메뉴 건너뛰기




Volumn 26, Issue 2, 2015, Pages 59-68

Power2: The power of yeast genetics applied to the powerhouse of the cell

Author keywords

Interorganelle communication; Lipid metabolism; Mitochondria; Oxidative phosphorylation; Transporters; Yeast

Indexed keywords

ADENOSINE DIPHOSPHATE; ADENOSINE TRIPHOSPHATE; CARDIOLIPIN; DICARBOXYLATE TRANSPORTER; PROTON TRANSPORTING ADENOSINE TRIPHOSPHATE SYNTHASE; SUCCINATE DEHYDROGENASE (UBIQUINONE);

EID: 84923094136     PISSN: 10432760     EISSN: 18793061     Source Type: Journal    
DOI: 10.1016/j.tem.2014.12.002     Document Type: Review
Times cited : (21)

References (136)
  • 1
    • 23844558266 scopus 로고    scopus 로고
    • A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
    • Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39:359-407.
    • (2005) Annu. Rev. Genet. , vol.39 , pp. 359-407
    • Wallace, D.C.1
  • 2
    • 84878782495 scopus 로고    scopus 로고
    • The power of yeast to model diseases of the powerhouse of the cell
    • Baile M.G., Claypool S.M. The power of yeast to model diseases of the powerhouse of the cell. Front. Biosci. 2013, 18:241-278.
    • (2013) Front. Biosci. , vol.18 , pp. 241-278
    • Baile, M.G.1    Claypool, S.M.2
  • 3
    • 84902491546 scopus 로고    scopus 로고
    • The yeast deletion collection: a decade of functional genomics
    • Giaever G., Nislow C. The yeast deletion collection: a decade of functional genomics. Genetics 2014, 197:451-465.
    • (2014) Genetics , vol.197 , pp. 451-465
    • Giaever, G.1    Nislow, C.2
  • 4
    • 3142536716 scopus 로고    scopus 로고
    • Exploration of essential gene functions via titratable promoter alleles
    • Mnaimneh S., et al. Exploration of essential gene functions via titratable promoter alleles. Cell 2004, 118:31-44.
    • (2004) Cell , vol.118 , pp. 31-44
    • Mnaimneh, S.1
  • 5
    • 40149109321 scopus 로고    scopus 로고
    • A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae
    • Jones G.M., et al. A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae. Nat. Methods 2008, 5:239-241.
    • (2008) Nat. Methods , vol.5 , pp. 239-241
    • Jones, G.M.1
  • 6
    • 34147092780 scopus 로고    scopus 로고
    • Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae
    • Hu Y., et al. Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae. Genome Res. 2007, 17:536-543.
    • (2007) Genome Res. , vol.17 , pp. 536-543
    • Hu, Y.1
  • 7
    • 0142184341 scopus 로고    scopus 로고
    • Global analysis of protein localization in budding yeast
    • Huh W.K., et al. Global analysis of protein localization in budding yeast. Nature 2003, 425:686-691.
    • (2003) Nature , vol.425 , pp. 686-691
    • Huh, W.K.1
  • 8
    • 26844489762 scopus 로고    scopus 로고
    • Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile
    • Schuldiner M., et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 2005, 123:507-519.
    • (2005) Cell , vol.123 , pp. 507-519
    • Schuldiner, M.1
  • 9
    • 84871792997 scopus 로고    scopus 로고
    • Mitochondrial protein import: common principles and physiological networks
    • Dudek J., et al. Mitochondrial protein import: common principles and physiological networks. Biochim. Biophys. Acta 2013, 1833:274-285.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 274-285
    • Dudek, J.1
  • 10
    • 84910141948 scopus 로고    scopus 로고
    • Mitochondrial dynamics and inheritance during cell division, development and disease
    • Mishra P., Chan D.C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15:634-646.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 634-646
    • Mishra, P.1    Chan, D.C.2
  • 11
    • 84862884156 scopus 로고    scopus 로고
    • Mitochondrial quality control: an integrated network of pathways
    • Fischer F., et al. Mitochondrial quality control: an integrated network of pathways. Trends Biochem. Sci. 2012, 37:284-292.
