-
1
-
-
75749108220
-
Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges
-
Santos MI, Reis RL. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol Biosci. 2010; 10: 12-27.
-
(2010)
Macromol Biosci
, vol.10
, pp. 12-27
-
-
Santos, M.I.1
Reis, R.L.2
-
2
-
-
81755161439
-
Cell sources for bone tissue engineering: insights from basic science
-
Colnot C. Cell sources for bone tissue engineering: insights from basic science. Tissue Eng Part B Rev. 2011; 17: 449-57.
-
(2011)
Tissue Eng Part B Rev
, vol.17
, pp. 449-457
-
-
Colnot, C.1
-
3
-
-
77955569142
-
Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels
-
Maes C, Kobayashi T, Selig MK, et al. Osteoblast precursors, but not mature osteoblasts, move into developing and fractured bones along with invading blood vessels. Dev Cell. 2010; 19: 329-44.
-
(2010)
Dev Cell
, vol.19
, pp. 329-344
-
-
Maes, C.1
Kobayashi, T.2
Selig, M.K.3
-
4
-
-
45549085001
-
Osteogenesis and angiogenesis: the potential for engineering bone
-
Kanczler JM, Oreffo RO. Osteogenesis and angiogenesis: the potential for engineering bone. Eur Cell Mater. 2008; 15: 100-14.
-
(2008)
Eur Cell Mater
, vol.15
, pp. 100-114
-
-
Kanczler, J.M.1
Oreffo, R.O.2
-
5
-
-
79957859079
-
Angiogenesis in bone regeneration
-
Hankenson KD, Dishowitz M, Gray C, et al. Angiogenesis in bone regeneration. Injury. 2011; 42: 556-61.
-
(2011)
Injury
, vol.42
, pp. 556-561
-
-
Hankenson, K.D.1
Dishowitz, M.2
Gray, C.3
-
6
-
-
0028297686
-
Delayed unions and nonunions of open tibial fractures. Correlation with arteriography results
-
Dickson K, Katzman S, Delgado E, et al. Delayed unions and nonunions of open tibial fractures. Correlation with arteriography results. Clin Orthop Relat Res. 1994; 302: 189-93.
-
(1994)
Clin Orthop Relat Res
, vol.302
, pp. 189-193
-
-
Dickson, K.1
Katzman, S.2
Delgado, E.3
-
7
-
-
4444351450
-
Human primary endothelial cells stimulate human osteoprogenitor cell differentiation
-
Guillotin B, Bourget C, Remy-Zolgadri M, et al. Human primary endothelial cells stimulate human osteoprogenitor cell differentiation. Cell Physiol Biochem. 2004; 14: 325-32.
-
(2004)
Cell Physiol Biochem
, vol.14
, pp. 325-332
-
-
Guillotin, B.1
Bourget, C.2
Remy-Zolgadri, M.3
-
8
-
-
84878941148
-
Cooperation between osteoblastic cells and endothelial cells enhances their phenotypic responses and improves osteoblast function
-
Dariima T, Jin GZ, Lee EJ, et al. Cooperation between osteoblastic cells and endothelial cells enhances their phenotypic responses and improves osteoblast function. Biotechnol Lett. 2013; 35: 1135-43.
-
(2013)
Biotechnol Lett
, vol.35
, pp. 1135-1143
-
-
Dariima, T.1
Jin, G.Z.2
Lee, E.J.3
-
9
-
-
0037162547
-
Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover
-
Street J, Bao M, deGuzman L, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci USA. 2002; 99: 9656-61.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 9656-9661
-
-
Street, J.1
Bao, M.2
deGuzman, L.3
-
10
-
-
37349095299
-
Evaluation of VEGF-mediated signaling in primary human cells reveals a paracrine action for VEGF in osteoblast-mediated crosstalk to endothelial cells
-
Clarkin CE, Emery RJ, Pitsillides AA, et al. Evaluation of VEGF-mediated signaling in primary human cells reveals a paracrine action for VEGF in osteoblast-mediated crosstalk to endothelial cells. J Cell Physiol. 2008; 214: 537-44.
-
(2008)
J Cell Physiol
, vol.214
, pp. 537-544
-
-
Clarkin, C.E.1
Emery, R.J.2
Pitsillides, A.A.3
-
11
-
-
84893661701
-
Interactions of mesenchymal stem cells with endothelial cells
-
Nassiri SM, Rahbarghazi R. Interactions of mesenchymal stem cells with endothelial cells. Stem Cells Dev. 2014; 23: 319-32.
-
(2014)
Stem Cells Dev
, vol.23
, pp. 319-332
-
-
Nassiri, S.M.1
Rahbarghazi, R.2
-
12
-
-
84901301336
-
Mesenchymal stem cells: roles and relationships in vascularization
-
Melchiorri AJ, Nguyen BN, Fisher JP. Mesenchymal stem cells: roles and relationships in vascularization. Tissue Eng Part B Rev. 2014; 20: 218-28.
-
(2014)
Tissue Eng Part B Rev
, vol.20
, pp. 218-228
-
-
Melchiorri, A.J.1
Nguyen, B.N.2
Fisher, J.P.3
-
13
-
-
84887152723
-
Influence of mesenchymal stem cells with endothelial progenitor cells in co-culture on osteogenesis and angiogenesis: an in vitro study
-
Li Q, Wang Z. Influence of mesenchymal stem cells with endothelial progenitor cells in co-culture on osteogenesis and angiogenesis: an in vitro study. Arch Med Res. 2013; 44: 504-13.
-
(2013)
Arch Med Res
, vol.44
, pp. 504-513
-
-
Li, Q.1
Wang, Z.2
-
14
-
-
84876250598
-
Juxtacrine and paracrine interactions of rat marrow-derived mesenchymal stem cells, muscle-derived satellite cells, and neonatal cardiomyocytes with endothelial cells in angiogenesis dynamics
-
Rahbarghazi R, Nassiri SM, Khazraiinia P, et al. Juxtacrine and paracrine interactions of rat marrow-derived mesenchymal stem cells, muscle-derived satellite cells, and neonatal cardiomyocytes with endothelial cells in angiogenesis dynamics. Stem Cells Dev. 2013; 22: 855-65.
-
(2013)
Stem Cells Dev
, vol.22
, pp. 855-865
-
-
Rahbarghazi, R.1
Nassiri, S.M.2
Khazraiinia, P.3
-
15
-
-
12344274486
-
The biology of vascular endothelial growth factors
-
Tammela T, Enholm B, Alitalo K, et al. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005; 65: 550-63.
