G.3
-
116
-
-
0023502391
-
Wild-type bacteriophage T4 is restricted by the λ rex genes
-
Shinedling S, Parma D, Gold L. 1987. Wild-type bacteriophage T4 is restricted by the λ rex genes. J. Virol. 61:3790-94
-
(1987)
J. Virol.
, vol.61
, pp. 3790-3794
-
-
Shinedling, S.1
Parma, D.2
Gold, L.3
-
117
-
-
0026566361
-
The rex system of bacteriophage λ: Tolerance and altruistic cell death
-
Parma DH, Snyder M, Sobolevski S, Nawroz M, Brody E, Gold L. 1992. The Rex system of bacteriophage λ: tolerance and altruistic cell death. Genes Dev. 6:497-510
-
(1992)
Genes Dev.
, vol.6
, pp. 497-510
-
-
Parma, D.H.1
Snyder, M.2
Sobolevski, S.3
Nawroz, M.4
Brody, E.5
Gold, L.6
-
118
-
-
80054838528
-
Activation of a prophage-encoded tyrosine kinase by a heterologous infecting phage results in a self-inflicted abortive infection
-
Friedman DI, Mozola CC, Beeri K, Ko CC, Reynolds JL. 2011. Activation of a prophage-encoded tyrosine kinase by a heterologous infecting phage results in a self-inflicted abortive infection. Mol. Microbiol. 82:567-77
-
(2011)
Mol. Microbiol.
, vol.82
, pp. 567-577
-
-
Friedman, D.I.1
Mozola, C.C.2
Beeri, K.3
Ko, C.C.4
Reynolds, J.L.5
-
119
-
-
4043174862
-
F exclusion of bacteriophage T7 occurs at the cell membrane
-
Cheng X,WangW, Molineux IJ. 2004. F exclusion of bacteriophage T7 occurs at the cell membrane. Virology 326:340-52
-
(2004)
Virology
, vol.326
, pp. 340-352
-
-
Cheng, X.1
Wang, W.2
Molineux, I.J.3
-
120
-
-
0026090245
-
Expression of gene 1. 2 and gene 10 of bacteriophage T7 is lethal to F plasmid-containing Escherichia coli
-
Schmitt CK, Molineux IJ. 1991. Expression of gene 1.2 and gene 10 of bacteriophage T7 is lethal to F plasmid-containing Escherichia coli. J. Bacteriol. 173:1536-43
-
(1991)
J. Bacteriol.
, vol.173
, pp. 1536-1543
-
-
Schmitt, C.K.1
Molineux, I.J.2
-
122
-
-
0026009547
-
Genes 1. 2 and 10 of bacteriophages T3 and T7 determine the permeability lesions observed in infected cells of Escherichia coli expressing the F plasmid gene pifA
-
Schmitt CK, Kemp P, Molineux IJ. 1991. Genes 1.2 and 10 of bacteriophages T3 and T7 determine the permeability lesions observed in infected cells of Escherichia coli expressing the F plasmid gene pifA. J. Bacteriol. 173:6507-14
-
(1991)
J. Bacteriol.
, vol.173
, pp. 6507-6514
-
-
Schmitt, C.K.1
Kemp, P.2
Molineux, I.J.3
-
123
-
-
0023906534
-
The lit gene product which blocks bacteriophage T4 late gene expression is a membrane protein encoded by a cryptic DNA element, e14
-
Kao C, Snyder L. 1988. The lit gene product which blocks bacteriophage T4 late gene expression is a membrane protein encoded by a cryptic DNA element, e14. J. Bacteriol. 170:2056-62
-
(1988)