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 284-292
    • Fischer, F.1
  • 12
    • 84901410479 scopus 로고    scopus 로고
    • Mitochondria as signaling organelles
    • Chandel N.S. Mitochondria as signaling organelles. BMC Biol. 2014, 12:34.
    • (2014) BMC Biol. , vol.12 , pp. 34
    • Chandel, N.S.1
  • 13
    • 33845298268 scopus 로고    scopus 로고
    • Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process
    • Fontanesi F., et al. Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process. Am. J. Physiol. Cell Physiol. 2006, 291:C1129-C1147.
    • (2006) Am. J. Physiol. Cell Physiol. , vol.291 , pp. C1129-C1147
    • Fontanesi, F.1
  • 14
    • 84863741781 scopus 로고    scopus 로고
    • Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology
    • Ghezzi D., Zeviani M. Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv. Exp. Med. Biol. 2012, 748:65-106.
    • (2012) Adv. Exp. Med. Biol. , vol.748 , pp. 65-106
    • Ghezzi, D.1    Zeviani, M.2
  • 15
    • 84863746788 scopus 로고    scopus 로고
    • The many clinical faces of cytochrome c oxidase deficiency
    • DiMauro S., et al. The many clinical faces of cytochrome c oxidase deficiency. Adv. Exp. Med. Biol. 2012, 748:341-357.
    • (2012) Adv. Exp. Med. Biol. , vol.748 , pp. 341-357
    • DiMauro, S.1
  • 16
    • 56149104649 scopus 로고    scopus 로고
    • Cytochrome c oxidase biogenesis: new levels of regulation
    • Fontanesi F., et al. Cytochrome c oxidase biogenesis: new levels of regulation. IUBMB Life 2008, 60:557-568.
    • (2008) IUBMB Life , vol.60 , pp. 557-568
    • Fontanesi, F.1
  • 17
    • 41449117631 scopus 로고    scopus 로고
    • Function and redox state of mitochondrial localized cysteine-rich proteins important in the assembly of cytochrome c oxidase
    • Khalimonchuk O., Winge D.R. Function and redox state of mitochondrial localized cysteine-rich proteins important in the assembly of cytochrome c oxidase. Biochim. Biophys. Acta 2008, 1783:618-628.
    • (2008) Biochim. Biophys. Acta , vol.1783 , pp. 618-628
    • Khalimonchuk, O.1    Winge, D.R.2
  • 18
    • 84860697026 scopus 로고    scopus 로고
    • Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core
    • Soto I.C., et al. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. Biochim. Biophys. Acta 2012, 1817:883-897.
    • (2012) Biochim. Biophys. Acta , vol.1817 , pp. 883-897
    • Soto, I.C.1
  • 19
    • 84860697620 scopus 로고    scopus 로고
    • Understanding mitochondrial complex I assembly in health and disease
    • Mimaki M., et al. Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys. Acta 2012, 1817:851-862.
    • (2012) Biochim Biophys. Acta , vol.1817 , pp. 851-862
    • Mimaki, M.1
  • 20
    • 77952885778 scopus 로고    scopus 로고
    • Succinate dehydrogenase - assembly, regulation and role in human disease
    • Rutter J., et al. Succinate dehydrogenase - assembly, regulation and role in human disease. Mitochondrion 2010, 10:393-401.
    • (2010) Mitochondrion , vol.10 , pp. 393-401
    • Rutter, J.1
  • 21
    • 69549088424 scopus 로고    scopus 로고
    • SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma
    • Hao H.X., et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325:11391142.
    • (2009) Science , vol.325 , pp. 11391142
    • Hao, H.X.1
  • 22
    • 67349189168 scopus 로고    scopus 로고
    • SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy
    • Ghezzi D., et al. SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat. Genet. 2009, 41:654-656.
