메뉴 건너뛰기




Volumn 19, Issue 5, 2015, Pages 903-914

Engineering clinically relevant volumes of vascularized bone

Author keywords

Bone tissue engineering; Clinical applications; Vascularization

Indexed keywords

BONE MORPHOGENETIC PROTEIN 2; CONNEXIN 43; HYDROXYAPATITE; BIOMATERIAL;

EID: 84928434445     PISSN: 15821838     EISSN: None     Source Type: Journal    
DOI: 10.1111/jcmm.12569     Document Type: Article
Times cited : (50)

References (124)
  • 1
    • 75749108220 scopus 로고    scopus 로고
    • Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges
    • Santos MI, Reis RL. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci. 2010; 10: 12-27.
    • (2010) Macromol Biosci , vol.10 , pp. 12-27
    • Santos, M.I.1    Reis, R.L.2
  • 2
    • 81755161439 scopus 로고    scopus 로고
    • Cell sources for bone tissue engineering: insights from basic science
    • Colnot C. Cell sources for bone tissue engineering: insights from basic science. Tissue Eng Part B Rev. 2011; 17: 449-57.
    • (2011) Tissue Eng Part B Rev , vol.17 , pp. 449-457
    • Colnot, C.1
  • 3
    • 77955569142 scopus 로고    scopus 로고
    • Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels
    • Maes C, Kobayashi T, Selig MK, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell. 2010; 19: 329-44.
    • (2010) Dev Cell , vol.19 , pp. 329-344
    • Maes, C.1    Kobayashi, T.2    Selig, M.K.3
  • 4
    • 45549085001 scopus 로고    scopus 로고
    • Osteogenesis and angiogenesis: the potential for engineering bone
    • Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater. 2008; 15: 100-14.
    • (2008) Eur Cell Mater , vol.15 , pp. 100-114
    • Kanczler, J.M.1    Oreffo, R.O.2
  • 5
    • 79957859079 scopus 로고    scopus 로고
    • Angiogenesis in bone regeneration
    • Hankenson KD, Dishowitz M, Gray C, et al. Angiogenesis in bone regeneration. Injury. 2011; 42: 556-61.
    • (2011) Injury , vol.42 , pp. 556-561
    • Hankenson, K.D.1    Dishowitz, M.2    Gray, C.3
  • 6
    • 0028297686 scopus 로고
    • Delayed unions and nonunions of open tibial fractures. Correlation with arteriography results
    • Dickson K, Katzman S, Delgado E, et al. Delayed unions and nonunions of open tibial fractures. Correlation with arteriography results. Clin Orthop Relat Res. 1994; 302: 189-93.
    • (1994) Clin Orthop Relat Res , vol.302 , pp. 189-193
    • Dickson, K.1    Katzman, S.2    Delgado, E.3
  • 7
    • 4444351450 scopus 로고    scopus 로고
    • Human primary endothelial cells stimulate human osteoprogenitor cell differentiation
    • Guillotin B, Bourget C, Remy-Zolgadri M, et al. Human primary endothelial cells stimulate human osteoprogenitor cell differentiation. Cell Physiol Biochem. 2004; 14: 325-32.
    • (2004) Cell Physiol Biochem , vol.14 , pp. 325-332
    • Guillotin, B.1    Bourget, C.2    Remy-Zolgadri, M.3
  • 8
    • 84878941148 scopus 로고    scopus 로고
    • Cooperation between osteoblastic cells and endothelial cells enhances their phenotypic responses and improves osteoblast function
    • Dariima T, Jin GZ, Lee EJ, et al. Cooperation between osteoblastic cells and endothelial cells enhances their phenotypic responses and improves osteoblast function. Biotechnol Lett. 2013; 35: 1135-43.
    • (2013) Biotechnol Lett , vol.35 , pp. 1135-1143
    • Dariima, T.1    Jin, G.Z.2    Lee, E.J.3
  • 9
    • 0037162547 scopus 로고    scopus 로고
    • Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover
    • Street J, Bao M, deGuzman L, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA. 2002; 99: 9656-61.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 9656-9661
    • Street, J.1    Bao, M.2    deGuzman, L.3
  • 10
    • 37349095299 scopus 로고    scopus 로고
    • Evaluation of VEGF-mediated signaling in primary human cells reveals a paracrine action for VEGF in osteoblast-mediated crosstalk to endothelial cells
    • Clarkin CE, Emery RJ, Pitsillides AA, et al. Evaluation of VEGF-mediated signaling in primary human cells reveals a paracrine action for VEGF in osteoblast-mediated crosstalk to endothelial cells. J Cell Physiol. 2008; 214: 537-44.
    • (2008) J Cell Physiol , vol.214 , pp. 537-544
    • Clarkin, C.E.1    Emery, R.J.2    Pitsillides, A.A.3
  • 11
    • 84893661701 scopus 로고    scopus 로고
    • Interactions of mesenchymal stem cells with endothelial cells
    • Nassiri SM, Rahbarghazi R. Interactions of mesenchymal stem cells with endothelial cells. Stem Cells Dev. 2014; 23: 319-32.
    • (2014) Stem Cells Dev , vol.23 , pp. 319-332
    • Nassiri, S.M.1    Rahbarghazi, R.2
  • 12
    • 84901301336 scopus 로고    scopus 로고
    • Mesenchymal stem cells: roles and relationships in vascularization
    • Melchiorri AJ, Nguyen BN, Fisher JP. Mesenchymal stem cells: roles and relationships in vascularization. Tissue Eng Part B Rev. 2014; 20: 218-28.
    • (2014) Tissue Eng Part B Rev , vol.20 , pp. 218-228
    • Melchiorri, A.J.1    Nguyen, B.N.2    Fisher, J.P.3
  • 13
    • 84887152723 scopus 로고    scopus 로고
    • Influence of mesenchymal stem cells with endothelial progenitor cells in co-culture on osteogenesis and angiogenesis: an in vitro study
    • Li Q, Wang Z. Influence of mesenchymal stem cells with endothelial progenitor cells in co-culture on osteogenesis and angiogenesis: an in vitro study. Arch Med Res. 2013; 44: 504-13.
    • (2013) Arch Med Res , vol.44 , pp. 504-513
    • Li, Q.1    Wang, Z.2
  • 14
    • 84876250598 scopus 로고    scopus 로고
    • Juxtacrine and paracrine interactions of rat marrow-derived mesenchymal stem cells, muscle-derived satellite cells, and neonatal cardiomyocytes with endothelial cells in angiogenesis dynamics
    • Rahbarghazi R, Nassiri SM, Khazraiinia P, et al. Juxtacrine and paracrine interactions of rat marrow-derived mesenchymal stem cells, muscle-derived satellite cells, and neonatal cardiomyocytes with endothelial cells in angiogenesis dynamics. Stem Cells Dev. 2013; 22: 855-65.