J. Bacteriol.
, vol.170
, pp. 2056-2062
-
-
Kao, C.1
Snyder, L.2
-
124
-
-
0032539930
-
Specific peptide-activated proteolytic cleavage of Escherichia coli elongation factor Tu
-
Georgiou T, Yu YN, Ekunwe S, Buttner MJ, Zuurmond A, et al. 1998. Specific peptide-activated proteolytic cleavage of Escherichia coli elongation factor Tu. Proc. Natl. Acad. Sci. USA 95:2891-95
-
(1998)
Proc. Natl. Acad. Sci. USA
, vol.95
, pp. 2891-2895
-
-
Georgiou, T.1
Yu, Y.N.2
Ekunwe, S.3
Buttner, M.J.4
Zuurmond, A.5
-
125
-
-
0028120890
-
Translation elongation factor Tu cleaved by a phage-exclusion system
-
Yu YT, Snyder L. 1994. Translation elongation factor Tu cleaved by a phage-exclusion system. Proc. Natl. Acad. Sci. USA 91:802-6
-
(1994)
Proc. Natl. Acad. Sci. USA
, vol.91
, pp. 802-806
-
-
Yu, Y.T.1
Snyder, L.2
-
126
-
-
0034725704
-
Themajor head protein of bacteriophage T4 binds specifically to elongation factor Tu
-
BinghamR,Ekunwe SI, Falk S, SnyderL,Kleanthous C. 2000. Themajor head protein of bacteriophage T4 binds specifically to elongation factor Tu. J. Biol. Chem. 275:23219-26
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 23219-23226
-
-
Bingham, R.1
Ekunwe, S.I.2
Falk, S.3
Snyder, L.4
Kleanthous, C.5
-
127
-
-
0016378791
-
Genetics and physiology of bacteriophage T4 3'-phosphatase: Evidence for involvement of the enzyme in T4 DNA metabolism
-
Depew RE, Cozzarelli NR. 1974. Genetics and physiology of bacteriophage T4 3'-phosphatase: evidence for involvement of the enzyme in T4 DNA metabolism. J. Virol. 13:888-97
-
(1974)
J. Virol.
, vol.13
, pp. 888-897
-
-
Depew, R.E.1
Cozzarelli, N.R.2
-
128
-
-
0023041963
-
Phage and host genetic determinants of the specific anticodon loop cleavages in bacteriophage T4-infected Escherichia coli CTr5X
-
Kaufmann G, David M, Borasio GD, Teichmann A, Paz A, Amitsur M. 1986. Phage and host genetic determinants of the specific anticodon loop cleavages in bacteriophage T4-infected Escherichia coli CTr5X. J. Mol. Biol. 188:15-22
-
(1986)
J. Mol. Biol.
, vol.188
, pp. 15-22
-
-
Kaufmann, G.1
David, M.2
Borasio, G.D.3
Teichmann, A.4
Paz, A.5
Amitsur, M.6
-
129
-
-
0025264325
-
The optional E. Coli prr locus encodes a latent form of phage T4-induced anticodon nuclease
-
Levitz R, Chapman D, Amitsur M, Green R, Snyder L, Kaufmann G. 1990. The optional E. coli prr locus encodes a latent form of phage T4-induced anticodon nuclease. EMBO J. 9:1383-89
-
(1990)
EMBO J.
, vol.9
, pp. 1383-1389
-
-
Levitz, R.1
Chapman, D.2
Amitsur, M.3
Green, R.4
Snyder, L.5
Kaufmann, G.6
-
130
-
-
0026740428
-
HSD restriction-modification proteins partake in latent anticodon nuclease
-
Amitsur M, Morad I, Chapman-Shimshoni D, Kaufmann G. 1992. HSD restriction-modification proteins partake in latent anticodon nuclease. EMBO J. 11:3129-34
-
(1992)
EMBO J.
, vol.11
, pp. 3129-3134
-
-
Amitsur, M.1
Morad, I.2
Chapman-Shimshoni, D.3
Kaufmann, G.4
-
131
-
-
0028953424
-
Phage-exclusion enzymes: A bonanza of biochemical and cell biology reagents?
-
Snyder L. 1995. Phage-exclusion enzymes: a bonanza of biochemical and cell biology reagents? Mol. Microbiol. 15:415-20
-
(1995)
Mol. Microbiol.