    • (2009) Nat. Genet. , vol.41 , pp. 654-656
    • Ghezzi, D.1
  • 23
    • 84905860097 scopus 로고    scopus 로고
    • The LYR factors SDHAF1 and SDHAF3 mediate maturation of the iron-sulfur subunit of succinate dehydrogenase
    • Na U., et al. The LYR factors SDHAF1 and SDHAF3 mediate maturation of the iron-sulfur subunit of succinate dehydrogenase. Cell. Metab. 2014, 20:253-266.
    • (2014) Cell. Metab. , vol.20 , pp. 253-266
    • Na, U.1
  • 24
    • 84905821769 scopus 로고    scopus 로고
    • SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration
    • Van Vranken J.G., et al. SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration. Cell Metab. 2014, 20:241-252.
    • (2014) Cell Metab. , vol.20 , pp. 241-252
    • Van Vranken, J.G.1
  • 25
    • 84928818532 scopus 로고    scopus 로고
    • Protein-mediated assembly of succinate dehydrogenase and its cofactors
    • Published online December 9, 2014.
    • Van Vranken J.G. Protein-mediated assembly of succinate dehydrogenase and its cofactors. Crit. Rev. Biochem. Mol. Biol. 2014, Published online December 9, 2014. http://dx.doi.org/10.3109/10409238.2014.990556.
    • (2014) Crit. Rev. Biochem. Mol. Biol.
    • Van Vranken, J.G.1
  • 26
    • 84863474422 scopus 로고    scopus 로고
    • Mitochondrial ATP synthase: architecture, function and pathology
    • Jonckheere A.I., et al. Mitochondrial ATP synthase: architecture, function and pathology. J. Inherit. Metab. Dis. 2012, 35:211-225.
    • (2012) J. Inherit. Metab. Dis. , vol.35 , pp. 211-225
    • Jonckheere, A.I.1
  • 27
    • 0021766172 scopus 로고
    • Hypothesis. The mechanism of ATP synthase. Conformational change by rotation of the beta-subunit
    • Cox G.B., et al. Hypothesis. The mechanism of ATP synthase. Conformational change by rotation of the beta-subunit. Biochim. Biophys. Acta 1984, 768:201-208.
    • (1984) Biochim. Biophys. Acta , vol.768 , pp. 201-208
    • Cox, G.B.1
  • 28
    • 0031008228 scopus 로고    scopus 로고
    • The ATP synthase - a splendid molecular machine
    • Boyer P.D. The ATP synthase - a splendid molecular machine. Annu. Rev. Biochem. 1997, 66:717-749.
    • (1997) Annu. Rev. Biochem. , vol.66 , pp. 717-749
    • Boyer, P.D.1
  • 29
    • 0033607504 scopus 로고    scopus 로고
    • Molecular architecture of the rotary motor in ATP synthase
    • Stock D., et al. Molecular architecture of the rotary motor in ATP synthase. Science 1999, 286:1700-1705.
    • (1999) Science , vol.286 , pp. 1700-1705
    • Stock, D.1
  • 30
    • 79952282995 scopus 로고    scopus 로고
    • Modular assembly of yeast mitochondrial ATP synthase
    • Rak M., et al. Modular assembly of yeast mitochondrial ATP synthase. EMBO J. 2011, 30:920-930.
    • (2011) EMBO J. , vol.30 , pp. 920-930
    • Rak, M.1
  • 31
    • 0037056022 scopus 로고    scopus 로고
    • Atp11p and Atp12p are chaperones for F1-ATPase biogenesis in mitochondria
    • Ackerman S.H. Atp11p and Atp12p are chaperones for F1-ATPase biogenesis in mitochondria. Biochim. Biophys. Acta 2002, 1555:101-105.
    • (2002) Biochim. Biophys. Acta , vol.1555 , pp. 101-105
    • Ackerman, S.H.1
  • 33
  • 34
    • 0035903210 scopus 로고    scopus 로고
    • 1-ATPase in human mitochondria
    • 1-ATPase in human mitochondria. J. Biol. Chem. 2001, 276:30773-30778.
    • (2001) J. Biol. Chem. , vol.276 , pp. 30773-30778
    • Wang, Z.G.1
  • 35
    • 1242269834 scopus 로고    scopus 로고
    • Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12
    • De Meirleir L., et al. Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12. J. Med. Genet. 2004, 41:120-124.
