메뉴 건너뛰기




Volumn 11, Issue 1, 2015, Pages 23-33

MicroRNAs in kidney physiology and disease

Author keywords

[No Author keywords available]

Indexed keywords

MICRORNA; MICRORNA 146A; MICRORNA 148B; MICRORNA 150; MICRORNA 17; MICRORNA 192; MICRORNA 194; MICRORNA 200A; MICRORNA 204; MICRORNA 21; MICRORNA 214; MICRORNA 215; MICRORNA 223; MICRORNA 25; MICRORNA 29A; MICRORNA 29B; MICRORNA 29C; MICRORNA 433; MICRORNA 886; MICRORNA 92; MICRORNA 93; MICRORNA LET 7A-G; SMAD PROTEIN; TRANSFORMING GROWTH FACTOR BETA1; UNCLASSIFIED DRUG;

EID: 84924908396     PISSN: 17595061     EISSN: 1759507X     Source Type: Journal    
DOI: 10.1038/nrneph.2014.202     Document Type: Review
Times cited : (317)

References (135)
  • 1
    • 82455162521 scopus 로고    scopus 로고
    • The contribution of chronic kidney disease to the global burden of major noncommunicable diseases
    • Couser, W. G., Remuzzi, G., Mendis, S. & Tonelli, M. The contribution of chronic kidney disease to the global burden of major noncommunicable diseases. Kidney Int. 80, 1258-1270 (2011).
    • (2011) Kidney Int , vol.80 , pp. 1258-1270
    • Couser, W.G.1    Remuzzi, G.2    Mendis, S.3    Tonelli, M.4
  • 2
    • 82355190219 scopus 로고    scopus 로고
    • Cellular and molecular mechanisms of renal fibrosis
    • Liu, Y. Cellular and molecular mechanisms of renal fibrosis. Nat. Rev. Nephrol. 7, 684-696 (2011).
    • (2011) Nat. Rev. Nephrol , vol.7 , pp. 684-696
    • Liu, Y.1
  • 3
    • 84859413955 scopus 로고    scopus 로고
    • Role of TGF-β in chronic kidney disease: An integration of tubular, glomerular and vascular effects
    • Lopez-Hernαndez, F. J. & Lopez-Novoa, J. M. Role of TGF-β in chronic kidney disease: an integration of tubular, glomerular and vascular effects. Cell Tissue Res. 347, 141-154 (2012).
    • (2012) Cell Tissue Res , vol.347 , pp. 141-154
    • López-Hernández, F.J.1    López-Novoa, J.M.2
  • 5
    • 84872104961 scopus 로고    scopus 로고
    • Role of the TGF-β/BMP-7/Smad pathways in renal diseases
    • Meng, X. M., Chung, A. C. & Lan, H. Y. Role of the TGF-β/BMP-7/Smad pathways in renal diseases. Clin. Sci. (Lond.) 124, 243-254 (2013).
    • (2013) Clin. Sci. (Lond) , vol.124 , pp. 243-254
    • Meng, X.M.1    Chung, A.C.2    Lan, H.Y.3
  • 6
    • 84862019046 scopus 로고    scopus 로고
    • Circulating and urinary microRNAs in kidney disease
    • Lorenzen, J. M. & Thum, T. Circulating and urinary microRNAs in kidney disease. Clin. J. Am. Soc. Nephrol. 7, 1528-1533 (2012).
    • (2012) Clin. J. Am. Soc. Nephrol , vol.7 , pp. 1528-1533
    • Lorenzen, J.M.1    Thum, T.2
  • 8
    • 84891818318 scopus 로고    scopus 로고
    • Mirbase: Annotating high confidence microRNAs using deep sequencing data
    • Kozomara, A. & Griffiths-Jones, S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68-D73 (2014).
    • (2014) Nucleic Acids Res , vol.42 , pp. D68-D73
    • Kozomara, A.1    Griffiths-Jones, S.2
  • 9
    • 72849147946 scopus 로고    scopus 로고
    • MicroRNAs and epigenetic regulation in the mammalian inner ear: Implications for deafness
    • Friedman, L. M. & Avraham, K. B. MicroRNAs and epigenetic regulation in the mammalian inner ear: implications for deafness. Mamm. Genome 20, 581-603 (2009).
    • (2009) Mamm. Genome , vol.20 , pp. 581-603
    • Friedman, L.M.1    Avraham, K.B.2
  • 10
    • 58249088751 scopus 로고    scopus 로고
    • MicroRNAs: Target recognition and regulatory functions
    • Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233 (2009).
    • (2009) Cell , vol.136 , pp. 215-233
    • Bartel D. ., P.1
  • 11
    • 79551627496 scopus 로고    scopus 로고
    • A parsimonious model for gene regulation by miRNAs
    • Djuranovic, S., Nahvi, A. & Green, R. A parsimonious model for gene regulation by miRNAs. Science 331, 550-553 (2011).
    • (2011) Science , vol.331 , pp. 550-553
    • Djuranovic, S.1    Nahvi, A.2    Green, R.3
  • 12
    • 84863230332 scopus 로고    scopus 로고
    • The miR-29 family: Genomics, cell biology, and relevance to renal and cardiovascular injury
    • Kriegel, A. J., Liu, Y., Fang, Y., Ding, X. & Liang, M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol. Genomics 44, 237-244 (2012).
    • (2012) Physiol. Genomics , vol.44 , pp. 237-244
    • Kriegel, A.J.1    Liu, Y.2    Fang, Y.3    Ding, X.4    Liang, M.5
  • 13
    • 77955902024 scopus 로고    scopus 로고
    • The widespread regulation of microRNA biogenesis, function and decay
    • Krol, J., Loedige, I. & Filipowicz, W. The widespread regulation of microRNA biogenesis, function and decay. Nat. Rev. Genet. 11, 597-610 (2010).
    • (2010) Nat. Rev. Genet , vol.11 , pp. 597-610
    • Krol, J.1    Loedige, I.2    Filipowicz, W.3
  • 14
    • 13944260434 scopus 로고    scopus 로고
    • Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes
    • Baskerville, S. & Bartel, D. P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241-247 (2005).
    • (2005) RNA , vol.11 , pp. 241-247
    • Baskerville, S.1    Bartel, D.P.2
  • 15
    • 77958583070 scopus 로고    scopus 로고
    • Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-β-induced collagen expression in kidney cells
    • Kato, M. et al. Post-transcriptional up-regulation of Tsc-22 by Ybx1, a target of miR-216a, mediates TGF-β-induced collagen expression in kidney cells. J. Biol. Chem. 285, 34004-34015 (2010).
    • (2010) J. Biol. Chem , vol.285 , pp. 34004-34015
    • Kato, M.1
  • 16
    • 84886396594 scopus 로고    scopus 로고
    • Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: Implications for diabetic nephropathy
    • Alvarez, M. L., Khosroheidari, M., Eddy, E. & Kiefer, J. Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLoS ONE 8, e77468 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e77468
    • Alvarez, M.L.1    Khosroheidari, M.2    Eddy, E.3    Kiefer, J.4
  • 17
    • 34547441263 scopus 로고    scopus 로고
    • Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR
    • Lytle, J. R., Yario, T. A. & Steitz, J. A. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5' UTR as in the 3' UTR. Proc. Natl Acad. Sci. USA 104, 9667-9672 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 9667-9672
    • Lytle, J.R.1    Yario, T.A.2    Steitz, J.A.3
  • 18
    • 84859632747 scopus 로고    scopus 로고
    • MiRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay
    • Djuranovic, S., Nahvi, A. & Green, R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science 336, 237-240 (2012).