-
(2005)
Cardiovasc Res
, vol.65
, pp. 550-563
-
-
Tammela, T.1
Enholm, B.2
Alitalo, K.3
-
16
-
-
0037699954
-
The biology of VEGF and its receptors
-
Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003; 9: 669-76.
-
(2003)
Nat Med
, vol.9
, pp. 669-676
-
-
Ferrara, N.1
Gerber, H.P.2
LeCouter, J.3
-
17
-
-
84911061650
-
VEGF receptor 2 (VEGFR2) activation is essential for osteocyte survival induced by mechanotransduction
-
F de Castro L, Maycas M, Bravo B, et al. VEGF receptor 2 (VEGFR2) activation is essential for osteocyte survival induced by mechanotransduction. J Cell Physiol. 2014; 230: 278-85.
-
(2014)
J Cell Physiol
, vol.230
, pp. 278-285
-
-
de Castro, F.L.1
Maycas, M.2
Bravo, B.3
-
18
-
-
54049099247
-
Parathyroid hormone-related protein (107-139) increases human osteoblastic cell survival by activation of vascular endothelial growth factor receptor-2
-
Alonso V, de Gortázar AR, Ardura JA, et al. Parathyroid hormone-related protein (107-139) increases human osteoblastic cell survival by activation of vascular endothelial growth factor receptor-2. J Cell Physiol. 2008; 217: 717-27.
-
(2008)
J Cell Physiol
, vol.217
, pp. 717-727
-
-
Alonso, V.1
de Gortázar, A.R.2
Ardura, J.A.3
-
19
-
-
0036217067
-
Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A
-
Deckers MM, van Bezooijen RL, van der Horst G, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology. 2002; 143: 1545-53.
-
(2002)
Endocrinology
, vol.143
, pp. 1545-1553
-
-
Deckers, M.M.1
van Bezooijen, R.L.2
van der Horst, G.3
-
20
-
-
0042134565
-
Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs)
-
Cheng H, Jiang W, Phillips FM, et al. Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am. 2003; 85A: 1544-52.
-
(2003)
J Bone Joint Surg Am
, vol.85A
, pp. 1544-1552
-
-
Cheng, H.1
Jiang, W.2
Phillips, F.M.3
-
21
-
-
0025216220
-
Recombinant human bone morphogenetic protein induces bone formation
-
Wang EA, Rosen V, D'Alessandro JS, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Acad Sci USA. 1990; 87: 2220-4.
-
(1990)
Proc Natl Acad Sci USA
, vol.87
, pp. 2220-2224
-
-
Wang, E.A.1
Rosen, V.2
D'Alessandro, J.S.3
-
22
-
-
34347388823
-
Role of bone morphogenetic protein 2 in the crosstalk between endothelial progenitor cells and mesenchymal stem cells
-
Raida M, Heymann AC, Gunther C, et al. Role of bone morphogenetic protein 2 in the crosstalk between endothelial progenitor cells and mesenchymal stem cells. Int J Mol Med. 2006; 18: 735-9.
-
(2006)
Int J Mol Med
, vol.18
, pp. 735-739
-
-
Raida, M.1
Heymann, A.C.2
Gunther, C.3
-
23
-
-
0034645070
-
Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction
-
Lecanda F, Warlow PM, Sheikh S, et al. Connexin43 deficiency causes delayed ossification, craniofacial abnormalities, and osteoblast dysfunction. J Cell Biol. 2000; 151: 931-44.
-
(2000)
J Cell Biol
, vol.151
, pp. 931-944
-
-
Lecanda, F.1
Warlow, P.M.2
Sheikh, S.3
-
24
-
-
84879224949
-
Reduction of connexin43 in human endothelial progenitor cells impairs the angiogenic potential
-
Wang HH, Su CH, Wu YJ, et al. Reduction of connexin43 in human endothelial progenitor cells impairs the angiogenic potential. Angiogenesis. 2013; 16: 553-60.
-
(2013)
Angiogenesis
, vol.16
, pp. 553-560
-
-
Wang, H.H.1
Su, C.H.2
Wu, Y.J.3
-
25
-
-
67650438906
-
Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization
-
Santos MI, Unger RE, Sousa RA, et al. Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization. Biomaterials. 2009; 30: 4407-15.
-
(2009)
Biomaterials
, vol.30
, pp. 4407-4415
-
-
Santos, M.I.1
Unger, R.E.2
Sousa, R.A.3
-
26
-
-
0036083738
-
Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication
-
Villars F, Guillotin B, Amedee T, et al. Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. Am J Physiol Cell Physiol. 2002; 282: C775-85.
-
(2002)
Am J Physiol Cell Physiol
, vol.282
, pp. C775-C785
-
-
Villars, F.1
Guillotin, B.2
Amedee, T.3
-
27
-
-
84893754352
-
Molecular mechanisms of osteoblast/osteocyte regulation by connexin43
-
Stains JP, Watkins MP, Grimston SK, et al. Molecular mechanisms of osteoblast/osteocyte regulation by connexin43. Calcif Tissue Int. 2014; 94: 55-67.
-
(2014)
Calcif Tissue Int
, vol.94
, pp. 55-67
-
-
Stains, J.P.1
Watkins, M.P.2
Grimston, S.K.3
-
28
-
-
84920941427
-
Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems
-
Liu Y, Chan JK, Teoh SH. Review of vascularised bone tissue-engineering strategies with a focus on co-culture systems. J Tissue Eng Regen Med. 2012; 9: 85-105.
-
(2012)
J Tissue Eng Regen Med
, vol.9
, pp. 85-105
-
-
Liu, Y.1
Chan, J.K.2
Teoh, S.H.3
-
29
-
-
84884981488
-
Cell-based approaches to the engineering of vascularized bone tissue
-
Rao RR, Stegemann JP. Cell-based approaches to the engineering of vascularized bone tissue. Cytotherapy. 2013; 15: 1309-22.
-
(2013)
Cytotherapy
, vol.15
, pp. 1309-1322
-
-
Rao, R.R.1
Stegemann, J.P.2
-
31
-
-
81755188465
-
Evaluation of angiogenesis and osteogenesis
-
Das A, Botchwey E. Evaluation of angiogenesis and osteogenesis. Tissue Eng Part B Rev. 2011; 17: 403-14.