    • (2004) J. Med. Genet. , vol.41 , pp. 120-124
    • De Meirleir, L.1
  • 36
    • 77950473492 scopus 로고    scopus 로고
    • Defining the pathogenesis of the human Atp12p W94R mutation using a Saccharomyces cerevisiae yeast model
    • Meulemans A., et al. Defining the pathogenesis of the human Atp12p W94R mutation using a Saccharomyces cerevisiae yeast model. J. Biol. Chem. 2010, 285:4099-4109.
    • (2010) J. Biol. Chem. , vol.285 , pp. 4099-4109
    • Meulemans, A.1
  • 37
    • 0035794147 scopus 로고    scopus 로고
    • 1-ATPase in heat stress conditions
    • 1-ATPase in heat stress conditions. J. Biol. Chem. 2001, 276:6789-6796.
    • (2001) J. Biol. Chem. , vol.276 , pp. 6789-6796
    • Lefebvre-Legendre, L.1
  • 38
    • 33846826875 scopus 로고    scopus 로고
    • 0-ATP synthase
    • 0-ATP synthase. Mol. Biol. Cell 2007, 18:627-635.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 627-635
    • Osman, C.1
  • 39
    • 33846813499 scopus 로고    scopus 로고
    • The metalloprotease encoded by ATP23 has a dual function in processing and assembly of subunit 6 of mitochondrial ATPase
    • Zeng X., et al. The metalloprotease encoded by ATP23 has a dual function in processing and assembly of subunit 6 of mitochondrial ATPase. Mol. Biol. Cell 2007, 18:617-626.
    • (2007) Mol. Biol. Cell , vol.18 , pp. 617-626
    • Zeng, X.1
  • 41
    • 2442489927 scopus 로고    scopus 로고
    • 0 unit of the yeast mitochondrial ATPase
    • 0 unit of the yeast mitochondrial ATPase. J. Biol. Chem. 2004, 279:19775-19780.
    • (2004) J. Biol. Chem. , vol.279 , pp. 19775-19780
    • Tzagoloff, A.1
  • 42
    • 84905390734 scopus 로고    scopus 로고
    • 0-ATP synthase
    • 0-ATP synthase. EMBO J. 2014, 33:1624-1638.
    • (2014) EMBO J. , vol.33 , pp. 1624-1638
    • Lytovchenko, O.1
  • 43
    • 46349088952 scopus 로고    scopus 로고
    • Diseases caused by defects of mitochondrial carriers: a review
    • Palmieri F. Diseases caused by defects of mitochondrial carriers: a review. Biochim. Biophys. Acta 2008, 1777:564-578.
    • (2008) Biochim. Biophys. Acta , vol.1777 , pp. 564-578
    • Palmieri, F.1
  • 44
    • 79951962628 scopus 로고    scopus 로고
    • Mitochondrial metabolite transport
    • Palmieri F., Pierri C.L. Mitochondrial metabolite transport. Essays Biochem. 2010, 47:37-52.
    • (2010) Essays Biochem. , vol.47 , pp. 37-52
    • Palmieri, F.1    Pierri, C.L.2
  • 45
    • 84875218644 scopus 로고    scopus 로고
    • The mitochondrial transporter family SLC25: identification, properties and physiopathology
    • Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol. Aspects Med. 2013, 34:465-484.
    • (2013) Mol. Aspects Med. , vol.34 , pp. 465-484
    • Palmieri, F.1
  • 46
    • 0020473533 scopus 로고
    • Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase
    • Saraste M., Walker J.E. Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett. 1982, 144:250-254.
    • (1982) FEBS Lett. , vol.144 , pp. 250-254
    • Saraste, M.1    Walker, J.E.2
  • 47
    • 1942468196 scopus 로고    scopus 로고
    • The role and structure of mitochondrial carriers
    • Kunji E.R. The role and structure of mitochondrial carriers. FEBS Lett. 2004, 564:239-244.
    • (2004) FEBS Lett. , vol.564 , pp. 239-244
    • Kunji, E.R.1
  • 48
    • 0034053925 scopus 로고    scopus 로고
    • Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance
    • Palmieri L., et al. Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance. J. Bioenerg. Biomembr. 2000, 32:67-77.