    • (2012) Science , vol.336 , pp. 237-240
    • Djuranovic, S.1    Nahvi, A.2    Green, R.3
  • 19
    • 78751477191 scopus 로고    scopus 로고
    • Gene silencing by microRNAs: Contributions of translational repression and mRNA decay
    • Huntzinger, E. & Izaurralde, E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat. Rev. Genet. 12, 99-110 (2011).
    • (2011) Nat. Rev. Genet , vol.12 , pp. 99-110
    • Huntzinger, E.1    Izaurralde, E.2
  • 20
    • 43449090367 scopus 로고    scopus 로고
    • MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation
    • Orom, U. A., Nielsen, F. C. & Lund, A. H. MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. Mol. Cell 30, 460-471 (2008).
    • (2008) Mol. Cell , vol.30 , pp. 460-471
    • Orom, U.A.1    Nielsen, F.C.2    Lund, A.H.3
  • 21
    • 40349094597 scopus 로고    scopus 로고
    • MicroRNA-373 induces expression of genes with complementary promoter sequences
    • Place, R. F., Li, L. C., Pookot, D., Noonan, E. J. & Dahiya, R. MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc. Natl Acad. Sci. USA 105, 1608-1613 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 1608-1613
    • Place, R.F.1    Li, L.C.2    Pookot, D.3    Noonan, E.J.4    Dahiya, R.5
  • 22
    • 84863116324 scopus 로고    scopus 로고
    • MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways
    • Chau, B. N. et al. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med. 4, 121ra18 (2012).
    • (2012) Sci. Transl. Med , vol.4 , pp. 121ra18
    • Chau, B.N.1
  • 23
    • 84891795621 scopus 로고    scopus 로고
    • MicroRNA-214 antagonism protects against renal fibrosis
    • Denby, L. et al. MicroRNA-214 antagonism protects against renal fibrosis. J. Am. Soc. Nephrol. 25, 65-80 (2014).
    • (2014) J. Am. Soc. Nephrol , vol.25 , pp. 65-80
    • Denby, L.1
  • 24
    • 84867593042 scopus 로고    scopus 로고
    • MicroRNA degradation and turnover: Regulating the regulators
    • Zhang, Z., Qin, Y. W., Brewer, G. & Jing, Q. MicroRNA degradation and turnover: regulating the regulators. Wiley Interdiscip. Rev. RNA 3, 593-600 (2012).
    • (2012) Wiley Interdiscip. Rev. RNA , vol.3 , pp. 593-600
    • Zhang, Z.1    Qin, Y.W.2    Brewer, G.3    Jing, Q.4
  • 25
    • 16344383409 scopus 로고    scopus 로고
    • Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs
    • Sun, Y. et al. Development of a micro-array to detect human and mouse microRNAs and characterization of expression in human organs. Nucleic Acids Res. 32, e188 (2004).
    • (2004) Nucleic Acids Res , vol.32 , pp. e188
    • Sun, Y.1
  • 26
    • 34250877841 scopus 로고    scopus 로고
    • A mammalian microRNA expression atlas based on small RNA library sequencing
    • Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401-1414 (2007).
    • (2007) Cell , vol.129 , pp. 1401-1414
    • Landgraf, P.1
  • 27
    • 83355170575 scopus 로고    scopus 로고
    • Quantitative analysis of miRNA expression in seven human foetal and adult organs
    • Tang, Y., Liu, D., Zhang, L., Ingvarsson, S. & Chen, H. Quantitative analysis of miRNA expression in seven human foetal and adult organs. PLoS ONE 6, e28730 (2011).
    • (2011) PLoS ONE , vol.6 , pp. e28730
    • Tang, Y.1    Liu, D.2    Zhang, L.3    Ingvarsson, S.4    Chen, H.5
  • 28
    • 79957743788 scopus 로고    scopus 로고
    • The pro-apoptotic protein Bim is a microRNA target in kidney progenitors
    • Ho, J. et al. The pro-apoptotic protein Bim is a microRNA target in kidney progenitors. J. Am. Soc. Nephrol. 22, 1053-1063 (2011).
    • (2011) J. Am. Soc. Nephrol , vol.22 , pp. 1053-1063
    • Ho, J.1
  • 29
    • 78651387406 scopus 로고    scopus 로고
    • Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney
    • Nagalakshmi, V. K. et al. Dicer regulates the development of nephrogenic and ureteric compartments in the mammalian kidney. Kidney Int. 79, 317-330 (2011).
    • (2011) Kidney Int , vol.79 , pp. 317-330
    • Nagalakshmi, V.K.1
  • 30
    • 84907208178 scopus 로고    scopus 로고
    • MicroRNA-17~92 is required for nephrogenesis and renal function
    • Marrone, A. K. et al. MicroRNA-17~92 is required for nephrogenesis and renal function. J. Am. Soc. Nephrol. 25, 1440-1452 (2014).
    • (2014) J. Am. Soc. Nephrol , vol.25 , pp. 1440-1452
    • Marrone, A.K.1
  • 31
    • 62749161460 scopus 로고    scopus 로고
    • Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract
    • Pastorelli, L. M. et al. Genetic analyses reveal a requirement for Dicer1 in the mouse urogenital tract. Mamm. Genome 20, 140-151 (2009).
    • (2009) Mamm. Genome , vol.20 , pp. 140-151
    • Pastorelli, L.M.1
  • 32
    • 84870533401 scopus 로고    scopus 로고
    • MicroRNAs regulate renal tubule maturation through modulation of Pkd1
    • Patel, V. et al. MicroRNAs regulate renal tubule maturation through modulation of Pkd1. J. Am. Soc. Nephrol. 23, 1941-1948 (2012).
    • (2012) J. Am. Soc. Nephrol , vol.23 , pp. 1941-1948
    • Patel, V.1
  • 33
    • 55749112141 scopus 로고    scopus 로고
    • Podocyte-selective deletion of Dicer induces proteinuria and glomerulosclerosis
    • Shi, S. et al. Podocyte-selective deletion of Dicer induces proteinuria and glomerulosclerosis. J. Am. Soc. Nephrol. 19, 2159-2169 (2008).
    • (2008) J. Am. Soc. Nephrol , vol.19 , pp. 2159-2169
    • Shi, S.1
  • 34
    • 55749103053 scopus 로고    scopus 로고
    • Podocyte-specific deletion of Dicer alters cytoskeletal dynamics and causes glomerular disease
    • Harvey, S. J. et al. Podocyte-specific deletion of Dicer alters cytoskeletal dynamics and causes glomerular disease. J. Am. Soc. Nephrol. 19, 2150-2158 (2008).