-
(2011)
Tissue Eng Part B Rev
, vol.17
, pp. 403-414
-
-
Das, A.1
Botchwey, E.2
-
32
-
-
84866840029
-
Vascularized bone tissue engineering: approaches for potential improvement
-
Nguyen LH, Annabi N, Nikkhah M, et al. Vascularized bone tissue engineering: approaches for potential improvement. Tissue Eng Part B Rev. 2012; 18: 363-82.
-
(2012)
Tissue Eng Part B Rev
, vol.18
, pp. 363-382
-
-
Nguyen, L.H.1
Annabi, N.2
Nikkhah, M.3
-
33
-
-
0033213750
-
Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur
-
Zysset PK, Guo XE, Hoffler CE, et al. Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech. 1999; 32: 1005-12.
-
(1999)
J Biomech
, vol.32
, pp. 1005-1012
-
-
Zysset, P.K.1
Guo, X.E.2
Hoffler, C.E.3
-
34
-
-
0027551874
-
Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements
-
Rho JY, Ashman RB, Turner CH. Young's modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech. 1993; 26: 111-9.
-
(1993)
J Biomech
, vol.26
, pp. 111-119
-
-
Rho, J.Y.1
Ashman, R.B.2
Turner, C.H.3
-
35
-
-
0034925754
-
Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic
-
Giesen EB, Ding M, Dalstra M, et al. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic. J Biomech. 2001; 34: 799-803.
-
(2001)
J Biomech
, vol.34
, pp. 799-803
-
-
Giesen, E.B.1
Ding, M.2
Dalstra, M.3
-
36
-
-
0026604141
-
The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials
-
Huiskes R, Weinans H, van Rietbergen B. The relationship between stress shielding and bone resorption around total hip stems and the effects of flexible materials. Clin Orthop Relat Res. 1992; 274: 124-34.
-
(1992)
Clin Orthop Relat Res
, vol.274
, pp. 124-134
-
-
Huiskes, R.1
Weinans, H.2
van Rietbergen, B.3
-
37
-
-
0042121208
-
Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and angiopoietin-1
-
Nakatsu MN, Sainson RCA, Aoto JN, et al. Angiogenic sprouting and capillary lumen formation modeled by human umbilical vein endothelial cells (HUVEC) in fibrin gels: the role of fibroblasts and angiopoietin-1. Microvasc Res. 2003; 66: 102-12.
-
(2003)
Microvasc Res
, vol.66
, pp. 102-112
-
-
Nakatsu, M.N.1
Sainson, R.C.A.2
Aoto, J.N.3
-
38
-
-
77953535753
-
Collagen glycation alters neovascularization in vitro and in vivo
-
Francis-Sedlak ME, Moya ML, Huang JJ, et al. Collagen glycation alters neovascularization in vitro and in vivo. Microvasc Res. 2010; 80: 3-9.
-
(2010)
Microvasc Res
, vol.80
, pp. 3-9
-
-
Francis-Sedlak, M.E.1
Moya, M.L.2
Huang, J.J.3
-
39
-
-
84877795568
-
Effect of aging on metabolic pathways in endothelial progenitor cells
-
Felice F, Barsotti MC, Poredos P, et al. Effect of aging on metabolic pathways in endothelial progenitor cells. Curr Pharm Des. 2013; 19: 2351-65.
-
(2013)
Curr Pharm Des
, vol.19
, pp. 2351-2365
-
-
Felice, F.1
Barsotti, M.C.2
Poredos, P.3
-
40
-
-
39149093357
-
Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies
-
Stolzing A, Jones E, McGonagle D, et al. Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev. 2008; 129: 163-73.
-
(2008)
Mech Ageing Dev
, vol.129
, pp. 163-173
-
-
Stolzing, A.1
Jones, E.2
McGonagle, D.3
-
42
-
-
84878146454
-
Engineering bone tissue substitutes from human induced pluripotent stem cells
-
de Peppo GM, Marcos-Campos I, Kahler DJ, et al. Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci USA. 2013; 110: 8680-5.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. 8680-8685
-
-
de Peppo, G.M.1
Marcos-Campos, I.2
Kahler, D.J.3
-
43
-
-
79953799439
-
Concise review: induced pluripotent stem cells and lineage reprogramming: prospects for bone regeneration
-
Illich DJ, Demir N, Stojkovic M, et al. Concise review: induced pluripotent stem cells and lineage reprogramming: prospects for bone regeneration. Stem Cells. 2011; 29: 555-63.
-
(2011)
Stem Cells
, vol.29
, pp. 555-563
-
-
Illich, D.J.1
Demir, N.2
Stojkovic, M.3
-
44
-
-
33747195353
-
Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors
-
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126: 663-76.
-
(2006)
Cell
, vol.126
, pp. 663-676
-
-
Takahashi, K.1
Yamanaka, S.2
-
45
-
-
0031081297
-
Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo
-
Mizuno M, Shindo M, Kobayashi D, et al. Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone. 1997; 20: 101-7.
-
(1997)
Bone
, vol.20
, pp. 101-107
-
-
Mizuno, M.1
Shindo, M.2
Kobayashi, D.3
-
46
-
-
0030947661
-
Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect
-
Kadiyala S, Jaiswal N, Bruder SP. Culture-expanded, bone marrow-derived mesenchymal stem cells can regenerate a critical-sized segmental bone defect. Tissue Eng. 1997; 3: 173-85.
-
(1997)
Tissue Eng
, vol.3
, pp. 173-185
-
-
Kadiyala, S.1
Jaiswal, N.2
Bruder, S.P.3
-
47
-
-
0032029899
-
Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells
-
Bruder SP, Kurth AA, Shea M, et al. Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res. 1998; 16: 155-62.
-
(1998)
J Orthop Res
, vol.16
, pp. 155-162
-
-
Bruder, S.P.1
Kurth, A.A.2
Shea, M.3
-
48
-
-
17144469316
-
Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones
-
Kon E, Muraglia A, Corsi A, et al. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res. 2000; 49: 328-37.
-
(2000)
J Biomed Mater Res
, vol.49
, pp. 328-337
-
-
Kon, E.1
Muraglia, A.2
Corsi, A.3
-
49
-
-
76749127910
-
Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms
-
Ghajar CM, Kachgal S, Kniazeva E, et al. Mesenchymal cells stimulate capillary morphogenesis via distinct proteolytic mechanisms. Exp Cell Res. 2010; 316: 813-25.