    • (2013) Stem Cells Dev , vol.22 , pp. 855-865
    • Rahbarghazi, R.1    Nassiri, S.M.2    Khazraiinia, P.3
  • 15
    • 12344274486 scopus 로고    scopus 로고
    • The biology of vascular endothelial growth factors
    • Tammela T, Enholm B, Alitalo K, et al. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005; 65: 550-63.
    • (2005) Cardiovasc Res , vol.65 , pp. 550-563
    • Tammela, T.1    Enholm, B.2    Alitalo, K.3
  • 16
    • 0037699954 scopus 로고    scopus 로고
    • The biology of VEGF and its receptors
    • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003; 9: 669-76.
    • (2003) Nat Med , vol.9 , pp. 669-676
    • Ferrara, N.1    Gerber, H.P.2    LeCouter, J.3
  • 17
    • 84911061650 scopus 로고    scopus 로고
    • VEGF receptor 2 (VEGFR2) activation is essential for osteocyte survival induced by mechanotransduction
    • F de Castro L, Maycas M, Bravo B, et al. VEGF receptor 2 (VEGFR2) activation is essential for osteocyte survival induced by mechanotransduction. J Cell Physiol. 2014; 230: 278-85.
    • (2014) J Cell Physiol , vol.230 , pp. 278-285
    • de Castro, F.L.1    Maycas, M.2    Bravo, B.3
  • 18
    • 54049099247 scopus 로고    scopus 로고
    • Parathyroid hormone-related protein (107-139) increases human osteoblastic cell survival by activation of vascular endothelial growth factor receptor-2
    • Alonso V, de Gortázar AR, Ardura JA, et al. Parathyroid hormone-related protein (107-139) increases human osteoblastic cell survival by activation of vascular endothelial growth factor receptor-2. J Cell Physiol. 2008; 217: 717-27.
    • (2008) J Cell Physiol , vol.217 , pp. 717-727
    • Alonso, V.1    de Gortázar, A.R.2    Ardura, J.A.3
  • 19
    • 0036217067 scopus 로고    scopus 로고
    • Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A
    • Deckers MM, van Bezooijen RL, van der Horst G, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology. 2002; 143: 1545-53.
    • (2002) Endocrinology , vol.143 , pp. 1545-1553
    • Deckers, M.M.1    van Bezooijen, R.L.2    van der Horst, G.3
  • 20
    • 0042134565 scopus 로고    scopus 로고
    • Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs)
    • Cheng H, Jiang W, Phillips FM, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am. 2003; 85A: 1544-52.
    • (2003) J Bone Joint Surg Am , vol.85A , pp. 1544-1552
    • Cheng, H.1    Jiang, W.2    Phillips, F.M.3
  • 21
    • 0025216220 scopus 로고
    • Recombinant human bone morphogenetic protein induces bone formation
    • Wang EA, Rosen V, D'Alessandro JS, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA. 1990; 87: 2220-4.
    • (1990) Proc Natl Acad Sci USA , vol.87 , pp. 2220-2224
    • Wang, E.A.1    Rosen, V.2    D'Alessandro, J.S.3
  • 22
    • 34347388823 scopus 로고    scopus 로고
    • Role of bone morphogenetic protein 2 in the crosstalk between endothelial progenitor cells and mesenchymal stem cells
    • Raida M, Heymann AC, Gunther C, et al. Role of bone morphogenetic protein 2 in the crosstalk between endothelial progenitor cells and mesenchymal stem cells. Int J Mol Med. 2006; 18: 735-9.
    • (2006) Int J Mol Med , vol.18 , pp. 735-739
    • Raida, M.1    Heymann, A.C.2    Gunther, C.3
  • 23
    • 0034645070 scopus 로고    scopus 로고
    • Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction
    • Lecanda F, Warlow PM, Sheikh S, et al. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol. 2000; 151: 931-44.
    • (2000) J Cell Biol , vol.151 , pp. 931-944
    • Lecanda, F.1    Warlow, P.M.2    Sheikh, S.3
  • 24
    • 84879224949 scopus 로고    scopus 로고
    • Reduction of connexin43 in human endothelial progenitor cells impairs the angiogenic potential
    • Wang HH, Su CH, Wu YJ, et al. Reduction of connexin43 in human endothelial progenitor cells impairs the angiogenic potential. Angiogenesis. 2013; 16: 553-60.
    • (2013) Angiogenesis , vol.16 , pp. 553-560
    • Wang, H.H.1    Su, C.H.2    Wu, Y.J.3
  • 25
    • 67650438906 scopus 로고    scopus 로고
    • Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization
    • Santos MI, Unger RE, Sousa RA, et al. Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization. Biomaterials. 2009; 30: 4407-15.
    • (2009) Biomaterials , vol.30 , pp. 4407-4415
    • Santos, M.I.1    Unger, R.E.2    Sousa, R.A.3
  • 26
    • 0036083738 scopus 로고    scopus 로고
    • Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication
    • Villars F, Guillotin B, Amedee T, et al. Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. Am J Physiol Cell Physiol. 2002; 282: C775-85.
    • (2002) Am J Physiol Cell Physiol , vol.282 , pp. C775-C785
    • Villars, F.1    Guillotin, B.2    Amedee, T.3
  • 27
    • 84893754352 scopus 로고    scopus 로고
    • Molecular mechanisms of osteoblast/osteocyte regulation by connexin43
    • Stains JP, Watkins MP, Grimston SK, et al. Molecular mechanisms of osteoblast/osteocyte regulation by connexin43. Calcif Tissue Int. 2014; 94: 55-67.
    • (2014) Calcif Tissue Int , vol.94 , pp. 55-67
    • Stains, J.P.1    Watkins, M.P.2    Grimston, S.K.3
  • 28
    • 84920941427 scopus 로고    scopus 로고
    • Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems
    • Liu Y, Chan JK, Teoh SH. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems. J Tissue Eng Regen Med. 2012; 9: 85-105.
    • (2012) J Tissue Eng Regen Med , vol.9 , pp. 85-105
    • Liu, Y.1    Chan, J.K.2    Teoh, S.H.3
  • 29
    • 84884981488 scopus 로고    scopus 로고
    • Cell-based approaches to the engineering of vascularized bone tissue
    • Rao RR, Stegemann JP. Cell-based approaches to the engineering of vascularized bone tissue. Cytotherapy. 2013; 15: 1309-22.