    • (2008) J. Am. Soc. Nephrol , vol.19 , pp. 2150-2158
    • Harvey, S.J.1
  • 35
    • 55749104549 scopus 로고    scopus 로고
    • Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury
    • Ho, J. et al. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J. Am. Soc. Nephrol. 19, 2069-2075 (2008).
    • (2008) J. Am. Soc. Nephrol , vol.19 , pp. 2069-2075
    • Ho, J.1
  • 36
    • 80052843522 scopus 로고    scopus 로고
    • The next level of complexity: Post-transcriptional regulation by microRNAs
    • Kramann, R. & Moeller, M. J. The next level of complexity: post-transcriptional regulation by microRNAs. Kidney Int. 80, 692-693 (2011).
    • (2011) Kidney Int , vol.80 , pp. 692-693
    • Kramann, R.1    Moeller, M.J.2
  • 37
    • 80052829130 scopus 로고    scopus 로고
    • The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy
    • Zhdanova, O. et al. The inducible deletion of Drosha and microRNAs in mature podocytes results in a collapsing glomerulopathy. Kidney Int. 80, 719-730 (2011).
    • (2011) Kidney Int , vol.80 , pp. 719-730
    • Zhdanova, O.1
  • 38
    • 77952578159 scopus 로고    scopus 로고
    • Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury
    • Wei, Q. et al. Targeted deletion of Dicer from proximal tubules protects against renal ischemia-reperfusion injury. J. Am. Soc. Nephrol. 21, 756-761 (2010).
    • (2010) J. Am. Soc. Nephrol , vol.21 , pp. 756-761
    • Wei, Q.1
  • 39
    • 79955593914 scopus 로고    scopus 로고
    • MicroRNAs as mediators and therapeutic targets in chronic kidney disease
    • Lorenzen, J. M., Haller, H. & Thum, T. MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nat. Rev. Nephrol. 7, 286-294 (2011).
    • (2011) Nat. Rev. Nephrol , vol.7 , pp. 286-294
    • Lorenzen, J.M.1    Haller, H.2    Thum, T.3
  • 40
    • 77949905292 scopus 로고    scopus 로고
    • The microRNA-processing enzyme Dicer maintains juxtaglomerular cells
    • Sequeira-Lopez, M. L. et al. The microRNA-processing enzyme Dicer maintains juxtaglomerular cells. J. Am. Soc. Nephrol. 21, 460-467 (2010).
    • (2010) J. Am. Soc. Nephrol , vol.21 , pp. 460-467
    • Sequeira-Lopez, M.L.1
  • 41
    • 84875429634 scopus 로고    scopus 로고
    • MicroRNAs contribute to the maintenance of cell-type-specific physiological characteristics: MiR-192 targets Na+/K+-ATPase β1
    • Mladinov, D., Liu, Y., Mattson, D. L. & Liang, M. MicroRNAs contribute to the maintenance of cell-type-specific physiological characteristics: miR-192 targets Na+/K+-ATPase β1. Nucleic Acids Res. 41, 1273-1283 (2013).
    • (2013) Nucleic Acids Res , vol.41 , pp. 1273-1283
    • Mladinov, D.1    Liu, Y.2    Mattson, D.L.3    Liang, M.4
  • 42
    • 77957876795 scopus 로고    scopus 로고
    • Regulation of WNK1 expression by miR-192 and aldosterone
    • Elvira-Matelot, E. et al. Regulation of WNK1 expression by miR-192 and aldosterone. J. Am. Soc. Nephrol. 21, 1724-1731 (2010).
    • (2010) J. Am. Soc. Nephrol , vol.21 , pp. 1724-1731
    • Elvira-Matelot, E.1
  • 43
    • 84923999066 scopus 로고    scopus 로고
    • Aldosterone regulates microRNAs in the cortical collecting duct to alter sodium transport
    • Edinger, R. S. et al. Aldosterone regulates microRNAs in the cortical collecting duct to alter sodium transport. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2013090931.
    • J. Am. Soc. Nephrol
    • Edinger, R.S.1
  • 44
    • 79551486517 scopus 로고    scopus 로고
    • Tonicity-responsive microRNAs contribute to the maximal induction of osmoregulatory transcription factor OREBP in response to high-NaCl hypertonicity
    • Huang, W. et al. Tonicity-responsive microRNAs contribute to the maximal induction of osmoregulatory transcription factor OREBP in response to high-NaCl hypertonicity. Nucleic Acids Res. 39, 475-485 (2011).
    • (2011) Nucleic Acids Res , vol.39 , pp. 475-485
    • Huang, W.1
  • 45
    • 79957687792 scopus 로고    scopus 로고
    • MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1
    • Lin, D. H., Yue, P., Pan, C., Sun, P. & Wang, W. H. MicroRNA 802 stimulates ROMK channels by suppressing caveolin-1. J. Am. Soc. Nephrol. 22, 1087-1098 (2011).
    • (2011) J. Am. Soc. Nephrol , vol.22 , pp. 1087-1098
    • Lin, D.H.1    Yue, P.2    Pan, C.3    Sun, P.4    Wang, W.H.5
  • 46
    • 84891545746 scopus 로고    scopus 로고
    • MicroRNA-194 (miR-194) regulates ROMK channel activity by targeting intersectin 1
    • Lin, D. H., Yue, P., Zhang, C. & Wang, W. H. MicroRNA-194 (miR-194) regulates ROMK channel activity by targeting intersectin 1. Am. J. Physiol. Renal Physiol. 306, F53-F60 (2014).
    • (2014) Am. J. Physiol. Renal Physiol , vol.306 , pp. F53-F60
    • Lin, D.H.1    Yue, P.2    Zhang, C.3    Wang, W.H.4
  • 47
    • 84862804787 scopus 로고    scopus 로고
    • Claudin-14 regulates renal Ca++ transport in response to CaSR signalling via a novel microRNA pathway
    • Gong, Y. et al. Claudin-14 regulates renal Ca++ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J. 31, 1999-2012 (2012).
    • (2012) EMBO J , vol.31 , pp. 1999-2012
    • Gong, Y.1
  • 48
    • 84901432828 scopus 로고    scopus 로고
    • Claudin-14 underlies Ca++-sensing receptor-mediated Ca++ metabolism via NFAT-microRNA-based mechanisms
    • Gong, Y. & Hou, J. Claudin-14 underlies Ca++-sensing receptor-mediated Ca++ metabolism via NFAT-microRNA-based mechanisms. J. Am. Soc. Nephrol. 25, 745-760 (2014).
    • (2014) J. Am. Soc. Nephrol , vol.25 , pp. 745-760
    • Gong, Y.1    Hou, J.2
  • 49
    • 67650225263 scopus 로고    scopus 로고
    • Essential role of TGF-β signaling in glucose-induced cell hypertrophy
    • Wu, L. & Derynck, R. Essential role of TGF-β signaling in glucose-induced cell hypertrophy. Dev. Cell 17, 35-48 (2009).
    • (2009) Dev. Cell , vol.17 , pp. 35-48
    • Wu, L.1    Derynck, R.2
  • 50
    • 79960112806 scopus 로고    scopus 로고
    • Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis
    • Rüster, C. & Wolf, G. Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis. J. Am. Soc. Nephrol. 22, 1189-1199 (2011).