-
(2010)
Exp Cell Res
, vol.316
, pp. 813-825
-
-
Ghajar, C.M.1
Kachgal, S.2
Kniazeva, E.3
-
50
-
-
84873291832
-
Endothelial differentiation of mesenchymal stromal cells: when traditional biology meets mechanotransduction
-
Vittorio O, Jacchetti E, Pacini S, et al. Endothelial differentiation of mesenchymal stromal cells: when traditional biology meets mechanotransduction. Integr Biol. 2013; 5: 291-9.
-
(2013)
Integr Biol
, vol.5
, pp. 291-299
-
-
Vittorio, O.1
Jacchetti, E.2
Pacini, S.3
-
51
-
-
2942523981
-
Mesenchymal stem cells can be differentiated into endothelial cells in vitro
-
Oswald J, Boxberger S, Jorgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells. 2004; 22: 377-84.
-
(2004)
Stem Cells
, vol.22
, pp. 377-384
-
-
Oswald, J.1
Boxberger, S.2
Jorgensen, B.3
-
52
-
-
84870807655
-
Engineering vascularized bone graft with osteogenic and angiogenic lineage differentiated bone marrow mesenchymal stem cells
-
Zhang R, Gao Z, Geng W, et al. Engineering vascularized bone graft with osteogenic and angiogenic lineage differentiated bone marrow mesenchymal stem cells. Artif Organs. 2012; 36: 1036-46.
-
(2012)
Artif Organs
, vol.36
, pp. 1036-1046
-
-
Zhang, R.1
Gao, Z.2
Geng, W.3
-
53
-
-
84865220186
-
Effect of adipose tissue-derived osteogenic and enothelial cells on bone allograft osteogenesis and vascularization in critical-sized calvarial defects
-
Cornejo A, Sahar DE, Stephenson SM, et al. Effect of adipose tissue-derived osteogenic and enothelial cells on bone allograft osteogenesis and vascularization in critical-sized calvarial defects. Tissue Eng Part A. 2012; 18: 1552-61.
-
(2012)
Tissue Eng Part A
, vol.18
, pp. 1552-1561
-
-
Cornejo, A.1
Sahar, D.E.2
Stephenson, S.M.3
-
54
-
-
84885084947
-
Prevascularisation with endothelial progenitor cells improved restoration of the architectural and functional properties of newly formed bone for bone reconstruction
-
Pang H, Wu XH, Fu SL, et al. Prevascularisation with endothelial progenitor cells improved restoration of the architectural and functional properties of newly formed bone for bone reconstruction. Int Orthop. 2013; 37: 753-9.
-
(2013)
Int Orthop
, vol.37
, pp. 753-759
-
-
Pang, H.1
Wu, X.H.2
Fu, S.L.3
-
55
-
-
84883795646
-
3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days
-
Duttenhoefer F, Lara de Frietas R, Meury T, et al. 3D scaffolds co-seeded with human endothelial progenitor and mesenchymal stem cells: evidence of prevascularisation within 7 days. Eur Cell Mater. 2013; 26: 49-65.
-
(2013)
Eur Cell Mater
, vol.26
, pp. 49-65
-
-
Duttenhoefer, F.1
Lara de Frietas, R.2
Meury, T.3
-
56
-
-
84870241190
-
Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold
-
Kang Y, Kim S, Fahrenholtz M, et al. Osteogenic and angiogenic potentials of monocultured and co-cultured human-bone-marrow-derived mesenchymal stem cells and human-umbilical-vein endothelial cells on three-dimensional porous beta-tricalcium phosphate scaffold. Acta Biomater. 2013; 9: 4906-15.
-
(2013)
Acta Biomater
, vol.9
, pp. 4906-4915
-
-
Kang, Y.1
Kim, S.2
Fahrenholtz, M.3
-
57
-
-
84864053203
-
Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs
-
Mendes LF, Pirraco RP, Szymczyk W, et al. Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs. PLoS ONE. 2012; 7: e41051.
-
(2012)
PLoS ONE
, vol.7
, pp. e41051
-
-
Mendes, L.F.1
Pirraco, R.P.2
Szymczyk, W.3
-
58
-
-
84866251102
-
Advances in the formation, use and understanding of multi-cellular spheroids
-
Achilli TM, Meyer J, Morgan JR. Advances in the formation, use and understanding of multi-cellular spheroids. Expert Opin Biol Ther. 2012; 12: 1347-60.
-
(2012)
Expert Opin Biol Ther
, vol.12
, pp. 1347-1360
-
-
Achilli, T.M.1
Meyer, J.2
Morgan, J.R.3
-
59
-
-
84887344291
-
Generation of co-culture spheroids as vascularisation units for bone tissue engineering
-
Walser R, Metzger W, Gorg A, et al. Generation of co-culture spheroids as vascularisation units for bone tissue engineering. Eur Cell Mater. 2013; 26: 222-33.
-
(2013)
Eur Cell Mater
, vol.26
, pp. 222-233
-
-
Walser, R.1
Metzger, W.2
Gorg, A.3
-
60
-
-
72649087696
-
In vivo engineering of a human vasculature for bone tissue engineering applications
-
Steffens L, Wenger A, Stark GB, et al. In vivo engineering of a human vasculature for bone tissue engineering applications. J Cell Mol Med. 2009; 13: 3380-6.
-
(2009)
J Cell Mol Med
, vol.13
, pp. 3380-3386
-
-
Steffens, L.1
Wenger, A.2
Stark, G.B.3
-
61
-
-
79551574175
-
Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects
-
Koob S, Torio-Padron N, Stark GB, et al. Bone formation and neovascularization mediated by mesenchymal stem cells and endothelial cells in critical-sized calvarial defects. Tissue Eng Part A. 2011; 17: 311-21.
-
(2011)
Tissue Eng Part A
, vol.17
, pp. 311-321
-
-
Koob, S.1
Torio-Padron, N.2
Stark, G.B.3
-
62
-
-
66249124257
-
Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature
-
Chen X, Aledia AS, Ghajar CM, et al. Prevascularization of a fibrin-based tissue construct accelerates the formation of functional anastomosis with host vasculature. Tissue Eng Part A. 2009; 15: 1363-71.
-
(2009)
Tissue Eng Part A
, vol.15
, pp. 1363-1371
-
-
Chen, X.1
Aledia, A.S.2
Ghajar, C.M.3
-
63
-
-
81855170599
-
Vascularization of prevascularized and non-prevascularized fibrin-based human adipose tissue constructs after implantation in nude mice
-
Verseijden F, Posthumus-van Sluijs SJ, van Neck JW, et al. Vascularization of prevascularized and non-prevascularized fibrin-based human adipose tissue constructs after implantation in nude mice. J Tissue Eng Regen Med. 2012; 6: 169-78.