, vol.15
, pp. 415-420
-
-
Snyder, L.1
-
132
-
-
0024292111
-
Nucleotide and deduced amino acid sequence of stp: The bacteriophage T4 anticodon nuclease gene
-
Chapman D, Morad I, Kaufmann G, Gait MJ, Jorissen L, Snyder L. 1988. Nucleotide and deduced amino acid sequence of stp: the bacteriophage T4 anticodon nuclease gene. J. Mol. Biol. 199:373-77
-
(1988)
J. Mol. Biol.
, vol.199
, pp. 373-377
-
-
Chapman, D.1
Morad, I.2
Kaufmann, G.3
Gait, M.J.4
Jorissen, L.5
Snyder, L.6
-
133
-
-
22544481439
-
Phage abortive infection in lactococci: Variations on a theme
-
ChopinMC, Chopin A, Bidnenko E. 2005. Phage abortive infection in lactococci: variations on a theme. Curr. Opin. Microbiol. 8:473-79
-
(2005)
Curr. Opin. Microbiol.
, vol.8
, pp. 473-479
-
-
Chopin, M.C.1
Chopin, A.2
Bidnenko, E.3
-
134
-
-
0029041585
-
Characterization of the lactococcal abiD1 gene coding for phage abortive infection
-
Anba J, Bidnenko E, Hillier A, Ehrlich D, ChopinMC. 1995. Characterization of the lactococcal abiD1 gene coding for phage abortive infection. J. Bacteriol. 177:3818-23
-
(1995)
J. Bacteriol.
, vol.177
, pp. 3818-3823
-
-
Anba, J.1
Bidnenko, E.2
Hillier, A.3
Ehrlich, D.4
Chopin, M.C.5
-
135
-
-
63449102824
-
Activation of mRNA translation by phage protein and low temperature: The case of Lactococcus lactis abortive infection system AbiD1
-
Bidnenko E, Chopin A, Ehrlich SD, Chopin MC. 2009. Activation of mRNA translation by phage protein and low temperature: the case of Lactococcus lactis abortive infection system AbiD1. BMC Mol. Biol. 10:4
-
(2009)
BMC Mol. Biol.
, vol.10
, pp. 4
-
-
Bidnenko, E.1
Chopin, A.2
Ehrlich, S.D.3
Chopin, M.C.4
-
136
-
-
0037057125
-
Lactococcus lactis AbiD1 abortive infection efficiency is drastically increased by a phage protein
-
Bidnenko E, ChopinMC, Ehrlich SD, Anba J. 2002. Lactococcus lactis AbiD1 abortive infection efficiency is drastically increased by a phage protein. FEMS Microbiol. Lett. 214:283-87
-
(2002)
FEMS Microbiol. Lett.
, vol.214
, pp. 283-287
-
-
Bidnenko, E.1
Chopin, M.C.2
Ehrlich, S.D.3
Anba, J.4
-
137
-
-
0031858916
-
Lactococcus lactis phage operon coding for an endonuclease homologous to RuvC
-
Bidnenko E, Ehrlich SD, ChopinMC. 1998. Lactococcus lactis phage operon coding for an endonuclease homologous to RuvC. Mol. Microbiol. 28:823-34
-
(1998)
Mol. Microbiol.
, vol.28
, pp. 823-834
-
-
Bidnenko, E.1
Ehrlich, S.D.2
Chopin, M.C.3
-
138
-
-
0029007417
-
Phage operon involved in sensitivity to the Lactococcus lactis abortive infection mechanism AbiD1
-
Bidnenko E, Ehrlich D, ChopinMC. 1995. Phage operon involved in sensitivity to the Lactococcus lactis abortive infection mechanism AbiD1. J. Bacteriol. 177:3824-29
-
(1995)
J. Bacteriol.
, vol.177
, pp. 3824-3829
-
-
Bidnenko, E.1
Ehrlich, D.2
Chopin, M.C.3
-
139
-
-
0030937393
-
Phenotypic and genetic characterization of the bacteriophage abortive infection mechanism AbiK from Lactococcus lactis
-
Emond E,Holler BJ, Boucher I, Vandenbergh PA, Vedamuthu ER, et al. 1997. Phenotypic and genetic characterization of the bacteriophage abortive infection mechanism AbiK from Lactococcus lactis. Appl. Environ. Microbiol. 63:1274-83
-
(1997)
Appl. Environ. Microbiol.