    • (2013) Cytotherapy , vol.15 , pp. 1309-1322
    • Rao, R.R.1    Stegemann, J.P.2
  • 30
  • 31
    • 81755188465 scopus 로고    scopus 로고
    • Evaluation of angiogenesis and osteogenesis
    • Das A, Botchwey E. Evaluation of angiogenesis and osteogenesis. Tissue Eng Part B Rev. 2011; 17: 403-14.
    • (2011) Tissue Eng Part B Rev , vol.17 , pp. 403-414
    • Das, A.1    Botchwey, E.2
  • 32
    • 84866840029 scopus 로고    scopus 로고
    • Vascularized bone tissue engineering: approaches for potential improvement
    • Nguyen LH, Annabi N, Nikkhah M, et al. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng Part B Rev. 2012; 18: 363-82.
    • (2012) Tissue Eng Part B Rev , vol.18 , pp. 363-382
    • Nguyen, L.H.1    Annabi, N.2    Nikkhah, M.3
  • 33
    • 0033213750 scopus 로고    scopus 로고
    • Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur
    • Zysset PK, Guo XE, Hoffler CE, et al. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech. 1999; 32: 1005-12.
    • (1999) J Biomech , vol.32 , pp. 1005-1012
    • Zysset, P.K.1    Guo, X.E.2    Hoffler, C.E.3
  • 34
    • 0027551874 scopus 로고
    • Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements
    • Rho JY, Ashman RB, Turner CH. Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech. 1993; 26: 111-9.
    • (1993) J Biomech , vol.26 , pp. 111-119
    • Rho, J.Y.1    Ashman, R.B.2    Turner, C.H.3
  • 35
    • 0034925754 scopus 로고    scopus 로고
    • Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic
    • Giesen EB, Ding M, Dalstra M, et al. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic. J Biomech. 2001; 34: 799-803.
    • (2001) J Biomech , vol.34 , pp. 799-803
    • Giesen, E.B.1    Ding, M.2    Dalstra, M.3
  • 36
    • 0026604141 scopus 로고
    • The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials
    • Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. 1992; 274: 124-34.
    • (1992) Clin Orthop Relat Res , vol.274 , pp. 124-134
    • Huiskes, R.1    Weinans, H.2    van Rietbergen, B.3
  • 37
    • 0042121208 scopus 로고    scopus 로고
    • Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and angiopoietin-1
    • Nakatsu MN, Sainson RCA, Aoto JN, et al. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and angiopoietin-1. Microvasc Res. 2003; 66: 102-12.
    • (2003) Microvasc Res , vol.66 , pp. 102-112
    • Nakatsu, M.N.1    Sainson, R.C.A.2    Aoto, J.N.3
  • 38
    • 77953535753 scopus 로고    scopus 로고
    • Collagen glycation alters neovascularization in vitro and in vivo
    • Francis-Sedlak ME, Moya ML, Huang JJ, et al. Collagen glycation alters neovascularization in vitro and in vivo. Microvasc Res. 2010; 80: 3-9.
    • (2010) Microvasc Res , vol.80 , pp. 3-9
    • Francis-Sedlak, M.E.1    Moya, M.L.2    Huang, J.J.3
  • 39
    • 84877795568 scopus 로고    scopus 로고
    • Effect of aging on metabolic pathways in endothelial progenitor cells
    • Felice F, Barsotti MC, Poredos P, et al. Effect of aging on metabolic pathways in endothelial progenitor cells. Curr Pharm Des. 2013; 19: 2351-65.
    • (2013) Curr Pharm Des , vol.19 , pp. 2351-2365
    • Felice, F.1    Barsotti, M.C.2    Poredos, P.3
  • 40
    • 39149093357 scopus 로고    scopus 로고
    • Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies
    • Stolzing A, Jones E, McGonagle D, et al. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev. 2008; 129: 163-73.
    • (2008) Mech Ageing Dev , vol.129 , pp. 163-173
    • Stolzing, A.1    Jones, E.2    McGonagle, D.3
  • 41
    • 84861852805 scopus 로고    scopus 로고
    • Engineering bone tissue from human embryonic stem cells
    • Marolt D, Campos IM, Bhumiratana S, et al. Engineering bone tissue from human embryonic stem cells. Proc Natl Acad Sci USA. 2012; 109: 8705-9.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 8705-8709
    • Marolt, D.1    Campos, I.M.2    Bhumiratana, S.3
  • 42
    • 84878146454 scopus 로고    scopus 로고
    • Engineering bone tissue substitutes from human induced pluripotent stem cells
    • de Peppo GM, Marcos-Campos I, Kahler DJ, et al. Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci USA. 2013; 110: 8680-5.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. 8680-8685
    • de Peppo, G.M.1    Marcos-Campos, I.2    Kahler, D.J.3
  • 43
    • 79953799439 scopus 로고    scopus 로고
    • Concise review: induced pluripotent stem cells and lineage reprogramming: prospects for bone regeneration
    • Illich DJ, Demir N, Stojkovic M, et al. Concise review: induced pluripotent stem cells and lineage reprogramming: prospects for bone regeneration. Stem Cells. 2011; 29: 555-63.
    • (2011) Stem Cells , vol.29 , pp. 555-563
    • Illich, D.J.1    Demir, N.2    Stojkovic, M.3
  • 44
    • 33747195353 scopus 로고    scopus 로고
    • Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
    • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663-76.
    • (2006) Cell , vol.126 , pp. 663-676
    • Takahashi, K.1    Yamanaka, S.2
  • 45
    • 0031081297 scopus 로고    scopus 로고
    • Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo
    • Mizuno M, Shindo M, Kobayashi D, et al. Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone. 1997; 20: 101-7.
    • (1997) Bone , vol.20 , pp. 101-107
    • Mizuno, M.1    Shindo, M.2    Kobayashi, D.3
  • 46
    • 0030947661 scopus 로고    scopus 로고
    • Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect
    • Kadiyala S, Jaiswal N, Bruder SP. Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng. 1997; 3: 173-85.
    • (1997) Tissue Eng , vol.3 , pp. 173-185
    • Kadiyala, S.1    Jaiswal, N.2    Bruder, S.P.3
  • 47
    • 0032029899 scopus 로고    scopus 로고
    • Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells
    • Bruder SP, Kurth AA, Shea M, et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res. 1998; 16: 155-62.