-
(2012)
J Tissue Eng Regen Med
, vol.6
, pp. 169-178
-
-
Verseijden, F.1
Posthumus-van Sluijs, S.J.2
van Neck, J.W.3
-
64
-
-
82555178429
-
In vitro model of vascularized bone: synergizing vascular development and osteogenesis
-
Correia C, Grayson WL, Park M, et al. In vitro model of vascularized bone: synergizing vascular development and osteogenesis. PLoS ONE. 2011; 6: e28352.
-
(2011)
PLoS ONE
, vol.6
, pp. e28352
-
-
Correia, C.1
Grayson, W.L.2
Park, M.3
-
65
-
-
84887205900
-
The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo
-
McFadden TM, Duffy GP, Allen AB, et al. The delayed addition of human mesenchymal stem cells to pre-formed endothelial cell networks results in functional vascularization of a collagen-glycosaminoglycan scaffold in vivo. Acta Biomater. 2013; 9: 9303-16.
-
(2013)
Acta Biomater
, vol.9
, pp. 9303-9316
-
-
McFadden, T.M.1
Duffy, G.P.2
Allen, A.B.3
-
66
-
-
84871689974
-
A platelet-rich plasma-based membrane as a periosteal substitute with enhanced osteogenic and angiogenic properties: a new concept for bone repair
-
El Backly RM, Zaky SH, Muraglia A, et al. A platelet-rich plasma-based membrane as a periosteal substitute with enhanced osteogenic and angiogenic properties: a new concept for bone repair. Tissue Eng Part A. 2013; 19: 152-65.
-
(2013)
Tissue Eng Part A
, vol.19
, pp. 152-165
-
-
El Backly, R.M.1
Zaky, S.H.2
Muraglia, A.3
-
67
-
-
84863816833
-
Differential analysis of peripheral blood- and bone marrow-derived endothelial progenitor cells for enhanced vascularization in bone tissue engineering
-
Amini AR, Laurencin CT, Nukavarapu SP. Differential analysis of peripheral blood- and bone marrow-derived endothelial progenitor cells for enhanced vascularization in bone tissue engineering. J Orthop Res. 2012; 30: 1507-15.
-
(2012)
J Orthop Res
, vol.30
, pp. 1507-1515
-
-
Amini, A.R.1
Laurencin, C.T.2
Nukavarapu, S.P.3
-
68
-
-
0035312173
-
Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients
-
Wallace SR, Oken MM, Lunetta KL, et al. Abnormalities of bone marrow mesenchymal cells in multiple myeloma patients. Cancer. 2001; 91: 1219-30.
-
(2001)
Cancer
, vol.91
, pp. 1219-1230
-
-
Wallace, S.R.1
Oken, M.M.2
Lunetta, K.L.3
-
69
-
-
0034839686
-
Bone marrow stromal damage after chemo/radiotherapy: occurrence, consequences and possibilities of treatment
-
Banfi A, Bianchi G, Galotto M, et al. Bone marrow stromal damage after chemo/radiotherapy: occurrence, consequences and possibilities of treatment. Leuk Lymphoma. 2001; 42: 863-70.
-
(2001)
Leuk Lymphoma
, vol.42
, pp. 863-870
-
-
Banfi, A.1
Bianchi, G.2
Galotto, M.3
-
70
-
-
84892744091
-
Adipose-derved mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential
-
Efimenko A, Dzhoyashvili N, Kalinina N, et al. Adipose-derved mesenchymal stromal cells from aged patients with coronary artery disease keep mesenchymal stromal cell properties but exhibit characteristics of aging and have impaired angiogenic potential. Stem Cells Transl Med. 2014; 3: 32-41.
-
(2014)
Stem Cells Transl Med
, vol.3
, pp. 32-41
-
-
Efimenko, A.1
Dzhoyashvili, N.2
Kalinina, N.3
-
71
-
-
0034047440
-
Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy
-
Banfi A, Muraglia A, Dozin B, et al. Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: implications for their use in cell therapy. Exp Hematol. 2000; 28: 707-15.
-
(2000)
Exp Hematol
, vol.28
, pp. 707-715
-
-
Banfi, A.1
Muraglia, A.2
Dozin, B.3
-
72
-
-
78650842405
-
Growth factor delivery-based tissue engineering: general approaches and a review of recent developments
-
Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011; 8: 153-70.
-
(2011)
J R Soc Interface
, vol.8
, pp. 153-170
-
-
Lee, K.1
Silva, E.A.2
Mooney, D.J.3
-
74
-
-
84881136799
-
Platelet-derived growth factor and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells
-
Hutton DL, Moore EM, Gimble JM, et al. Platelet-derived growth factor and spatiotemporal cues induce development of vascularized bone tissue by adipose-derived stem cells. Tissue Eng Part A. 2013; 19: 2076-86.
-
(2013)
Tissue Eng Part A
, vol.19
, pp. 2076-2086
-
-
Hutton, D.L.1
Moore, E.M.2
Gimble, J.M.3
-
75
-
-
39749193991
-
The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation
-
Kanczler JM, Ginty PJ, Barry JJ, et al. The effect of mesenchymal populations and vascular endothelial growth factor delivered from biodegradable polymer scaffolds on bone formation. Biomaterials. 2008; 29: 1892-900.
-
(2008)
Biomaterials
, vol.29
, pp. 1892-1900
-
-
Kanczler, J.M.1
Ginty, P.J.2
Barry, J.J.3
-
76
-
-
67849101635
-
The use of platelet-rich plasma in bone reconstruction therapy
-
Intini G. The use of platelet-rich plasma in bone reconstruction therapy. Biomaterials. 2009; 30: 4956-66.
-
(2009)
Biomaterials
, vol.30
, pp. 4956-4966
-
-
Intini, G.1
-
77
-
-
84866861710
-
Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres
-
Man Y, Wang P, Guo Y, et al. Angiogenic and osteogenic potential of platelet-rich plasma and adipose-derived stem cell laden alginate microspheres. Biomaterials. 2012; 33: 8802-11.
-
(2012)
Biomaterials
, vol.33
, pp. 8802-8811
-
-
Man, Y.1
Wang, P.2
Guo, Y.3
-
78
-
-
0034692116
-
Gene therapy approaches for modulating bone regeneration
-
Winn SR, Hu Y, Sfeir C, et al. Gene therapy approaches for modulating bone regeneration. Adv Drug Deliv Rev. 2000; 42: 121-38.