, vol.63
, pp. 1274-1283
-
-
Emond, E.1
Holler, B.J.2
Boucher, I.3
Vandenbergh, P.A.4
Vedamuthu, E.R.5
-
140
-
-
18944397626
-
Expression and site-directed mutagenesis of the lactococcal abortive phage infection protein AbiK
-
Fortier LC, Bouchard JD, Moineau S. 2005. Expression and site-directed mutagenesis of the lactococcal abortive phage infection protein AbiK. J. Bacteriol. 187:3721-30
-
(2005)
J. Bacteriol.
, vol.187
, pp. 3721-3730
-
-
Fortier, L.C.1
Bouchard, J.D.2
Moineau, S.3
-
141
-
-
80053182210
-
A reverse transcriptase-related protein mediates phage resistance and polymerizes untemplated DNA in vitro
-
Wang C, Villion M, Semper C, Coros C, Moineau S, Zimmerly S. 2011. A reverse transcriptase-related protein mediates phage resistance and polymerizes untemplated DNA in vitro. Nucleic Acids Res. 39:7620-29
-
(2011)
Nucleic Acids Res.
, vol.39
, pp. 7620-7629
-
-
Wang, C.1
Villion, M.2
Semper, C.3
Coros, C.4
Moineau, S.5
Zimmerly, S.6
-
142
-
-
2442662866
-
Lactococcal phage genes involved in sensitivity to AbiK and their relation to single-strand annealing proteins
-
Bouchard JD, Moineau S. 2004. Lactococcal phage genes involved in sensitivity to AbiK and their relation to single-strand annealing proteins. J. Bacteriol. 186:3649-52
-
(2004)
J. Bacteriol.
, vol.186
, pp. 3649-3652
-
-
Bouchard, J.D.1
Moineau, S.2
-
143
-
-
79953058659
-
Lactococcal phage p2 ORF35-Sak3 is an ATPase involved in DNA recombination and AbiK mechanism
-
Scaltriti E, Launay H, Genois MM, Bron P, Rivetti C, et al. 2011. Lactococcal phage p2 ORF35-Sak3 is an ATPase involved in DNA recombination and AbiK mechanism. Mol. Microbiol. 80:102-16
-
(2011)
Mol. Microbiol.
, vol.80
, pp. 102-116
-
-
Scaltriti, E.1
Launay, H.2
Genois, M.M.3
Bron, P.4
Rivetti, C.5
-
144
-
-
33846936449
-
Abortive phage resistance mechanism AbiZ speeds the lysis clock to cause premature lysis of phage-infected Lactococcus lactis
-
Durmaz E, Klaenhammer TR. 2007. Abortive phage resistance mechanism AbiZ speeds the lysis clock to cause premature lysis of phage-infected Lactococcus lactis. J. Bacteriol. 189:1417-25
-
(2007)
J. Bacteriol.
, vol.189
, pp. 1417-1425
-
-
Durmaz, E.1
Klaenhammer, T.R.2
-
145
-
-
0032519457
-
Nucleotide sequence and analysis of the new chromosomal abortive infection gene abiN of Lactococcus lactis subsp. Cremoris S114
-
Prevots F, Tolou S, Delpech B, Kaghad M, DaloyauM. 1998. Nucleotide sequence and analysis of the new chromosomal abortive infection gene abiN of Lactococcus lactis subsp. cremoris S114. FEMS Microbiol. Lett. 159:331-36
-
(1998)
FEMS Microbiol. Lett.
, vol.159
, pp. 331-336
-
-
Prevots, F.1
Tolou, S.2
Delpech, B.3
Kaghad, M.4
Daloyau, M.5
-
146
-
-
0032085137
-
Complete sequence of the new lactococcal abortive phage resistance gene abiO
-
Prevots F, Ritzenthaler P. 1998. Complete sequence of the new lactococcal abortive phage resistance gene abiO. J. Dairy Sci. 81:1483-85
-
(1998)
J. Dairy Sci.
, vol.81
, pp. 1483-1485
-
-
Prevots, F.1
Ritzenthaler, P.2
-
147
-
-
0035513638
-
Molecular characterization of a new abortive infection system (AbiU) from Lactococcus lactis LL51-1
-
Dai G, Su P, Allison GE, Geller BL, Zhu P, et al. 2001. Molecular characterization of a new abortive infection system (AbiU) from Lactococcus lactis LL51-1. Appl. Environ. Microbiol. 67:5225-32
-
(2001)
Appl. Environ. Microbiol.