    • (2011) J. Am. Soc. Nephrol , vol.22 , pp. 1189-1199
    • Rüster, C.1    Wolf, G.2
  • 51
    • 84893415235 scopus 로고    scopus 로고
    • NADPH oxidase-dependent redox signaling in TGF-β-mediated fibrotic responses
    • Jiang, F., Liu, G. S., Dusting, G. J. & Chan, E. C. NADPH oxidase-dependent redox signaling in TGF-β-mediated fibrotic responses. Redox Biol. 2, 267-272 (2014).
    • (2014) Redox Biol , vol.2 , pp. 267-272
    • Jiang, F.1    Liu, G.S.2    Dusting, G.J.3    Chan, E.C.4
  • 52
    • 79959702777 scopus 로고    scopus 로고
    • Chronic kidney disease growth factors in renal fibrosis
    • Boor, P. & Floege, J. Chronic kidney disease growth factors in renal fibrosis. Clin. Exp. Pharmacol. Physiol. 38, 441-450 (2011).
    • (2011) Clin. Exp. Pharmacol. Physiol , vol.38 , pp. 441-450
    • Boor, P.1    Floege, J.2
  • 53
    • 0038717407 scopus 로고    scopus 로고
    • BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury
    • Zeisberg, M. et al. BMP-7 counteracts TGF-β1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat. Med. 9, 964-968 (2003).
    • (2003) Nat. Med , vol.9 , pp. 964-968
    • Zeisberg, M.1
  • 54
    • 84882287587 scopus 로고    scopus 로고
    • The origin of scar-forming kidney myofibroblasts
    • Eddy, A. A. The origin of scar-forming kidney myofibroblasts. Nat. Med. 19, 964-966 (2013).
    • (2013) Nat. Med , vol.19 , pp. 964-966
    • Eddy, A.A.1
  • 55
    • 84882289111 scopus 로고    scopus 로고
    • Origin and function of myofibroblasts in kidney fibrosis
    • LeBleu, V. S. et al. Origin and function of myofibroblasts in kidney fibrosis. Nat. Med. 19, 1047-1053 (2013).
    • (2013) Nat. Med , vol.19 , pp. 1047-1053
    • Lebleu, V.S.1
  • 56
    • 67049167761 scopus 로고    scopus 로고
    • The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases
    • Ha, H., Oh, E. Y. & Lee, H. B. The role of plasminogen activator inhibitor 1 in renal and cardiovascular diseases. Nat. Rev. Nephrol. 5, 203-211 (2009).
    • (2009) Nat. Rev. Nephrol , vol.5 , pp. 203-211
    • Ha, H.1    Oh, E.Y.2    Lee, H.B.3
  • 57
    • 84856255286 scopus 로고    scopus 로고
    • TGF-β1 SMAD/p53/USF2 PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis
    • Samarakoon, R., Overstreet, J. M., Higgins, S. P. & Higgins, P. J. TGF-β1 SMAD/p53/USF2 PAI-1 transcriptional axis in ureteral obstruction-induced renal fibrosis. Cell Tissue Res. 347, 117-128 (2012).
    • (2012) Cell Tissue Res , vol.347 , pp. 117-128
    • Samarakoon, R.1    Overstreet, J.M.2    Higgins, S.P.3    Higgins, P.J.4
  • 58
    • 0035694910 scopus 로고    scopus 로고
    • Smad regulation in TGF-β signal transduction
    • Moustakas, A., Souchelnytskyi, S. & Heldin, C. H. Smad regulation in TGF-β signal transduction. J. Cell Sci. 114, 4359-4369 (2001).
    • (2001) J. Cell Sci , vol.114 , pp. 4359-4369
    • Moustakas, A.1    Souchelnytskyi, S.2    Heldin, C.H.3
  • 59
    • 84882727355 scopus 로고    scopus 로고
    • Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species
    • Samarakoon, R. et al. Induction of renal fibrotic genes by TGF-β1 requires EGFR activation, p53 and reactive oxygen species. Cell. Signal. 25, 2198-2209 (2013).
    • (2013) Cell. Signal , vol.25 , pp. 2198-2209
    • Samarakoon, R.1
  • 60
    • 0142104985 scopus 로고    scopus 로고
    • Smad-dependent and Smad-independent pathways in TGF-β family signalling
    • Derynck, R. & Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 425, 577-584 (2003).
    • (2003) Nature , vol.425 , pp. 577-584
    • Derynck, R.1    Zhang, Y.E.2
  • 61
    • 0036670339 scopus 로고    scopus 로고
    • Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity
    • Inman, G. J., Nicolαs, F. J. & Hill, C. S. Nucleocytoplasmic shuttling of Smads 2, 3, and 4 permits sensing of TGF-β receptor activity. Mol. Cell 10, 283-294 (2002).
    • (2002) Mol. Cell , vol.10 , pp. 283-294
    • Inman, G.J.1    Nicolás, F.J.2    Hill, C.S.3
  • 62
    • 84862705487 scopus 로고    scopus 로고
    • Crosstalk between TGF-β signaling and the microRNA machinery
    • Butz, H., Rαcz, K., Hunyady, L. & Patacs, A. Crosstalk between TGF-β signaling and the microRNA machinery. Trends Pharmacol. Sci. 33, 382-393 (2012).
    • (2012) Trends Pharmacol. Sci , vol.33 , pp. 382-393
    • Butz, H.1    Rácz, K.2    Hunyady, L.3    Patócs, A.4
  • 63
    • 77955484492 scopus 로고    scopus 로고
    • Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha
    • Davis, B. N., Hilyard, A. C., Nguyen, P. H., Lagna, G. & Hata, A. Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol. Cell 39, 373-384 (2010).
    • (2010) Mol. Cell , vol.39 , pp. 373-384
    • Davis, B.N.1    Hilyard, A.C.2    Nguyen, P.H.3    Lagna, G.4    Hata, A.5
  • 64
    • 46449128469 scopus 로고    scopus 로고
    • SMAD proteins control DROSHA-mediated microRNA maturation
    • Davis, B. N., Hilyard, A. C., Lagna, G. & Hata, A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature 454, 56-61 (2008).
    • (2008) Nature , vol.454 , pp. 56-61
    • Davis, B.N.1    Hilyard, A.C.2    Lagna, G.3    Hata, A.4
  • 65
    • 80052316668 scopus 로고    scopus 로고
    • Smad3-mediated upregulation of miR-21 promotes renal fibrosis
    • Zhong, X., Chung, A. C., Chen, H. Y., Meng, X. M. & Lan, H. Y. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J. Am. Soc. Nephrol. 22, 1668-1681 (2011).
    • (2011) J. Am. Soc. Nephrol , vol.22 , pp. 1668-1681
    • Zhong, X.1    Chung, A.C.2    Chen, H.Y.3    Meng, X.M.4    Lan, H.Y.5
  • 66
    • 79960946532 scopus 로고    scopus 로고
    • TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29
    • Qin, W. et al. TGF-β/Smad3 signaling promotes renal fibrosis by inhibiting miR-29. J. Am. Soc. Nephrol. 22, 1462-1474 (2011).