    • (1998) J Orthop Res , vol.16 , pp. 155-162
    • Bruder, S.P.1    Kurth, A.A.2    Shea, M.3
  • 48
    • 17144469316 scopus 로고    scopus 로고
    • Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones
    • Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000; 49: 328-37.
    • (2000) J Biomed Mater Res , vol.49 , pp. 328-337
    • Kon, E.1    Muraglia, A.2    Corsi, A.3
  • 49
    • 76749127910 scopus 로고    scopus 로고
    • Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms
    • Ghajar CM, Kachgal S, Kniazeva E, et al. Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp Cell Res. 2010; 316: 813-25.
    • (2010) Exp Cell Res , vol.316 , pp. 813-825
    • Ghajar, C.M.1    Kachgal, S.2    Kniazeva, E.3
  • 50
    • 84873291832 scopus 로고    scopus 로고
    • Endothelial differentiation of mesenchymal stromal cells: when traditional biology meets mechanotransduction
    • Vittorio O, Jacchetti E, Pacini S, et al. Endothelial differentiation of mesenchymal stromal cells: when traditional biology meets mechanotransduction. Integr Biol. 2013; 5: 291-9.
    • (2013) Integr Biol , vol.5 , pp. 291-299
    • Vittorio, O.1    Jacchetti, E.2    Pacini, S.3
  • 51
    • 2942523981 scopus 로고    scopus 로고
    • Mesenchymal stem cells can be differentiated into endothelial cells in vitro
    • Oswald J, Boxberger S, Jorgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004; 22: 377-84.
    • (2004) Stem Cells , vol.22 , pp. 377-384
    • Oswald, J.1    Boxberger, S.2    Jorgensen, B.3
  • 52
    • 84870807655 scopus 로고    scopus 로고
    • Engineering vascularized bone graft with osteogenic and angiogenic lineage differentiated bone marrow mesenchymal stem cells
    • Zhang R, Gao Z, Geng W, et al. Engineering vascularized bone graft with osteogenic and angiogenic lineage differentiated bone marrow mesenchymal stem cells. Artif Organs. 2012; 36: 1036-46.
    • (2012) Artif Organs , vol.36 , pp. 1036-1046
    • Zhang, R.1    Gao, Z.2    Geng, W.3
  • 53
    • 84865220186 scopus 로고    scopus 로고
    • Effect of adipose tissue-derived osteogenic and enothelial cells on bone allograft osteogenesis and vascularization in critical-sized calvarial defects
    • Cornejo A, Sahar DE, Stephenson SM, et al. Effect of adipose tissue-derived osteogenic and enothelial cells on bone allograft osteogenesis and vascularization in critical-sized calvarial defects. Tissue Eng Part A. 2012; 18: 1552-61.
    • (2012) Tissue Eng Part A , vol.18 , pp. 1552-1561
    • Cornejo, A.1    Sahar, D.E.2    Stephenson, S.M.3
  • 54
    • 84885084947 scopus 로고    scopus 로고
    • Prevascularisation with endothelial progenitor cells improved restoration of the architectural and functional properties of newly formed bone for bone reconstruction
    • Pang H, Wu XH, Fu SL, et al. Prevascularisation with endothelial progenitor cells improved restoration of the architectural and functional properties of newly formed bone for bone reconstruction. Int Orthop. 2013; 37: 753-9.
    • (2013) Int Orthop , vol.37 , pp. 753-759
    • Pang, H.1    Wu, X.H.2    Fu, S.L.3
  • 55
    • 84883795646 scopus 로고    scopus 로고
    • 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days
    • Duttenhoefer F, Lara de Frietas R, Meury T, et al. 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days. Eur Cell Mater. 2013; 26: 49-65.
    • (2013) Eur Cell Mater , vol.26 , pp. 49-65
    • Duttenhoefer, F.1    Lara de Frietas, R.2    Meury, T.3
  • 56
    • 84870241190 scopus 로고    scopus 로고
    • Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold
    • Kang Y, Kim S, Fahrenholtz M, et al. Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold. Acta Biomater. 2013; 9: 4906-15.
    • (2013) Acta Biomater , vol.9 , pp. 4906-4915
    • Kang, Y.1    Kim, S.2    Fahrenholtz, M.3
  • 57
    • 84864053203 scopus 로고    scopus 로고
    • Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs
    • Mendes LF, Pirraco RP, Szymczyk W, et al. Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs. PLoS ONE. 2012; 7: e41051.
    • (2012) PLoS ONE , vol.7 , pp. e41051
    • Mendes, L.F.1    Pirraco, R.P.2    Szymczyk, W.3
  • 58
    • 84866251102 scopus 로고    scopus 로고
    • Advances in the formation, use and understanding of multi-cellular spheroids
    • Achilli TM, Meyer J, Morgan JR. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther. 2012; 12: 1347-60.
    • (2012) Expert Opin Biol Ther , vol.12 , pp. 1347-1360
    • Achilli, T.M.1    Meyer, J.2    Morgan, J.R.3
  • 59
    • 84887344291 scopus 로고    scopus 로고
    • Generation of co-culture spheroids as vascularisation units for bone tissue engineering
    • Walser R, Metzger W, Gorg A, et al. Generation of co-culture spheroids as vascularisation units for bone tissue engineering. Eur Cell Mater. 2013; 26: 222-33.
    • (2013) Eur Cell Mater , vol.26 , pp. 222-233
    • Walser, R.1    Metzger, W.2    Gorg, A.3
  • 60
    • 72649087696 scopus 로고    scopus 로고
    • In vivo engineering of a human vasculature for bone tissue engineering applications
    • Steffens L, Wenger A, Stark GB, et al. In vivo engineering of a human vasculature for bone tissue engineering applications. J Cell Mol Med. 2009; 13: 3380-6.
    • (2009) J Cell Mol Med , vol.13 , pp. 3380-3386
    • Steffens, L.1    Wenger, A.2    Stark, G.B.3
  • 61
    • 79551574175 scopus 로고    scopus 로고
    • Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects
    • Koob S, Torio-Padron N, Stark GB, et al. Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects. Tissue Eng Part A. 2011; 17: 311-21.
    • (2011) Tissue Eng Part A , vol.17 , pp. 311-321
    • Koob, S.1    Torio-Padron, N.2    Stark, G.B.3
  • 62
    • 66249124257 scopus 로고    scopus 로고
    • Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature
    • Chen X, Aledia AS, Ghajar CM, et al. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng Part A. 2009; 15: 1363-71.