, vol.67
, pp. 5225-5232
-
-
Dai, G.1
Su, P.2
Allison, G.E.3
Geller, B.L.4
Zhu, P.5
-
148
-
-
58849150431
-
The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair
-
Fineran PC, Blower TR, Foulds IJ, Humphreys DP, Lilley KS, Salmond GP. 2009. The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair. Proc. Natl. Acad. Sci. USA 106:894-99
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 894-899
-
-
Fineran, P.C.1
Blower, T.R.2
Foulds, I.J.3
Humphreys, D.P.4
Lilley, K.S.5
Salmond, G.P.6
-
150
-
-
84874212005
-
Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate
-
Schuster CF, Bertram R. 2013. Toxin-antitoxin systems are ubiquitous and versatile modulators of prokaryotic cell fate. FEMS Microbiol. Lett. 340:73-85
-
(2013)
FEMS Microbiol. Lett.
, vol.340
, pp. 73-85
-
-
Schuster, C.F.1
Bertram, R.2
-
151
-
-
0021992145
-
Stable inheritance of plasmid R1 requires two different loci
-
Gerdes K, Larsen JE, Molin S. 1985. Stable inheritance of plasmid R1 requires two different loci. J. Bacteriol. 161:292-98
-
(1985)
J. Bacteriol.
, vol.161
, pp. 292-298
-
-
Gerdes, K.1
Larsen, J.E.2
Molin, S.3
-
152
-
-
0020804285
-
Mini-F plasmid genes that couple host cell division to plasmid proliferation
-
Ogura T, Hiraga S. 1983. Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc. Natl. Acad. Sci. USA 80:4784-88
-
(1983)
Proc. Natl. Acad. Sci. USA
, vol.80
, pp. 4784-4788
-
-
Ogura, T.1
Hiraga, S.2
-
153
-
-
53149133857
-
Crystal structure of Mycobacterium tuberculosis YefM antitoxin reveals that it is not an intrinsically unstructured protein
-
Kumar P, Issac B, Dodson EJ, Turkenburg JP, Mande SC. 2008. Crystal structure of Mycobacterium tuberculosis YefM antitoxin reveals that it is not an intrinsically unstructured protein. J. Mol. Biol. 383:482-93
-
(2008)
J. Mol. Biol.
, vol.383
, pp. 482-493
-
-
Kumar, P.1
Issac, B.2
Dodson, E.J.3
Turkenburg, J.P.4
Mande, S.C.5
-
154
-
-
0035807805
-
RelE, a global inhibitor of translation, is activated during nutritional stress
-
Christensen SK, Mikkelsen M, Pedersen K, Gerdes K. 2001. RelE, a global inhibitor of translation, is activated during nutritional stress. Proc. Natl. Acad. Sci. USA 98:14328-33
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, pp. 14328-14333
-
-
Christensen, S.K.1
Mikkelsen, M.2
Pedersen, K.3
Gerdes, K.4
-
155
-
-
47749089764
-
Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity
-
Overgaard M, Borch J, Jorgensen MG, Gerdes K. 2008. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Mol. Microbiol. 69:841-57
-
(2008)
Mol. Microbiol.