-
(2000)
Adv Drug Deliv Rev
, vol.42
, pp. 121-138
-
-
Winn, S.R.1
Hu, Y.2
Sfeir, C.3
-
79
-
-
0035073210
-
In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene
-
Cheng SL, Lou J, Wright NM, et al. In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene. Calcif Tissue Int. 2001; 68: 87-94.
-
(2001)
Calcif Tissue Int
, vol.68
, pp. 87-94
-
-
Cheng, S.L.1
Lou, J.2
Wright, N.M.3
-
80
-
-
0038037735
-
Regulation of angiogenesis by hypoxia: role of the HIF system
-
Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003; 9: 677-84.
-
(2003)
Nat Med
, vol.9
, pp. 677-684
-
-
Pugh, C.W.1
Ratcliffe, P.J.2
-
81
-
-
84855750276
-
Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs
-
Zou D, Zhang Z, He J, et al. Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1α mediated BMSCs. Biomaterials. 2012; 33: 2097-108.
-
(2012)
Biomaterials
, vol.33
, pp. 2097-2108
-
-
Zou, D.1
Zhang, Z.2
He, J.3
-
82
-
-
84877044029
-
Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors
-
Helmrich U, Di Maggio N, Güven S, et al. Osteogenic graft vascularization and bone resorption by VEGF-expressing human mesenchymal progenitors. Biomaterials. 2013; 34: 5025-35.
-
(2013)
Biomaterials
, vol.34
, pp. 5025-5035
-
-
Helmrich, U.1
Di Maggio, N.2
Güven, S.3
-
83
-
-
77954487489
-
Angiopoiesis and bone regeneration via co-expression of the hVEGF and hBMP genes from an adeno-associated viral vector in vitro and in vivo
-
Zhang C, Wang KZ, Qiang H, et al. Angiopoiesis and bone regeneration via co-expression of the hVEGF and hBMP genes from an adeno-associated viral vector in vitro and in vivo. Acta Pharmacol Sin. 2010; 31: 821-30.
-
(2010)
Acta Pharmacol Sin
, vol.31
, pp. 821-830
-
-
Zhang, C.1
Wang, K.Z.2
Qiang, H.3
-
84
-
-
53149131019
-
A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery
-
Benglis D, Wang MY, Levi AD. A comprehensive review of the safety profile of bone morphogenetic protein in spine surgery. Neurosurgery. 2008; 62: ONS423-31.
-
(2008)
Neurosurgery
, vol.62
, pp. ONS423-ONS431
-
-
Benglis, D.1
Wang, M.Y.2
Levi, A.D.3
-
85
-
-
0344306513
-
Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds
-
Gomes ME, Sikavitsas VI, Behravesh E, et al. Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J Biomed Mater Res A. 2003; 67: 87-95.
-
(2003)
J Biomed Mater Res A
, vol.67
, pp. 87-95
-
-
Gomes, M.E.1
Sikavitsas, V.I.2
Behravesh, E.3
-
86
-
-
84875595913
-
Sequential application of steady and pulsatile medium perfusion enhanced the formation of engineered bone
-
Correia C, Bhumiratana S, Sousa RA, et al. Sequential application of steady and pulsatile medium perfusion enhanced the formation of engineered bone. Tissue Eng Part A. 2013; 19: 1244-54.
-
(2013)
Tissue Eng Part A
, vol.19
, pp. 1244-1254
-
-
Correia, C.1
Bhumiratana, S.2
Sousa, R.A.3
-
87
-
-
79952139046
-
Tubular perfusion system for the long-term dynamic culture of human mesenchymal stem cells
-
Yeatts AB, Fisher JP. Tubular perfusion system for the long-term dynamic culture of human mesenchymal stem cells. Tissue Eng Part C Methods. 2011; 17: 337-48.
-
(2011)
Tissue Eng Part C Methods
, vol.17
, pp. 337-348
-
-
Yeatts, A.B.1
Fisher, J.P.2
-
88
-
-
84904244995
-
Flow perfusion co-culture of human mesenchymal stem cells and endothelial cells on biodegradable polymer scaffolds
-
Dahlin RL, Gershovich JG, Kasper FK, et al. Flow perfusion co-culture of human mesenchymal stem cells and endothelial cells on biodegradable polymer scaffolds. Ann Biomed Eng. 2014; 42: 1381-90.
-
(2014)
Ann Biomed Eng
, vol.42
, pp. 1381-1390
-
-
Dahlin, R.L.1
Gershovich, J.G.2
Kasper, F.K.3
-
89
-
-
0000987377
-
Tubulent fluid shear stress induces vascular endothelial cell turnover in vitro
-
Davies PF, Remuzzi A, Gordon EJ, et al. Tubulent fluid shear stress induces vascular endothelial cell turnover in vitro. Proc Natl Acad Sci USA. 1986; 83: 2114-7.
-
(1986)
Proc Natl Acad Sci USA
, vol.83
, pp. 2114-2117
-
-
Davies, P.F.1
Remuzzi, A.2
Gordon, E.J.3
-
90
-
-
84872687662
-
Engineered bone tissue associated with vascularization utilizing a rotating wall vessel bioreactor
-
Nishi M, Matsumoto R, Dong J, et al. Engineered bone tissue associated with vascularization utilizing a rotating wall vessel bioreactor. J Biomed Mater Res A. 2013; 101: 421-7.
-
(2013)
J Biomed Mater Res A
, vol.101
, pp. 421-427
-
-
Nishi, M.1
Matsumoto, R.2
Dong, J.3
-
91
-
-
84856183380
-
Bone tissue engineering bioreactors: a role in the clinic?
-
Salter E, Goh B, Hung B, et al. Bone tissue engineering bioreactors: a role in the clinic? Tissue Eng Part B Rev. 2012; 18: 62-75.
-
(2012)
Tissue Eng Part B Rev
, vol.18
, pp. 62-75
-
-
Salter, E.1
Goh, B.2
Hung, B.3
-
92
-
-
84873549333
-
Guided bone regeneration using injectable vascular endothelial growth factor delivery gel
-
Kaigler D, Silva EA, Mooney DJ. Guided bone regeneration using injectable vascular endothelial growth factor delivery gel. J Periodontol. 2013; 84: 230-8.