    • (2009) Tissue Eng Part A , vol.15 , pp. 1363-1371
    • Chen, X.1    Aledia, A.S.2    Ghajar, C.M.3
  • 63
    • 81855170599 scopus 로고    scopus 로고
    • Vascularization of prevascularized and non-prevascularized fibrin-based human adipose tissue constructs after implantation in nude mice
    • Verseijden F, Posthumus-van Sluijs SJ, van Neck JW, et al. Vascularization of prevascularized and non-prevascularized fibrin-based human adipose tissue constructs after implantation in nude mice. J Tissue Eng Regen Med. 2012; 6: 169-78.
    • (2012) J Tissue Eng Regen Med , vol.6 , pp. 169-178
    • Verseijden, F.1    Posthumus-van Sluijs, S.J.2    van Neck, J.W.3
  • 64
    • 82555178429 scopus 로고    scopus 로고
    • In vitro model of vascularized bone: synergizing vascular development and osteogenesis
    • Correia C, Grayson WL, Park M, et al. In vitro model of vascularized bone: synergizing vascular development and osteogenesis. PLoS ONE. 2011; 6: e28352.
    • (2011) PLoS ONE , vol.6 , pp. e28352
    • Correia, C.1    Grayson, W.L.2    Park, M.3
  • 65
    • 84887205900 scopus 로고    scopus 로고
    • The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo
    • McFadden TM, Duffy GP, Allen AB, et al. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo. Acta Biomater. 2013; 9: 9303-16.
    • (2013) Acta Biomater , vol.9 , pp. 9303-9316
    • McFadden, T.M.1    Duffy, G.P.2    Allen, A.B.3
  • 66
    • 84871689974 scopus 로고    scopus 로고
    • A platelet-rich plasma-based membrane as a periosteal substitute with enhanced osteogenic and angiogenic properties: a new concept for bone repair
    • El Backly RM, Zaky SH, Muraglia A, et al. A platelet-rich plasma-based membrane as a periosteal substitute with enhanced osteogenic and angiogenic properties: a new concept for bone repair. Tissue Eng Part A. 2013; 19: 152-65.
    • (2013) Tissue Eng Part A , vol.19 , pp. 152-165
    • El Backly, R.M.1    Zaky, S.H.2    Muraglia, A.3
  • 67
    • 84863816833 scopus 로고    scopus 로고
    • Differential analysis of peripheral blood- and bone marrow-derived endothelial progenitor cells for enhanced vascularization in bone tissue engineering
    • Amini AR, Laurencin CT, Nukavarapu SP. Differential analysis of peripheral blood- and bone marrow-derived endothelial progenitor cells for enhanced vascularization in bone tissue engineering. J Orthop Res. 2012; 30: 1507-15.
    • (2012) J Orthop Res , vol.30 , pp. 1507-1515
    • Amini, A.R.1    Laurencin, C.T.2    Nukavarapu, S.P.3
  • 68
    • 0035312173 scopus 로고    scopus 로고
    • Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients
    • Wallace SR, Oken MM, Lunetta KL, et al. Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer. 2001; 91: 1219-30.
    • (2001) Cancer , vol.91 , pp. 1219-1230
    • Wallace, S.R.1    Oken, M.M.2    Lunetta, K.L.3
  • 69
    • 0034839686 scopus 로고    scopus 로고
    • Bone marrow stromal damage after chemo/radiotherapy: occurrence, consequences and possibilities of treatment
    • Banfi A, Bianchi G, Galotto M, et al. Bone marrow stromal damage after chemo/radiotherapy: occurrence, consequences and possibilities of treatment. Leuk Lymphoma. 2001; 42: 863-70.
    • (2001) Leuk Lymphoma , vol.42 , pp. 863-870
    • Banfi, A.1    Bianchi, G.2    Galotto, M.3
  • 70
    • 84892744091 scopus 로고    scopus 로고
    • Adipose-derved mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential
    • Efimenko A, Dzhoyashvili N, Kalinina N, et al. Adipose-derved mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential. Stem Cells Transl Med. 2014; 3: 32-41.
    • (2014) Stem Cells Transl Med , vol.3 , pp. 32-41
    • Efimenko, A.1    Dzhoyashvili, N.2    Kalinina, N.3
  • 71
    • 0034047440 scopus 로고    scopus 로고
    • Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy
    • Banfi A, Muraglia A, Dozin B, et al. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol. 2000; 28: 707-15.
    • (2000) Exp Hematol , vol.28 , pp. 707-715
    • Banfi, A.1    Muraglia, A.2    Dozin, B.3
  • 72
    • 78650842405 scopus 로고    scopus 로고
    • Growth factor delivery-based tissue engineering: general approaches and a review of recent developments
    • Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011; 8: 153-70.
    • (2011) J R Soc Interface , vol.8 , pp. 153-170
    • Lee, K.1    Silva, E.A.2    Mooney, D.J.3
  • 74
    • 84881136799 scopus 로고    scopus 로고
    • Platelet-derived growth factor and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells
    • Hutton DL, Moore EM, Gimble JM, et al. Platelet-derived growth factor and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells. Tissue Eng Part A. 2013; 19: 2076-86.
    • (2013) Tissue Eng Part A , vol.19 , pp. 2076-2086
    • Hutton, D.L.1    Moore, E.M.2    Gimble, J.M.3
  • 75
    • 39749193991 scopus 로고    scopus 로고
    • The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation
    • Kanczler JM, Ginty PJ, Barry JJ, et al. The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation. Biomaterials. 2008; 29: 1892-900.
    • (2008) Biomaterials , vol.29 , pp. 1892-1900
    • Kanczler, J.M.1    Ginty, P.J.2    Barry, J.J.3
  • 76
    • 67849101635 scopus 로고    scopus 로고
    • The use of platelet-rich plasma in bone reconstruction therapy
    • Intini G. The use of platelet-rich plasma in bone reconstruction therapy. Biomaterials. 2009; 30: 4956-66.
    • (2009) Biomaterials , vol.30 , pp. 4956-4966
    • Intini, G.1
  • 77
    • 84866861710 scopus 로고    scopus 로고
    • Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres
    • Man Y, Wang P, Guo Y, et al. Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres. Biomaterials. 2012; 33: 8802-11.
    • (2012) Biomaterials , vol.33 , pp. 8802-8811
    • Man, Y.1    Wang, P.2    Guo, Y.3
  • 78
    • 0034692116 scopus 로고    scopus 로고
    • Gene therapy approaches for modulating bone regeneration
    • Winn SR, Hu Y, Sfeir C, et al. Gene therapy approaches for modulating bone regeneration. Adv Drug Deliv Rev. 2000; 42: 121-38.