, vol.69
, pp. 841-857
-
-
Overgaard, M.1
Borch, J.2
Jorgensen, M.G.3
Gerdes, K.4
-
156
-
-
84897845950
-
A widespread bacteriophage abortive infection system functions through a Type IVtoxin-antitoxin mechanism
-
Dy RL, Przybilski R, Semeijn K, Salmond GP, Fineran PC. 2014. A widespread bacteriophage abortive infection system functions through a Type IVtoxin-antitoxin mechanism. Nucleic Acids Res. 42:4590-605
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. 4590-4605
-
-
Dy, R.L.1
Przybilski, R.2
Semeijn, K.3
Salmond, G.P.4
Fineran, P.C.5
-
157
-
-
10044283095
-
MazF-mediated cell death in Escherichia coli: A point of no return
-
Amitai S, Yassin Y, Engelberg-Kulka H. 2004. MazF-mediated cell death in Escherichia coli: a point of no return. J. Bacteriol. 186:8295-300
-
(2004)
J. Bacteriol.
, vol.186
, pp. 8295-8300
-
-
Amitai, S.1
Yassin, Y.2
Engelberg-Kulka, H.3
-
158
-
-
84877836829
-
Ribonucleases in bacterial toxin-antitoxin systems
-
Cook GM, Robson JR, Frampton RA, McKenzie J, Przybilski R, et al. 2013. Ribonucleases in bacterial toxin-antitoxin systems. Biochim. Biophys. Acta 1829:523-31
-
(2013)
Biochim. Biophys. Acta
, vol.1829
, pp. 523-531
-
-
Cook, G.M.1
Robson, J.R.2
Frampton, R.A.3
McKenzie, J.4
Przybilski, R.5
-
159
-
-
57349189421
-
Small toxic proteins and the antisense RNAs that repress them
-
Fozo EM, Hemm MR, Storz G. 2008. Small toxic proteins and the antisense RNAs that repress them. Microbiol. Mol. Biol. Rev. 72:579-89
-
(2008)
Microbiol. Mol. Biol. Rev.
, vol.72
, pp. 579-589
-
-
Fozo, E.M.1
Hemm, M.R.2
Storz, G.3
-
160
-
-
84861347512
-
YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli
-
Masuda H, Tan Q, Awano N, Wu KP, Inouye M. 2012. YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli. Mol. Microbiol. 84:979-89
-
(2012)
Mol. Microbiol.
, vol.84
, pp. 979-989
-
-
Masuda, H.1
Tan, Q.2
Awano, N.3
Wu, K.P.4
Inouye, M.5
-
161
-
-
84870279994
-
A new Type v toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS
-
Wang X, Lord DM, Cheng HY, Osbourne DO, Hong SH, et al. 2012. A new Type V toxin-antitoxin system where mRNA for toxin GhoT is cleaved by antitoxin GhoS. Nat. Chem. Biol. 8:855-61
-
(2012)
Nat. Chem. Biol.
, vol.8
, pp. 855-861
-
-
Wang, X.1
Lord, D.M.2
Cheng, H.Y.3
Osbourne, D.O.4
Hong, S.H.5
-
162
-
-
0029972435
-
Exclusion of T4 phage by the hok/sok killer locus from plasmid R1
-
Pecota DC, Wood TK. 1996. Exclusion of T4 phage by the hok/sok killer locus from plasmid R1. J. Bacteriol. 178:2044-50
-
(1996)
J. Bacteriol.
, vol.178
, pp. 2044-2050
-
-
Pecota, D.C.1
Wood, T.K.2
-
163
-
-
79551624663
-
A processed noncoding RNA regulates an altruistic bacterial antiviral system
-
Blower TR, Pei XY, Short FL, Fineran PC, Humphreys DP, et al. 2011. A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nat. Struct. Mol. Biol. 18:185-90
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 185-190
-
-
Blower, T.R.1
Pei, X.Y.2
Short, F.L.3
Fineran, P.C.4
Humphreys, D.P.5
-
164
-
-
70349149070
-
Mutagenesis and functional characterization of the RNA and protein components of the toxIN abortive infection and toxin-antitoxin locus of Erwinia
-
Blower TR, Fineran PC, Johnson MJ, Toth IK, Humphreys DP, Salmond GP. 2009. Mutagenesis and functional characterization of the RNA and protein components of the toxIN abortive infection and toxin-antitoxin locus of Erwinia. J. Bacteriol. 191:6029-39
-
(2009)
J. Bacteriol.
, vol.191
, pp. 6029-6039
-
-
Blower, T.R.1
Fineran, P.C.2
Johnson, M.J.3
Toth, I.K.4
Humphreys, D.P.5
Salmond, G.P.6
-
165
-
-
84864487705
-
Identification and classification of bacterial Type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes
-
Blower TR, Short FL, Rao F, Mizuguchi K, Pei XY, et al. 2012. Identification and classification of bacterial Type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Res. 40:6158-73
-
(2012)
Nucleic Acids Res.