    • (2011) J. Am. Soc. Nephrol , vol.22 , pp. 1462-1474
    • Qin, W.1
  • 67
    • 77955611511 scopus 로고    scopus 로고
    • Mir-192 mediates TGF-β/Smad3-driven renal fibrosis
    • Chung, A. C., Huang, X. R., Meng, X. & Lan, H. Y. miR-192 mediates TGF-β/Smad3-driven renal fibrosis. J. Am. Soc. Nephrol. 21, 1317-1325 (2010).
    • (2010) J. Am. Soc. Nephrol , vol.21 , pp. 1317-1325
    • Chung, A.C.1    Huang, X.R.2    Meng, X.3    Lan, H.Y.4
  • 68
    • 33847682663 scopus 로고    scopus 로고
    • MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors
    • Kato, M. et al. MicroRNA-192 in diabetic kidney glomeruli and its function in TGF-β-induced collagen expression via inhibition of E-box repressors. Proc. Natl Acad. Sci. USA 104, 3432-3437 (2007).
    • (2007) Proc. Natl Acad. Sci. USA , vol.104 , pp. 3432-3437
    • Kato, M.1
  • 69
    • 84857979740 scopus 로고    scopus 로고
    • Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy
    • Putta, S. et al. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J. Am. Soc. Nephrol. 23, 458-469 (2012).
    • (2012) J. Am. Soc. Nephrol , vol.23 , pp. 458-469
    • Putta, S.1
  • 70
    • 77954274715 scopus 로고    scopus 로고
    • E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-β
    • Wang, B. et al. E-cadherin expression is regulated by miR-192/215 by a mechanism that is independent of the profibrotic effects of transforming growth factor-β. Diabetes 59, 1794-1802 (2010).
    • (2010) Diabetes , vol.59 , pp. 1794-1802
    • Wang, B.1
  • 71
    • 80054771082 scopus 로고    scopus 로고
    • Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192
    • Sun, L. et al. Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192. J. Pathol. 225, 364-377 (2011).
    • (2011) J. Pathol , vol.225 , pp. 364-377
    • Sun, L.1
  • 72
    • 84878912696 scopus 로고    scopus 로고
    • TGF-β induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy
    • Kato, M. et al. TGF-β induces acetylation of chromatin and of Ets-1 to alleviate repression of miR-192 in diabetic nephropathy. Sci. Signal. 6, ra43 (2013).
    • (2013) Sci. Signal , vol.6 , pp. ra43
    • Kato, M.1
  • 73
    • 84859462370 scopus 로고    scopus 로고
    • Transforming growth factor β1 represses proximal tubular cell microRNA-192 expression through decreased hepatocyte nuclear factor DNA binding
    • Jenkins, R. H., Martin, J., Phillips, A. O., Bowen, T. & Fraser, D. J. Transforming growth factor β1 represses proximal tubular cell microRNA-192 expression through decreased hepatocyte nuclear factor DNA binding. Biochem. J. 443, 407-416 (2012).
    • (2012) Biochem. J , vol.443 , pp. 407-416
    • Jenkins, R.H.1    Martin, J.2    Phillips, A.O.3    Bowen, T.4    Fraser, D.J.5
  • 74
    • 30944440898 scopus 로고    scopus 로고
    • Roles of HNF-1β in kidney development and congenital cystic diseases
    • Igarashi, P., Shao, X., McNally, B. T. & Hiesberger, T. Roles of HNF-1β in kidney development and congenital cystic diseases. Kidney Int. 68, 1944-1947 (2005).
    • (2005) Kidney Int , vol.68 , pp. 1944-1947
    • Igarashi, P.1    Shao, X.2    McNally, B.T.3    Hiesberger, T.4
  • 75
    • 80052248898 scopus 로고    scopus 로고
    • A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells
    • Kato, M. et al. A microRNA circuit mediates transforming growth factor-β1 autoregulation in renal glomerular mesangial cells. Kidney Int. 80, 358-368 (2011).
    • (2011) Kidney Int , vol.80 , pp. 358-368
    • Kato, M.1
  • 76
    • 84884793994 scopus 로고    scopus 로고
    • Transforming growth factor-β-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy
    • Deshpande, S. D. et al. Transforming growth factor-β-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Diabetes 62, 3151-3162 (2013).
    • (2013) Diabetes , vol.62 , pp. 3151-3162
    • Deshpande, S.D.1
  • 77
    • 77649270362 scopus 로고    scopus 로고
    • High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells
    • Du, B. et al. High glucose down-regulates miR-29a to increase collagen IV production in HK-2 cells. FEBS Lett. 584, 811-816 (2010).
    • (2010) FEBS Lett , vol.584 , pp. 811-816
    • Du, B.1
  • 78
    • 84863115180 scopus 로고    scopus 로고
    • Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis
    • Wang, B. et al. Suppression of microRNA-29 expression by TGF-β1 promotes collagen expression and renal fibrosis. J. Am. Soc. Nephrol. 23, 252-265 (2012).
    • (2012) J. Am. Soc. Nephrol , vol.23 , pp. 252-265
    • Wang, B.1
  • 79
    • 84888234169 scopus 로고    scopus 로고
    • Canonical transforming growth factor-β signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29
    • Ramdas, V., McBride, M., Denby, L. & Baker, A. H. Canonical transforming growth factor-β signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29. Am. J. Pathol. 183, 1885-1896 (2013).
    • (2013) Am. J. Pathol , vol.183 , pp. 1885-1896
    • Ramdas, V.1    McBride, M.2    Denby, L.3    Baker, A.H.4
  • 80
    • 84897577501 scopus 로고    scopus 로고
    • MicroRNA-29b inhibits diabetic nephropathy in db/db mice
    • Chen, H. Y. et al. MicroRNA-29b inhibits diabetic nephropathy in db/db mice. Mol. Ther. 22, 842-853 (2014).
    • (2014) Mol. Ther , vol.22 , pp. 842-853
    • Chen, H.Y.1
  • 81
    • 84865963313 scopus 로고    scopus 로고
    • MicroRNA-324-3p promotes renal fibrosis and is a target of ACE inhibition
    • Macconi, D. et al. MicroRNA-324-3p promotes renal fibrosis and is a target of ACE inhibition. J. Am. Soc. Nephrol. 23, 1496-1505 (2012).
    • (2012) J. Am. Soc. Nephrol , vol.23 , pp. 1496-1505
    • Macconi, D.1
  • 82
    • 57349186092 scopus 로고    scopus 로고
    • MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy
    • Wang, Q. et al. MicroRNA-377 is up-regulated and can lead to increased fibronectin production in diabetic nephropathy. FASEB J. 22, 4126-4135 (2008).
    • (2008) FASEB J , vol.22 , pp. 4126-4135
    • Wang, Q.1
  • 83
    • 84878655790 scopus 로고    scopus 로고
    • MiRNA-200b represses transforming growth factor-β1-induced EMT and fibronectin expression in kidney proximal tubular cells
    • Tang, O., Chen, X. M., Shen, S., Hahn, M. & Pollock, C. A. MiRNA-200b represses transforming growth factor-β1-induced EMT and fibronectin expression in kidney proximal tubular cells. Am. J. Physiol. Renal Physiol. 304, F1266-F1273 (2013).