    • (2000) Adv Drug Deliv Rev , vol.42 , pp. 121-138
    • Winn, S.R.1    Hu, Y.2    Sfeir, C.3
  • 79
    • 0035073210 scopus 로고    scopus 로고
    • In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene
    • Cheng SL, Lou J, Wright NM, et al. In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene. Calcif Tissue Int. 2001; 68: 87-94.
    • (2001) Calcif Tissue Int , vol.68 , pp. 87-94
    • Cheng, S.L.1    Lou, J.2    Wright, N.M.3
  • 80
    • 0038037735 scopus 로고    scopus 로고
    • Regulation of angiogenesis by hypoxia: role of the HIF system
    • Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003; 9: 677-84.
    • (2003) Nat Med , vol.9 , pp. 677-684
    • Pugh, C.W.1    Ratcliffe, P.J.2
  • 81
    • 84855750276 scopus 로고    scopus 로고
    • Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs
    • Zou D, Zhang Z, He J, et al. Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs. Biomaterials. 2012; 33: 2097-108.
    • (2012) Biomaterials , vol.33 , pp. 2097-2108
    • Zou, D.1    Zhang, Z.2    He, J.3
  • 82
    • 84877044029 scopus 로고    scopus 로고
    • Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors
    • Helmrich U, Di Maggio N, Güven S, et al. Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors. Biomaterials. 2013; 34: 5025-35.
    • (2013) Biomaterials , vol.34 , pp. 5025-5035
    • Helmrich, U.1    Di Maggio, N.2    Güven, S.3
  • 83
    • 77954487489 scopus 로고    scopus 로고
    • Angiopoiesis and bone regeneration via co-expression of the hVEGF and hBMP genes from an adeno-associated viral vector in vitro and in vivo
    • Zhang C, Wang KZ, Qiang H, et al. Angiopoiesis and bone regeneration via co-expression of the hVEGF and hBMP genes from an adeno-associated viral vector in vitro and in vivo. Acta Pharmacol Sin. 2010; 31: 821-30.
    • (2010) Acta Pharmacol Sin , vol.31 , pp. 821-830
    • Zhang, C.1    Wang, K.Z.2    Qiang, H.3
  • 84
    • 53149131019 scopus 로고    scopus 로고
    • A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery
    • Benglis D, Wang MY, Levi AD. A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery. 2008; 62: ONS423-31.
    • (2008) Neurosurgery , vol.62 , pp. ONS423-ONS431
    • Benglis, D.1    Wang, M.Y.2    Levi, A.D.3
  • 85
    • 0344306513 scopus 로고    scopus 로고
    • Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds
    • Gomes ME, Sikavitsas VI, Behravesh E, et al. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J Biomed Mater Res A. 2003; 67: 87-95.
    • (2003) J Biomed Mater Res A , vol.67 , pp. 87-95
    • Gomes, M.E.1    Sikavitsas, V.I.2    Behravesh, E.3
  • 86
    • 84875595913 scopus 로고    scopus 로고
    • Sequential application of steady and pulsatile medium perfusion enhanced the formation of engineered bone
    • Correia C, Bhumiratana S, Sousa RA, et al. Sequential application of steady and pulsatile medium perfusion enhanced the formation of engineered bone. Tissue Eng Part A. 2013; 19: 1244-54.
    • (2013) Tissue Eng Part A , vol.19 , pp. 1244-1254
    • Correia, C.1    Bhumiratana, S.2    Sousa, R.A.3
  • 87
    • 79952139046 scopus 로고    scopus 로고
    • Tubular perfusion system for the long-term dynamic culture of human mesenchymal stem cells
    • Yeatts AB, Fisher JP. Tubular perfusion system for the long-term dynamic culture of human mesenchymal stem cells. Tissue Eng Part C Methods. 2011; 17: 337-48.
    • (2011) Tissue Eng Part C Methods , vol.17 , pp. 337-348
    • Yeatts, A.B.1    Fisher, J.P.2
  • 88
    • 84904244995 scopus 로고    scopus 로고
    • Flow perfusion co-culture of human mesenchymal stem cells and endothelial cells on biodegradable polymer scaffolds
    • Dahlin RL, Gershovich JG, Kasper FK, et al. Flow perfusion co-culture of human mesenchymal stem cells and endothelial cells on biodegradable polymer scaffolds. Ann Biomed Eng. 2014; 42: 1381-90.
    • (2014) Ann Biomed Eng , vol.42 , pp. 1381-1390
    • Dahlin, R.L.1    Gershovich, J.G.2    Kasper, F.K.3
  • 89
    • 0000987377 scopus 로고
    • Tubulent fluid shear stress induces vascular endothelial cell turnover in vitro
    • Davies PF, Remuzzi A, Gordon EJ, et al. Tubulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci USA. 1986; 83: 2114-7.
    • (1986) Proc Natl Acad Sci USA , vol.83 , pp. 2114-2117
    • Davies, P.F.1    Remuzzi, A.2    Gordon, E.J.3
  • 90
    • 84872687662 scopus 로고    scopus 로고
    • Engineered bone tissue associated with vascularization utilizing a rotating wall vessel bioreactor
    • Nishi M, Matsumoto R, Dong J, et al. Engineered bone tissue associated with vascularization utilizing a rotating wall vessel bioreactor. J Biomed Mater Res A. 2013; 101: 421-7.
    • (2013) J Biomed Mater Res A , vol.101 , pp. 421-427
    • Nishi, M.1    Matsumoto, R.2    Dong, J.3
  • 91
    • 84856183380 scopus 로고    scopus 로고
    • Bone tissue engineering bioreactors: a role in the clinic?
    • Salter E, Goh B, Hung B, et al. Bone tissue engineering bioreactors: a role in the clinic? Tissue Eng Part B Rev. 2012; 18: 62-75.
    • (2012) Tissue Eng Part B Rev , vol.18 , pp. 62-75
    • Salter, E.1    Goh, B.2    Hung, B.3
  • 92
    • 84873549333 scopus 로고    scopus 로고
    • Guided bone regeneration using injectable vascular endothelial growth factor delivery gel
    • Kaigler D, Silva EA, Mooney DJ. Guided bone regeneration using injectable vascular endothelial growth factor delivery gel. J Periodontol. 2013; 84: 230-8.