-
(2013)
J Periodontol
, vol.84
, pp. 230-238
-
-
Kaigler, D.1
Silva, E.A.2
Mooney, D.J.3
-
93
-
-
84878297144
-
Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells
-
Solomon KD, Ong JL. Vascular endothelial growth factor attachment to hydroxyapatite via self-assembled monolayers promotes angiogenic activity of endothelial cells. Thin Solid Films. 2013; 537: 256-62.
-
(2013)
Thin Solid Films
, vol.537
, pp. 256-262
-
-
Solomon, K.D.1
Ong, J.L.2
-
94
-
-
78349309536
-
An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects
-
Kolambkar YM, Dupont KM, Boerckel JD, et al. An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials. 2011; 32: 65-74.
-
(2011)
Biomaterials
, vol.32
, pp. 65-74
-
-
Kolambkar, Y.M.1
Dupont, K.M.2
Boerckel, J.D.3
-
95
-
-
51449094036
-
Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model
-
Patel ZS, Young S, Tabata Y, et al. Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model. Bone. 2008; 43: 931-40.
-
(2008)
Bone
, vol.43
, pp. 931-940
-
-
Patel, Z.S.1
Young, S.2
Tabata, Y.3
-
96
-
-
69249088910
-
Dose effect of dual delivery of vascular endothelial growth factor and bone morphogenetic protein-2 on bone regeneration in a rat critical-size defect model
-
Young S, Patel ZS, Kretlow JD, et al. Dose effect of dual delivery of vascular endothelial growth factor and bone morphogenetic protein-2 on bone regeneration in a rat critical-size defect model. Tissue Eng Part A. 2009; 15: 2347-62.
-
(2009)
Tissue Eng Part A
, vol.15
, pp. 2347-2362
-
-
Young, S.1
Patel, Z.S.2
Kretlow, J.D.3
-
97
-
-
84867025157
-
A differential effect on bone morphogenetic protein-2 and vascular endothelial growth factor release timing on osteogenesis at ectopic and orthotopic sites in a large-animal model
-
Geuze RE, Theyse LF, Kempen DH, et al. A differential effect on bone morphogenetic protein-2 and vascular endothelial growth factor release timing on osteogenesis at ectopic and orthotopic sites in a large-animal model. Tissue Eng Part A. 2012; 18: 2052-62.
-
(2012)
Tissue Eng Part A
, vol.18
, pp. 2052-2062
-
-
Geuze, R.E.1
Theyse, L.F.2
Kempen, D.H.3
-
98
-
-
84879417406
-
Review: development of clinically relevant scaffolds for vascularised bone tissue engineering
-
Liu Y, Lim J, Teoh SH. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv. 2013; 31: 688-705.
-
(2013)
Biotechnol Adv
, vol.31
, pp. 688-705
-
-
Liu, Y.1
Lim, J.2
Teoh, S.H.3
-
99
-
-
77956468013
-
Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation
-
Fu Q, Rahaman MN, Bai BS, et al. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. J Biomed Mater Res A. 2010; 95: 172-9.
-
(2010)
J Biomed Mater Res A
, vol.95
, pp. 172-179
-
-
Fu, Q.1
Rahaman, M.N.2
Bai, B.S.3
-
100
-
-
77953644454
-
Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences
-
Gorustovich A, Roether J, Boccaccini AR. Effect of bioactive glasses on angiogenesis: a review of in vitro and in vivo evidences. Tissue Eng Part B Rev. 2010; 16: 199-207.
-
(2010)
Tissue Eng Part B Rev
, vol.16
, pp. 199-207
-
-
Gorustovich, A.1
Roether, J.2
Boccaccini, A.R.3
-
101
-
-
84869093375
-
Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds
-
Bi L, Jung S, Day D, et al. Evaluation of bone regeneration, angiogenesis, and hydroxyapatite conversion in critical-sized rat calvarial defects implanted with bioactive glass scaffolds. J Biomed Mater Res A. 2012; 100: 3267-75.
-
(2012)
J Biomed Mater Res A
, vol.100
, pp. 3267-3275
-
-
Bi, L.1
Jung, S.2
Day, D.3
-
102
-
-
84879205212
-
Bioactive glass foam scaffolds are remodelled by osteoclasts and support the formation of mineralized matrix and vascular networks in vitro
-
Midha S, van den Bergh W, Kim TB, et al. Bioactive glass foam scaffolds are remodelled by osteoclasts and support the formation of mineralized matrix and vascular networks in vitro. Adv Healthc Mater. 2013; 2: 490-9.
-
(2013)
Adv Healthc Mater
, vol.2
, pp. 490-499
-
-
Midha, S.1
van den Bergh, W.2
Kim, T.B.3
-
103
-
-
33645003239
-
The in-vitro bioactivity of mesoporous bioactive glasses
-
Yan X, Huang X, Yu C, et al. The in-vitro bioactivity of mesoporous bioactive glasses. Biomaterials. 2006; 27: 3396-403.
-
(2006)
Biomaterials
, vol.27
, pp. 3396-3403
-
-
Yan, X.1
Huang, X.2
Yu, C.3
-
104
-
-
84855723708
-
Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering
-
Wu C, Zhou Y, Fan W, et al. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Biomaterials. 2012; 33: 2076-85.
-
(2012)
Biomaterials
, vol.33
, pp. 2076-2085
-
-
Wu, C.1
Zhou, Y.2
Fan, W.3
-
105
-
-
77954383096
-
Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration
-
Patterson J, Siew R, Herring SW, et al. Hyaluronic acid hydrogels with controlled degradation properties for oriented bone regeneration. Biomaterials. 2010; 31: 6772-81.
-
(2010)
Biomaterials
, vol.31
, pp. 6772-6781
-
-
Patterson, J.1
Siew, R.2
Herring, S.W.3
-
106
-
-
84881661588
-
Shell-core bi-layered scaffolds for engineering of vascularized osteon-like structures
-
Chen X, Ergun A, Gevgilili H, et al. Shell-core bi-layered scaffolds for engineering of vascularized osteon-like structures. Biomaterials. 2013; 34: 8203-12.
-
(2013)
Biomaterials
, vol.34
, pp. 8203-8212
-
-
Chen, X.1
Ergun, A.2
Gevgilili, H.3
-
107
-
-
84911805552
-
Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds
-
Temple JP, Hutton DL, Hung BP, et al. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds. J Biomed Mater Res A. 2014; 102: 4317-25.
-
(2014)
J Biomed Mater Res A
, vol.102
, pp. 4317-4325
-
-
Temple, J.P.1
Hutton, D.L.2
Hung, B.P.3
-
109
-
-
75549083040
-
Clinical flap prefabrication
-
Guo L, Pribaz JJ. Clinical flap prefabrication. Plast Reconstr Surg. 2009; 124: e340-50.