    • (2013) Am. J. Physiol. Renal Physiol , vol.304 , pp. F1266-F1273
    • Tang, O.1    Chen, X.M.2    Shen, S.3    Hahn, M.4    Pollock, C.A.5
  • 84
    • 84862909357 scopus 로고    scopus 로고
    • The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression
    • Xiong, M. et al. The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am. J. Physiol. Renal Physiol. 302, F369-F379 (2012).
    • (2012) Am. J. Physiol. Renal Physiol , vol.302 , pp. F369-F379
    • Xiong, M.1
  • 85
    • 77949892330 scopus 로고    scopus 로고
    • Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy
    • Krupa, A. et al. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J. Am. Soc. Nephrol. 21, 438-447 (2010).
    • (2010) J. Am. Soc. Nephrol , vol.21 , pp. 438-447
    • Krupa, A.1
  • 86
    • 84881161493 scopus 로고    scopus 로고
    • A microRNA-30e/mitochondrial uncoupling protein 2 axis mediates TGF-β1-induced tubular epithelial cell extracellular matrix production and kidney fibrosis
    • Jiang, L. et al. A microRNA-30e/mitochondrial uncoupling protein 2 axis mediates TGF-β1-induced tubular epithelial cell extracellular matrix production and kidney fibrosis. Kidney Int. 84, 285-296 (2013).
    • (2013) Kidney Int , vol.84 , pp. 285-296
    • Jiang, L.1
  • 87
    • 80052342295 scopus 로고    scopus 로고
    • MiR-21 and miR-214 are consistently modulated during renal injury in rodent models
    • Denby, L. et al. miR-21 and miR-214 are consistently modulated during renal injury in rodent models. Am. J. Pathol. 179, 661-672 (2011).
    • (2011) Am. J. Pathol , vol.179 , pp. 661-672
    • Denby, L.1
  • 88
    • 67349089523 scopus 로고    scopus 로고
    • MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice
    • Zhang, Z. et al. MicroRNA-21 protects from mesangial cell proliferation induced by diabetic nephropathy in db/db mice. FEBS Lett. 583, 2009-2014 (2009).
    • (2009) FEBS Lett , vol.583 , pp. 2009-2014
    • Zhang, Z.1
  • 89
    • 67650085171 scopus 로고    scopus 로고
    • TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN
    • Kato, M. et al. TGF-β activates Akt kinase through a microRNA-dependent amplifying circuit targeting PTEN. Nat. Cell Biol. 11, 881-889 (2009).
    • (2009) Nat. Cell Biol , vol.11 , pp. 881-889
    • Kato, M.1
  • 90
    • 33747043113 scopus 로고    scopus 로고
    • Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN
    • Mahimainathan, L., Das, F., Venkatesan, B. & Choudhury, G. G. Mesangial cell hypertrophy by high glucose is mediated by downregulation of the tumor suppressor PTEN. Diabetes 55, 2115-2125 (2006).
    • (2006) Diabetes , vol.55 , pp. 2115-2125
    • Mahimainathan, L.1    Das, F.2    Venkatesan, B.3    Choudhury, G.G.4
  • 91
    • 80052102044 scopus 로고    scopus 로고
    • Diabetes complications: The microRNA perspective
    • Kantharidis, P., Wang, B., Carew, R. M. & Lan, H. Y. Diabetes complications: the microRNA perspective. Diabetes 60, 1832-1837 (2011).
    • (2011) Diabetes , vol.60 , pp. 1832-1837
    • Kantharidis, P.1    Wang, B.2    Carew, R.M.3    Lan, H.Y.4
  • 92
    • 84878269299 scopus 로고    scopus 로고
    • MiR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes
    • Zhong, X. et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia 56, 663-674 (2013).
    • (2013) Diabetologia , vol.56 , pp. 663-674
    • Zhong, X.1
  • 93
    • 84881239289 scopus 로고    scopus 로고
    • FOG2 protein down-regulation by transforming growth factor-β1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy
    • Park, J. T. et al. FOG2 protein down-regulation by transforming growth factor-β1-induced microRNA-200b/c leads to Akt kinase activation and glomerular mesangial hypertrophy related to diabetic nephropathy. J. Biol. Chem. 288, 22469-22480 (2013).
    • (2013) J. Biol. Chem , vol.288 , pp. 22469-22480
    • Park, J.T.1
  • 94
    • 84888638018 scopus 로고    scopus 로고
    • The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway
    • Li, R. et al. The microRNA miR-433 promotes renal fibrosis by amplifying the TGF-β/Smad3-Azin1 pathway. Kidney Int. 84, 1129-1144 (2013).
    • (2013) Kidney Int , vol.84 , pp. 1129-1144
    • Li, R.1
  • 95
    • 84895900338 scopus 로고    scopus 로고
    • Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b
    • Wang, B. et al. Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney Int. 85, 352-361 (2014).
    • (2014) Kidney Int , vol.85 , pp. 352-361
    • Wang, B.1
  • 96
    • 84875711412 scopus 로고    scopus 로고
    • Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFβR1
    • Brennan, E. P. et al. Lipoxins attenuate renal fibrosis by inducing let-7c and suppressing TGFβR1. J. Am. Soc. Nephrol. 24, 627-637 (2013).
    • (2013) J. Am. Soc. Nephrol , vol.24 , pp. 627-637
    • Brennan, E.P.1
  • 97
    • 84899144933 scopus 로고    scopus 로고
    • Tongxinluo ameliorates renal structure and function by regulating miR-21-induced epithelial-mesenchymal transition in diabetic nephropathy
    • Wang, J. Y. et al. Tongxinluo ameliorates renal structure and function by regulating miR-21-induced epithelial-mesenchymal transition in diabetic nephropathy. Am. J. Physiol. Renal Physiol. 306, F486-F495 (2014).
    • (2014) Am. J. Physiol. Renal Physiol , vol.306 , pp. F486-F495
    • Wang, J.Y.1
  • 98
    • 84921677205 scopus 로고    scopus 로고
    • MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction
    • Lin, C. L. et al. MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. J. Am. Soc. Nephrol. 25, 1698-1709 (2014).
    • (2014) J. Am. Soc. Nephrol , vol.25 , pp. 1698-1709
    • Lin, C.L.1
  • 99
    • 79953215711 scopus 로고    scopus 로고
    • MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy
    • Long, J., Wang, Y., Wang, W., Chang, B. H. & Danesh, F. R. MicroRNA-29c is a signature microRNA under high glucose conditions that targets Sprouty homolog 1, and its in vivo knockdown prevents progression of diabetic nephropathy. J. Biol. Chem. 286, 11837-11848 (2011).
    • (2011) J. Biol. Chem , vol.286 , pp. 11837-11848
    • Long, J.1    Wang, Y.2    Wang, W.3    Chang, B.H.4    Danesh, F.R.5
  • 100
    • 78149352664 scopus 로고    scopus 로고
    • Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy
    • Fu, Y. et al. Regulation of NADPH oxidase activity is associated with miRNA-25-mediated NOX4 expression in experimental diabetic nephropathy. Am. J. Nephrol. 32, 581-589 (2010).