, vol.40
, pp. 6158-6173
-
-
Blower, T.R.1
Short, F.L.2
Rao, F.3
Mizuguchi, K.4
Pei, X.Y.5
-
166
-
-
84872541994
-
Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot
-
Short FL, Pei XY, Blower TR, Ong SL, Fineran PC, et al. 2013. Selectivity and self-assembly in the control of a bacterial toxin by an antitoxic noncoding RNA pseudoknot. Proc. Natl. Acad. Sci. USA 110:E241-49
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. E241-E249
-
-
Short, F.L.1
Pei, X.Y.2
Blower, T.R.3
Ong, S.L.4
Fineran, P.C.5
-
167
-
-
0031767774
-
AbiQ, an abortive infection mechanism from Lactococcus lactis
-
Emond E, Dion E, Walker SA, Vedamuthu ER, Kondo JK, Moineau S. 1998. AbiQ, an abortive infection mechanism from Lactococcus lactis. Appl. Environ. Microbiol. 64:4748-56
-
(1998)
Appl. Environ. Microbiol.
, vol.64
, pp. 4748-4756
-
-
Emond, E.1
Dion, E.2
Walker, S.A.3
Vedamuthu, E.R.4
Kondo, J.K.5
Moineau, S.6
-
168
-
-
84873455145
-
Structure and activity of AbiQ, a lactococcal endoribonuclease belonging to the Type III toxin-antitoxin system
-
Samson JE, Spinelli S, Cambillau C, Moineau S. 2013. Structure and activity of AbiQ, a lactococcal endoribonuclease belonging to the Type III toxin-antitoxin system. Mol. Microbiol. 87:756-68
-
(2013)
Mol. Microbiol.
, vol.87
, pp. 756-768
-
-
Samson, J.E.1
Spinelli, S.2
Cambillau, C.3
Moineau, S.4
-
169
-
-
84868095928
-
Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism
-
Blower TR, Evans TJ, Przybilski R, Fineran PC, Salmond GP. 2012. Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism. PLoS Genet. 8:e1003023
-
(2012)
PLoS Genet.
, vol.8
, pp. e1003023
-
-
Blower, T.R.1
Evans, T.J.2
Przybilski, R.3
Fineran, P.C.4
Salmond, G.P.5
-
170
-
-
84883545198
-
Effect of the abortive infection mechanism and Type III toxin/antitoxin system AbiQ on the lytic cycle of Lactococcus lactis phages
-
Samson JE, Belanger M, Moineau S. 2013. Effect of the abortive infection mechanism and Type III toxin/antitoxin system AbiQ on the lytic cycle of Lactococcus lactis phages. J. Bacteriol. 195:3947-56
-
(2013)
J. Bacteriol.
, vol.195
, pp. 3947-3956
-
-
Samson, J.E.1
Belanger, M.2
Moineau, S.3
-
171
-
-
84856573166
-
Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins
-
Otsuka Y, Yonesaki T. 2012. Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins. Mol. Microbiol. 83:669-81
-
(2012)
Mol. Microbiol.
, vol.83
, pp. 669-681
-
-
Otsuka, Y.1
Yonesaki, T.2
-
172
-
-
78951480425
-
Escherichia coli rnlA and rnlB compose a novel toxinantitoxin system
-
Koga M, Otsuka Y, Lemire S, Yonesaki T. 2011. Escherichia coli rnlA and rnlB compose a novel toxinantitoxin system. Genetics 187:123-30
-
(2011)
Genetics
, vol.187
, pp. 123-130
-
-
Koga, M.1
Otsuka, Y.2
Lemire, S.3
Yonesaki, T.4
-
173
-
-
84888311378
-
Structure-function studies of Escherichia coli RnlA reveal a novel toxin structure involved in bacteriophage resistance
-
Wei Y, Gao ZQ, Otsuka Y, Naka K, Yonesaki T, et al. 2013. Structure-function studies of Escherichia coli RnlA reveal a novel toxin structure involved in bacteriophage resistance. Mol. Microbiol. 90:956-65
-
(2013)
Mol. Microbiol.