    • (2013) J Periodontol , vol.84 , pp. 230-238
    • Kaigler, D.1    Silva, E.A.2    Mooney, D.J.3
  • 93
    • 84878297144 scopus 로고    scopus 로고
    • Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells
    • Solomon KD, Ong JL. Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells. Thin Solid Films. 2013; 537: 256-62.
    • (2013) Thin Solid Films , vol.537 , pp. 256-262
    • Solomon, K.D.1    Ong, J.L.2
  • 94
    • 78349309536 scopus 로고    scopus 로고
    • An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects
    • Kolambkar YM, Dupont KM, Boerckel JD, et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials. 2011; 32: 65-74.
    • (2011) Biomaterials , vol.32 , pp. 65-74
    • Kolambkar, Y.M.1    Dupont, K.M.2    Boerckel, J.D.3
  • 95
    • 51449094036 scopus 로고    scopus 로고
    • Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model
    • Patel ZS, Young S, Tabata Y, et al. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone. 2008; 43: 931-40.
    • (2008) Bone , vol.43 , pp. 931-940
    • Patel, Z.S.1    Young, S.2    Tabata, Y.3
  • 96
    • 69249088910 scopus 로고    scopus 로고
    • Dose effect of dual delivery of vascular endothelial growth factor and bone morphogenetic protein-2 on bone regeneration in a rat critical-size defect model
    • Young S, Patel ZS, Kretlow JD, et al. Dose effect of dual delivery of vascular endothelial growth factor and bone morphogenetic protein-2 on bone regeneration in a rat critical-size defect model. Tissue Eng Part A. 2009; 15: 2347-62.
    • (2009) Tissue Eng Part A , vol.15 , pp. 2347-2362
    • Young, S.1    Patel, Z.S.2    Kretlow, J.D.3
  • 97
    • 84867025157 scopus 로고    scopus 로고
    • A differential effect on bone morphogenetic protein-2 and vascular endothelial growth factor release timing on osteogenesis at ectopic and orthotopic sites in a large-animal model
    • Geuze RE, Theyse LF, Kempen DH, et al. A differential effect on bone morphogenetic protein-2 and vascular endothelial growth factor release timing on osteogenesis at ectopic and orthotopic sites in a large-animal model. Tissue Eng Part A. 2012; 18: 2052-62.
    • (2012) Tissue Eng Part A , vol.18 , pp. 2052-2062
    • Geuze, R.E.1    Theyse, L.F.2    Kempen, D.H.3
  • 98
    • 84879417406 scopus 로고    scopus 로고
    • Review: development of clinically relevant scaffolds for vascularised bone tissue engineering
    • Liu Y, Lim J, Teoh SH. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv. 2013; 31: 688-705.
    • (2013) Biotechnol Adv , vol.31 , pp. 688-705
    • Liu, Y.1    Lim, J.2    Teoh, S.H.3
  • 99
    • 77956468013 scopus 로고    scopus 로고
    • Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation
    • Fu Q, Rahaman MN, Bai BS, et al. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J Biomed Mater Res A. 2010; 95: 172-9.
    • (2010) J Biomed Mater Res A , vol.95 , pp. 172-179
    • Fu, Q.1    Rahaman, M.N.2    Bai, B.S.3
  • 100
    • 77953644454 scopus 로고    scopus 로고
    • Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences
    • Gorustovich A, Roether J, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev. 2010; 16: 199-207.
    • (2010) Tissue Eng Part B Rev , vol.16 , pp. 199-207
    • Gorustovich, A.1    Roether, J.2    Boccaccini, A.R.3
  • 101
    • 84869093375 scopus 로고    scopus 로고
    • Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds
    • Bi L, Jung S, Day D, et al. Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. J Biomed Mater Res A. 2012; 100: 3267-75.
    • (2012) J Biomed Mater Res A , vol.100 , pp. 3267-3275
    • Bi, L.1    Jung, S.2    Day, D.3
  • 102
    • 84879205212 scopus 로고    scopus 로고
    • Bioactive glass foam scaffolds are remodelled by osteoclasts and support the formation of mineralized matrix and vascular networks in vitro
    • Midha S, van den Bergh W, Kim TB, et al. Bioactive glass foam scaffolds are remodelled by osteoclasts and support the formation of mineralized matrix and vascular networks in vitro. Adv Healthc Mater. 2013; 2: 490-9.
    • (2013) Adv Healthc Mater , vol.2 , pp. 490-499
    • Midha, S.1    van den Bergh, W.2    Kim, T.B.3
  • 103
    • 33645003239 scopus 로고    scopus 로고
    • The in-vitro bioactivity of mesoporous bioactive glasses
    • Yan X, Huang X, Yu C, et al. The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials. 2006; 27: 3396-403.
    • (2006) Biomaterials , vol.27 , pp. 3396-3403
    • Yan, X.1    Huang, X.2    Yu, C.3
  • 104
    • 84855723708 scopus 로고    scopus 로고
    • Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering
    • Wu C, Zhou Y, Fan W, et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials. 2012; 33: 2076-85.
    • (2012) Biomaterials , vol.33 , pp. 2076-2085
    • Wu, C.1    Zhou, Y.2    Fan, W.3
  • 105
    • 77954383096 scopus 로고    scopus 로고
    • Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration
    • Patterson J, Siew R, Herring SW, et al. Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials. 2010; 31: 6772-81.
    • (2010) Biomaterials , vol.31 , pp. 6772-6781
    • Patterson, J.1    Siew, R.2    Herring, S.W.3
  • 106
    • 84881661588 scopus 로고    scopus 로고
    • Shell-core bi-layered scaffolds for engineering of vascularized osteon-like structures
    • Chen X, Ergun A, Gevgilili H, et al. Shell-core bi-layered scaffolds for engineering of vascularized osteon-like structures. Biomaterials. 2013; 34: 8203-12.
    • (2013) Biomaterials , vol.34 , pp. 8203-8212
    • Chen, X.1    Ergun, A.2    Gevgilili, H.3
  • 107
    • 84911805552 scopus 로고    scopus 로고
    • Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds
    • Temple JP, Hutton DL, Hung BP, et al. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J Biomed Mater Res A. 2014; 102: 4317-25.
    • (2014) J Biomed Mater Res A , vol.102 , pp. 4317-4325
    • Temple, J.P.1    Hutton, D.L.2    Hung, B.P.3
  • 108
    • 0036291237 scopus 로고    scopus 로고
    • In vivo remodeling: breakout session summary
    • Badylak SF, Grompe M, Caplan AI, et al. In vivo remodeling: breakout session summary. Ann N Y Acad Sci. 2002; 961: 319-22.