-
(2009)
Plast Reconstr Surg
, vol.124
, pp. e340-e350
-
-
Guo, L.1
Pribaz, J.J.2
-
110
-
-
84885949601
-
Prefabrication of a vascularized bone graft with beta tricalcium phosphate using an in vivo bioreactor
-
Han D, Dai K. Prefabrication of a vascularized bone graft with beta tricalcium phosphate using an in vivo bioreactor. Artif Organs. 2013; 37: 884-93.
-
(2013)
Artif Organs
, vol.37
, pp. 884-893
-
-
Han, D.1
Dai, K.2
-
111
-
-
78149414932
-
Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells
-
Wang L, Fan H, Zhang ZY, et al. Osteogenesis and angiogenesis of tissue-engineered bone constructed by prevascularized β-tricalcium phosphate scaffold and mesenchymal stem cells. Biomaterials. 2010; 31: 9452-61.
-
(2010)
Biomaterials
, vol.31
, pp. 9452-9461
-
-
Wang, L.1
Fan, H.2
Zhang, Z.Y.3
-
112
-
-
84886723955
-
Induced periosteum a complex cellular scaffold for the treatment of large bone defects
-
Cuthbert RJ, Churchman SM, Tan HB, et al. Induced periosteum a complex cellular scaffold for the treatment of large bone defects. Bone. 2013; 57: 484-92.
-
(2013)
Bone
, vol.57
, pp. 484-492
-
-
Cuthbert, R.J.1
Churchman, S.M.2
Tan, H.B.3
-
113
-
-
0242653881
-
Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction
-
Masquelet AC. Muscle reconstruction in reconstructive surgery: soft tissue repair and long bone reconstruction. Langenbecks Arch Surg. 2003; 388: 344-6.
-
(2003)
Langenbecks Arch Surg
, vol.388
, pp. 344-346
-
-
Masquelet, A.C.1
-
114
-
-
84875795520
-
Emerging ideas: engineering the periosteum: revitalizing allografts by mimicking autograft healing
-
Hoffman MD, Benoit DS. Emerging ideas: engineering the periosteum: revitalizing allografts by mimicking autograft healing. Clin Orthop Relat Res. 2013; 471: 721-6.
-
(2013)
Clin Orthop Relat Res
, vol.471
, pp. 721-726
-
-
Hoffman, M.D.1
Benoit, D.S.2
-
115
-
-
84883225977
-
The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing
-
Hoffman MD, Xie C, Zhang X, et al. The effect of mesenchymal stem cells delivered via hydrogel-based tissue engineered periosteum on bone allograft healing. Biomaterials. 2013; 34: 8887-98.
-
(2013)
Biomaterials
, vol.34
, pp. 8887-8898
-
-
Hoffman, M.D.1
Xie, C.2
Zhang, X.3
-
116
-
-
17144384746
-
Ovine model for engineering bone segments
-
Cheng MH, Brey EM, Allori A, et al. Ovine model for engineering bone segments. Tissue Eng. 2005; 11: 214-25.
-
(2005)
Tissue Eng
, vol.11
, pp. 214-225
-
-
Cheng, M.H.1
Brey, E.M.2
Allori, A.3
-
117
-
-
70349291338
-
Periosteum-guided prefabrication of vascularized bone of clinical shape and volume
-
Cheng MH, Brey EM, Allori AC, et al. Periosteum-guided prefabrication of vascularized bone of clinical shape and volume. Plast Reconstr Surg. 2009; 124: 787-95.
-
(2009)
Plast Reconstr Surg
, vol.124
, pp. 787-795
-
-
Cheng, M.H.1
Brey, E.M.2
Allori, A.C.3
-
118
-
-
33746825546
-
Mandible augmentation for osseointegrated implants using tissue engineering strategies
-
Cheng MH, Brey EM, Ulusal BG, et al. Mandible augmentation for osseointegrated implants using tissue engineering strategies. Plast Reconstr Surg. 2006; 118: 1e-4e.
-
(2006)
Plast Reconstr Surg
, vol.118
, pp. 1e-4e
-
-
Cheng, M.H.1
Brey, E.M.2
Ulusal, B.G.3
-
119
-
-
0033714863
-
Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix
-
Mian R, Morrison WA, Hurley JV, et al. Formation of new tissue from an arteriovenous loop in the absence of added extracellular matrix. Tissue Eng. 2000; 6: 595-603.
-
(2000)
Tissue Eng
, vol.6
, pp. 595-603
-
-
Mian, R.1
Morrison, W.A.2
Hurley, J.V.3
-
120
-
-
77950630902
-
Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model
-
Beier JP, Horch RE, Hess A, et al. Axial vascularization of a large volume calcium phosphate ceramic bone substitute in the sheep AV loop model. J Tissue Eng Regen Med. 2010; 4: 216-23.
-
(2010)
J Tissue Eng Regen Med
, vol.4
, pp. 216-223
-
-
Beier, J.P.1
Horch, R.E.2
Hess, A.3
-
121
-
-
84880703950
-
Engineering axially vascularized bone in the sheep arteriovenous-loop model
-
Boos AM, Loew JS, Weigand A, et al. Engineering axially vascularized bone in the sheep arteriovenous-loop model. J Tissue Eng Regen Med. 2013; 7: 654-64.
-
(2013)
J Tissue Eng Regen Med
, vol.7
, pp. 654-664
-
-
Boos, A.M.1
Loew, J.S.2
Weigand, A.3
-
122
-
-
84857362822
-
In situ formation of porous space maintainers in a composite tissue defect
-
Spicer PP, Kretlow JD, Henslee AM, et al. In situ formation of porous space maintainers in a composite tissue defect. J Biomed Mater Res A. 2012; 100: 827-33.
-
(2012)
J Biomed Mater Res A
, vol.100
, pp. 827-833
-
-
Spicer, P.P.1
Kretlow, J.D.2
Henslee, A.M.3
-
124
-
-
84911866640
-
In vivo bioreactors for mandibular reconstruction
-
Tatara AM, Wong ME, Mikos AG. In vivo bioreactors for mandibular reconstruction. J Dent Res. 2014; 93: 1196-202.
-
(2014)
J Dent Res
, vol.93
, pp. 1196-1202
-
-
Tatara, A.M.1
Wong, M.E.2
Mikos, A.G.3
|