, vol.90
, pp. 956-965
-
-
Wei, Y.1
Gao, Z.Q.2
Otsuka, Y.3
Naka, K.4
Yonesaki, T.5
-
174
-
-
5644239810
-
Escherichia coli mazEF-mediated cell death as a defensemechanism that inhibits the spread of phage P1
-
Hazan R, Engelberg-KulkaH. 2004. Escherichia coli mazEF-mediated cell death as a defensemechanism that inhibits the spread of phage P1. Mol. Genet. Genomics 272:227-34
-
(2004)
Mol. Genet. Genomics
, vol.272
, pp. 227-234
-
-
Hazan, R.1
Engelberg-Kulka, H.2
-
175
-
-
46749132719
-
Automated discovery and phylogenetic analysis of new toxin-antitoxin systems
-
Guglielmini J, Szpirer C, Milinkovitch MC. 2008. Automated discovery and phylogenetic analysis of new toxin-antitoxin systems. BMC Microbiol. 8:104
-
(2008)
BMC Microbiol.
, vol.8
, pp. 104
-
-
Guglielmini, J.1
Szpirer, C.2
Milinkovitch, M.C.3
-
176
-
-
84876095374
-
Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning
-
Sberro H, Leavitt A,Kiro R,Koh E, Peleg Y, et al. 2013. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning. Mol. Cell 50:136-48
-
(2013)
Mol. Cell
, vol.50
, pp. 136-148
-
-
Sberro, H.1
Leavitt, A.2
Kiro, R.3
Koh, E.4
Peleg, Y.5
-
177
-
-
0028789404
-
Cloning and DNA sequence analysis of two abortive infection phage resistance determinants from the lactococcal plasmid pNP40
-
Garvey P, Fitzgerald GF, Hill C. 1995. Cloning and DNA sequence analysis of two abortive infection phage resistance determinants from the lactococcal plasmid pNP40. Appl. Environ. Microbiol. 61:4321-28
-
(1995)
Appl. Environ. Microbiol.
, vol.61
, pp. 4321-4328
-
-
Garvey, P.1
Fitzgerald, G.F.2
Hill, C.3
-
178
-
-
84896738064
-
Inter-viral conflicts that exploit host CRISPR immune systems of Sulfolobus
-
Erdmann S,LeMoine Bauer S,Garrett RA. 2014. Inter-viral conflicts that exploit host CRISPR immune systems of Sulfolobus. Mol. Microbiol. 91:900-17
-
(2014)
Mol. Microbiol.
, vol.91
, pp. 900-917
-
-
Erdmann, S.1
Lemoine Bauer, S.2
Garrett, R.A.3
-
179
-
-
84880125937
-
CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance
-
Dupuis ME, Villion M, Magadan AH, Moineau S. 2013. CRISPR-Cas and restriction-modification systems are compatible and increase phage resistance. Nat. Commun. 4:2087
-
(2013)
Nat. Commun.
, vol.4
, pp. 2087
-
-
Dupuis, M.E.1
Villion, M.2
Magadan, A.H.3
Moineau, S.4
-
180
-
-
0030026575
-
The lactococcal plasmid pNP40 encodes a third bacteriophage resistance mechanism, one which affects phage DNA penetration
-
Garvey P, Hill C, Fitzgerald GF. 1996. The lactococcal plasmid pNP40 encodes a third bacteriophage resistance mechanism, one which affects phage DNA penetration. Appl. Environ. Microbiol. 62:676-79
-
(1996)
Appl. Environ. Microbiol.
, vol.62
, pp. 676-679
-
-
Garvey, P.1
Hill, C.2
Fitzgerald, G.F.3
|