    • (2002) Ann N Y Acad Sci , vol.961 , pp. 319-322
    • Badylak, S.F.1    Grompe, M.2    Caplan, A.I.3
  • 109
    • 75549083040 scopus 로고    scopus 로고
    • Clinical flap prefabrication
    • Guo L, Pribaz JJ. Clinical flap prefabrication. Plast Reconstr Surg. 2009; 124: e340-50.
    • (2009) Plast Reconstr Surg , vol.124 , pp. e340-e350
    • Guo, L.1    Pribaz, J.J.2
  • 110
    • 84885949601 scopus 로고    scopus 로고
    • Prefabrication of a vascularized bone graft with beta tricalcium phosphate using an in vivo bioreactor
    • Han D, Dai K. Prefabrication of a vascularized bone graft with beta tricalcium phosphate using an in vivo bioreactor. Artif Organs. 2013; 37: 884-93.
    • (2013) Artif Organs , vol.37 , pp. 884-893
    • Han, D.1    Dai, K.2
  • 111
    • 78149414932 scopus 로고    scopus 로고
    • Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells
    • Wang L, Fan H, Zhang ZY, et al. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials. 2010; 31: 9452-61.
    • (2010) Biomaterials , vol.31 , pp. 9452-9461
    • Wang, L.1    Fan, H.2    Zhang, Z.Y.3
  • 112
    • 84886723955 scopus 로고    scopus 로고
    • Induced periosteum a complex cellular scaffold for the treatment of large bone defects
    • Cuthbert RJ, Churchman SM, Tan HB, et al. Induced periosteum a complex cellular scaffold for the treatment of large bone defects. Bone. 2013; 57: 484-92.
    • (2013) Bone , vol.57 , pp. 484-492
    • Cuthbert, R.J.1    Churchman, S.M.2    Tan, H.B.3
  • 113
    • 0242653881 scopus 로고    scopus 로고
    • Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction
    • Masquelet AC. Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction. Langenbecks Arch Surg. 2003; 388: 344-6.
    • (2003) Langenbecks Arch Surg , vol.388 , pp. 344-346
    • Masquelet, A.C.1
  • 114
    • 84875795520 scopus 로고    scopus 로고
    • Emerging ideas: engineering the periosteum: revitalizing allografts by mimicking autograft healing
    • Hoffman MD, Benoit DS. Emerging ideas: engineering the periosteum: revitalizing allografts by mimicking autograft healing. Clin Orthop Relat Res. 2013; 471: 721-6.
    • (2013) Clin Orthop Relat Res , vol.471 , pp. 721-726
    • Hoffman, M.D.1    Benoit, D.S.2
  • 115
    • 84883225977 scopus 로고    scopus 로고
    • The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing
    • Hoffman MD, Xie C, Zhang X, et al. The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Biomaterials. 2013; 34: 8887-98.
    • (2013) Biomaterials , vol.34 , pp. 8887-8898
    • Hoffman, M.D.1    Xie, C.2    Zhang, X.3
  • 116
    • 17144384746 scopus 로고    scopus 로고
    • Ovine model for engineering bone segments
    • Cheng MH, Brey EM, Allori A, et al. Ovine model for engineering bone segments. Tissue Eng. 2005; 11: 214-25.
    • (2005) Tissue Eng , vol.11 , pp. 214-225
    • Cheng, M.H.1    Brey, E.M.2    Allori, A.3
  • 117
    • 70349291338 scopus 로고    scopus 로고
    • Periosteum-guided prefabrication of vascularized bone of clinical shape and volume
    • Cheng MH, Brey EM, Allori AC, et al. Periosteum-guided prefabrication of vascularized bone of clinical shape and volume. Plast Reconstr Surg. 2009; 124: 787-95.
    • (2009) Plast Reconstr Surg , vol.124 , pp. 787-795
    • Cheng, M.H.1    Brey, E.M.2    Allori, A.C.3
  • 118
    • 33746825546 scopus 로고    scopus 로고
    • Mandible augmentation for osseointegrated implants using tissue engineering strategies
    • Cheng MH, Brey EM, Ulusal BG, et al. Mandible augmentation for osseointegrated implants using tissue engineering strategies. Plast Reconstr Surg. 2006; 118: 1e-4e.
    • (2006) Plast Reconstr Surg , vol.118 , pp. 1e-4e
    • Cheng, M.H.1    Brey, E.M.2    Ulusal, B.G.3
  • 119
    • 0033714863 scopus 로고    scopus 로고
    • Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix
    • Mian R, Morrison WA, Hurley JV, et al. Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Eng. 2000; 6: 595-603.
    • (2000) Tissue Eng , vol.6 , pp. 595-603
    • Mian, R.1    Morrison, W.A.2    Hurley, J.V.3
  • 120
    • 77950630902 scopus 로고    scopus 로고
    • Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model
    • Beier JP, Horch RE, Hess A, et al. Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. J Tissue Eng Regen Med. 2010; 4: 216-23.
    • (2010) J Tissue Eng Regen Med , vol.4 , pp. 216-223
    • Beier, J.P.1    Horch, R.E.2    Hess, A.3
  • 121
    • 84880703950 scopus 로고    scopus 로고
    • Engineering axially vascularized bone in the sheep arteriovenous-loop model
    • Boos AM, Loew JS, Weigand A, et al. Engineering axially vascularized bone in the sheep arteriovenous-loop model. J Tissue Eng Regen Med. 2013; 7: 654-64.
    • (2013) J Tissue Eng Regen Med , vol.7 , pp. 654-664
    • Boos, A.M.1    Loew, J.S.2    Weigand, A.3
  • 122
    • 84857362822 scopus 로고    scopus 로고
    • In situ formation of porous space maintainers in a composite tissue defect
    • Spicer PP, Kretlow JD, Henslee AM, et al. In situ formation of porous space maintainers in a composite tissue defect. J Biomed Mater Res A. 2012; 100: 827-33.
    • (2012) J Biomed Mater Res A , vol.100 , pp. 827-833
    • Spicer, P.P.1    Kretlow, J.D.2    Henslee, A.M.3
  • 124
    • 84911866640 scopus 로고    scopus 로고
    • In vivo bioreactors for mandibular reconstruction
    • Tatara AM, Wong ME, Mikos AG. In vivo bioreactors for mandibular reconstruction. J Dent Res. 2014; 93: 1196-202.
    • (2014) J Dent Res , vol.93 , pp. 1196-1202
    • Tatara, A.M.1    Wong, M.E.2    Mikos, A.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.