    • (2010) Am. J. Nephrol , vol.32 , pp. 581-589
    • Fu, Y.1
  • 101
    • 77954941124 scopus 로고    scopus 로고
    • Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions
    • Long, J., Wang, Y., Wang, W., Chang, B. H. & Danesh, F. R. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J. Biol. Chem. 285, 23457-23465 (2010).
    • (2010) J. Biol. Chem , vol.285 , pp. 23457-23465
    • Long, J.1    Wang, Y.2    Wang, W.3    Chang, B.H.4    Danesh, F.R.5
  • 102
    • 84872860732 scopus 로고    scopus 로고
    • Urinary microRNA profiling in the nephropathy of type 1 diabetes
    • Argyropoulos, C. et al. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS ONE 8, e54662 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e54662
    • Argyropoulos, C.1
  • 103
    • 84892387470 scopus 로고    scopus 로고
    • Urinary exosomal microRNAs in incipient diabetic nephropathy
    • Barutta, F. et al. Urinary exosomal microRNAs in incipient diabetic nephropathy. PLoS ONE 8, e73798 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e73798
    • Barutta, F.1
  • 104
    • 84867529562 scopus 로고    scopus 로고
    • Micro-RNA expression in the urinary sediment of patients with chronic kidney diseases
    • Szeto, C. C. et al. Micro-RNA expression in the urinary sediment of patients with chronic kidney diseases. Dis. Markers 33, 137-144 (2012).
    • (2012) Dis. Markers , vol.33 , pp. 137-144
    • Szeto, C.C.1
  • 105
    • 84860609648 scopus 로고    scopus 로고
    • Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy
    • Serino, G., Sallustio, F., Cox, S. N., Pesce, F. & Schena, F. P. Abnormal miR-148b expression promotes aberrant glycosylation of IgA1 in IgA nephropathy. J. Am. Soc. Nephrol. 23, 814-824 (2012).
    • (2012) J. Am. Soc. Nephrol , vol.23 , pp. 814-824
    • Serino, G.1    Sallustio, F.2    Cox, S.N.3    Pesce, F.4    Schena, F.P.5
  • 106
    • 73349086540 scopus 로고    scopus 로고
    • Intrarenal expression of microRNAs in patients with IgA nephropathy
    • Wang, G. et al. Intrarenal expression of microRNAs in patients with IgA nephropathy. Lab. Invest. 90, 98-103 (2010).
    • (2010) Lab. Invest , vol.90 , pp. 98-103
    • Wang, G.1
  • 107
    • 79959761647 scopus 로고    scopus 로고
    • Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy
    • Wang, G. et al. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy. Dis. Markers 30, 171-179 (2011).
    • (2011) Dis. Markers , vol.30 , pp. 171-179
    • Wang, G.1
  • 108
    • 84895141786 scopus 로고    scopus 로고
    • MiR-223 downregulation promotes glomerular endothelial cell activation by upregulating importin α4 and α5 in IgA nephropathy
    • Bao, H. et al. MiR-223 downregulation promotes glomerular endothelial cell activation by upregulating importin α4 and α5 in IgA nephropathy. Kidney Int. 85, 624-635 (2014).
    • (2014) Kidney Int , vol.85 , pp. 624-635
    • Bao, H.1
  • 109
    • 84867897248 scopus 로고    scopus 로고
    • Urinary miR-21, miR-29, and miR-93: Novel biomarkers of fibrosis
    • Wang, G. et al. Urinary miR-21, miR-29, and miR-93: novel biomarkers of fibrosis. Am. J. Nephrol. 36, 412-418 (2012).
    • (2012) Am. J. Nephrol , vol.36 , pp. 412-418
    • Wang, G.1
  • 110
    • 67349211490 scopus 로고    scopus 로고
    • Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients
    • Dai, Y. et al. Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol. Int. 29, 749-754 (2009).
    • (2009) Rheumatol. Int , vol.29 , pp. 749-754
    • Dai, Y.1
  • 111
    • 84879902677 scopus 로고    scopus 로고
    • MiR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1
    • Zhou, H. et al. miR-150 promotes renal fibrosis in lupus nephritis by downregulating SOCS1. J. Am. Soc. Nephrol. 24, 1073-1087 (2013).
    • (2013) J. Am. Soc. Nephrol , vol.24 , pp. 1073-1087
    • Zhou, H.1
  • 112
    • 84879920799 scopus 로고    scopus 로고
    • Post-transcriptional gene regulation makes things clearer in renal fibrosis
    • Tomasoni, S. & Benigni, A. Post-transcriptional gene regulation makes things clearer in renal fibrosis. J. Am. Soc. Nephrol. 24, 1026-1028 (2013).
    • (2013) J. Am. Soc. Nephrol , vol.24 , pp. 1026-1028
    • Tomasoni, S.1    Benigni, A.2
  • 113
    • 84860191079 scopus 로고    scopus 로고
    • Glomerular and tubulointerstitial miR-638, miR-198 and miR-146a expression in lupus nephritis
    • Lu, J. et al. Glomerular and tubulointerstitial miR-638, miR-198 and miR-146a expression in lupus nephritis. Nephrology (Carlton) 17, 346-351 (2012).
    • (2012) Nephrology (Carlton) , vol.17 , pp. 346-351
    • Lu, J.1
  • 114
    • 84876554579 scopus 로고    scopus 로고
    • Circulating microRNA expression profiles associated with systemic lupus erythematosus
    • Carlsen, A. L. et al. Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis Rheum. 65, 1324-1334 (2013).
    • (2013) Arthritis Rheum , vol.65 , pp. 1324-1334
    • Carlsen, A.L.1
  • 115
    • 84871343459 scopus 로고    scopus 로고
    • Urinary sediment ICAM-1 level in lupus nephritis
    • Guan, J. et al. Urinary sediment ICAM-1 level in lupus nephritis. Lupus 21, 1190-1195 (2012).
    • (2012) Lupus , vol.21 , pp. 1190-1195
    • Guan, J.1
  • 116
    • 77956410132 scopus 로고    scopus 로고
    • Identification of unique microRNA signature associated with lupus nephritis
    • Te, J. L. et al. Identification of unique microRNA signature associated with lupus nephritis. PLoS ONE 5, e10344 (2010).
    • (2010) PLoS ONE , vol.5 , pp. e10344
    • Te, J.L.1
  • 118
    • 84879526558 scopus 로고    scopus 로고
    • MiR-17~92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease
    • Patel, V. et al. miR-17~92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease. Proc. Natl Acad. Sci. USA 110, 10765-10770 (2013).
    • (2013) Proc. Natl Acad. Sci. USA , vol.110 , pp. 10765-10770
    • Patel, V.1
  • 119
    • 77955654013 scopus 로고    scopus 로고
    • MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation
    • Sun, H. et al. MicroRNA-17 post-transcriptionally regulates polycystic kidney disease-2 gene and promotes cell proliferation. Mol. Biol. Rep. 37, 2951-2958 (2010).
    • (2010) Mol. Biol. Rep , vol.37 , pp. 2951-2958
    • Sun, H.1
  • 120
    • 2142659368 scopus 로고    scopus 로고
    • Mutation of hepatocyte nuclear factor-1β inhibits Pkhd1 gene expression and produces renal cysts in mice
    • Hiesberger, T. et al. Mutation of hepatocyte nuclear factor-1β inhibits Pkhd1 gene expression and produces renal cysts in mice. J. Clin. Invest. 113, 814-825 (2004).
    • (2004) J. Clin. Invest , vol.113 , pp. 814-825
    • Hiesberger, T.1
  • 121
    • 77950502479 scopus 로고    scopus 로고
    • The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity
    • Tran, U. et al. The RNA-binding protein bicaudal C regulates polycystin 2 in the kidney by antagonizing miR-17 activity. Development 137, 1107-1116 (2010).
    • (2010) Development , vol.137 , pp. 1107-1116
    • Tran, U.1
  • 122
    • 84871753412 scopus 로고    scopus 로고
    • Bicc1 links the regulation of cAMP signaling in polycystic kidneys to microRNA-induced gene silencing
    • Piazzon, N., Maisonneuve, C., Guilleret, I., Rotman, S. & Constam, D. B. Bicc1 links the regulation of cAMP signaling in polycystic kidneys to microRNA-induced gene silencing. J. Mol. Cell Biol. 4, 398-408 (2012).
    • (2012) J. Mol. Cell Biol , vol.4 , pp. 398-408
    • Piazzon, N.1    Maisonneuve, C.2    Guilleret, I.3    Rotman, S.4    Constam, D.B.5
  • 123
    • 60749100351 scopus 로고    scopus 로고
    • Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease
    • Pandey, P. et al. Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease. BMC Genomics 9, 624 (2008).
    • (2008) BMC Genomics , vol.9 , pp. 624
    • Pandey, P.1
  • 124
    • 79955012441 scopus 로고    scopus 로고
    • Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease
    • Pandey, P., Qin, S., Ho, J., Zhou, J. & Kreidberg, J. A. Systems biology approach to identify transcriptome reprogramming and candidate microRNA targets during the progression of polycystic kidney disease. BMC Syst. Biol. 5, 56 (2011).
    • (2011) BMC Syst. Biol , vol.5 , pp. 56
    • Pandey, P.1    Qin, S.2    Ho, J.3    Zhou, J.4    Kreidberg, J.A.5
  • 125
    • 84872247653 scopus 로고    scopus 로고
    • Parallel analysis of mRNA and microRNA microarray profiles to explore functional regulatory patterns in polycystic kidney disease: Using PKD/Mhm rat model
    • Dweep, H., Sticht, C., Kharkar, A., Pandey, P. & Gretz, N. Parallel analysis of mRNA and microRNA microarray profiles to explore functional regulatory patterns in polycystic kidney disease: using PKD/Mhm rat model. PLoS ONE 8, e53780 (2013).
    • (2013) PLoS ONE , vol.8 , pp. e53780
    • Dweep, H.1    Sticht, C.2    Kharkar, A.3    Pandey, P.4    Gretz, N.5
  • 126
    • 84900448037 scopus 로고    scopus 로고
    • Urine microRNA as potential biomarkers of autosomal dominant polycystic kidney disease progression: Description of miRNA profiles at baseline
    • Ben-Dov, I. Z. et al. Urine microRNA as potential biomarkers of autosomal dominant polycystic kidney disease progression: description of miRNA profiles at baseline. PLoS ONE 9, e86856 (2014).
    • (2014) PLoS ONE , vol.9 , pp. e86856
    • Ben-Dov, I.Z.1
  • 127
    • 40849146967 scopus 로고    scopus 로고
    • Microarray analysis of MicroRNA expression in acute rejection after renal transplantation
    • Sui, W. et al. Microarray analysis of MicroRNA expression in acute rejection after renal transplantation. Transpl. Immunol. 19, 81-85 (2008).
    • (2008) Transpl. Immunol , vol.19 , pp. 81-85
    • Sui, W.1
  • 128
    • 65249122551 scopus 로고    scopus 로고
    • MicroRNA expression profiles predictive of human renal allograft status
    • Anglicheau, D. et al. MicroRNA expression profiles predictive of human renal allograft status. Proc. Natl Acad. Sci. USA 106, 5330-5335 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 5330-5335
    • Anglicheau, D.1
  • 129
    • 84877593979 scopus 로고    scopus 로고
    • MiRNA profiling discriminates types of rejection and injury in human renal allografts
    • Wilflingseder, J. et al. miRNA profiling discriminates types of rejection and injury in human renal allografts. Transplantation 95, 835-841 (2013).
    • (2013) Transplantation , vol.95 , pp. 835-841
    • Wilflingseder, J.1
  • 130
    • 80053303952 scopus 로고    scopus 로고
    • Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients
    • Lorenzen, J. M. et al. Urinary miR-210 as a mediator of acute T-cell mediated rejection in renal allograft recipients. Am. J. Transplant. 11, 2221-2227 (2011).
    • (2011) Am. J. Transplant , vol.11 , pp. 2221-2227
    • Lorenzen, J.M.1
  • 131
    • 84859005710 scopus 로고    scopus 로고
    • Upregulation of miR-142-3p in peripheral blood mononuclear cells of operationally tolerant patients with a renal transplant
    • Danger, R. et al. Upregulation of miR-142-3p in peripheral blood mononuclear cells of operationally tolerant patients with a renal transplant. J. Am. Soc. Nephrol. 23, 597-606 (2012).
    • (2012) J. Am. Soc. Nephrol , vol.23 , pp. 597-606
    • Danger, R.1
  • 132
    • 80053338178 scopus 로고    scopus 로고
    • MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA
    • Scian, M. J. et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am. J. Transplant. 11, 2110-2122 (2011).
    • (2011) Am. J. Transplant , vol.11 , pp. 2110-2122
    • Scian, M.J.1
  • 133
    • 84871621846 scopus 로고    scopus 로고
    • MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis
    • Ben-Dov, I. Z. et al. MicroRNA sequence profiles of human kidney allografts with or without tubulointerstitial fibrosis. Transplantation 94, 1086-1094 (2012).
    • (2012) Transplantation , vol.94 , pp. 1086-1094
    • Ben-Dov, I.Z.1
  • 134
    • 84895902220 scopus 로고    scopus 로고
    • The urine microRNA profile may help monitor post-transplant renal graft function
    • Maluf, D. G. et al. The urine microRNA profile may help monitor post-transplant renal graft function. Kidney Int. 85, 439-449 (2014).
    • (2014) Kidney Int , vol.85 , pp. 439-449
    • Maluf, D.G.1
  • 135
    • 84877258007 scopus 로고    scopus 로고
    • Treatment of HCV infection by targeting microRNA
    • Janssen, H. L. et al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med. 368, 1685-1694 (2013).
    • (2013) N. Engl. J. Med , vol.368 , pp. 1685-1694
    • Janssen, H.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.