    • (2000) J. Bioenerg. Biomembr. , vol.32 , pp. 67-77
    • Palmieri, L.1
  • 49
    • 0030927298 scopus 로고    scopus 로고
    • Phylogenetic classification of the mitochondrial carrier family of Saccharomyces cerevisiae
    • el Moualij B., et al. Phylogenetic classification of the mitochondrial carrier family of Saccharomyces cerevisiae. Yeast 1997, 13:573-581.
    • (1997) Yeast , vol.13 , pp. 573-581
    • el Moualij, B.1
  • 50
    • 33748976734 scopus 로고    scopus 로고
    • Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins
    • Palmieri F., et al. Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. Biochim. Biophys. Acta 2006, 1757:1249-1262.
    • (2006) Biochim. Biophys. Acta , vol.1757 , pp. 1249-1262
    • Palmieri, F.1
  • 51
    • 52049113898 scopus 로고    scopus 로고
    • The ADP and ATP transport in mitochondria and its carrier
    • Klingenberg M. The ADP and ATP transport in mitochondria and its carrier. Biochim. Biophys. Acta 2008, 1778:1978-2021.
    • (2008) Biochim. Biophys. Acta , vol.1778 , pp. 1978-2021
    • Klingenberg, M.1
  • 52
    • 27544494568 scopus 로고    scopus 로고
    • Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy
    • Palmieri L., et al. Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy. Hum. Mol. Genet. 2005, 14:3079-3088.
    • (2005) Hum. Mol. Genet. , vol.14 , pp. 3079-3088
    • Palmieri, L.1
  • 53
    • 84855984937 scopus 로고    scopus 로고
    • Complete loss of expression of the ANT1 gene causing cardiomyopathy and myopathy
    • Echaniz-Laguna A., et al. Complete loss of expression of the ANT1 gene causing cardiomyopathy and myopathy. J. Med. Genet. 2012, 49:146-150.
    • (2012) J. Med. Genet. , vol.49 , pp. 146-150
    • Echaniz-Laguna, A.1
  • 54
    • 0032904532 scopus 로고    scopus 로고
    • The mitochondrial dicarboxylate carrier is essential for the growth of Saccharomyces cerevisiae on ethanol or acetate as the sole carbon source
    • Palmieri L., et al. The mitochondrial dicarboxylate carrier is essential for the growth of Saccharomyces cerevisiae on ethanol or acetate as the sole carbon source. Mol. Microbiol. 1999, 31:569-577.
    • (1999) Mol. Microbiol. , vol.31 , pp. 569-577
    • Palmieri, L.1
  • 55
    • 0023933703 scopus 로고
    • Purification and reconstitution of two anion carriers from rat liver mitochondria: the dicarboxylate and the 2-oxoglutarate carrier
    • Bisaccia F., et al. Purification and reconstitution of two anion carriers from rat liver mitochondria: the dicarboxylate and the 2-oxoglutarate carrier. Biochim. Biophys. Acta 1988, 933:229-240.
    • (1988) Biochim. Biophys. Acta , vol.933 , pp. 229-240
    • Bisaccia, F.1
  • 56
    • 0032544362 scopus 로고    scopus 로고
    • The sequence, bacterial expression, and functional reconstitution of the rat mitochondrial dicarboxylate transporter cloned via distant homologs in yeast and Caenorhabditis elegans
    • Fiermonte G., et al. The sequence, bacterial expression, and functional reconstitution of the rat mitochondrial dicarboxylate transporter cloned via distant homologs in yeast and Caenorhabditis elegans. J. Biol. Chem. 1998, 273:24754-24759.
    • (1998) J. Biol. Chem. , vol.273 , pp. 24754-24759
    • Fiermonte, G.1
  • 57
    • 79953775104 scopus 로고    scopus 로고
    • The dicarboxylate carrier plays a role in mitochondrial malate transport and in the regulation of glucose-stimulated insulin secretion from rat pancreatic β cells
    • Huypens P., et al. The dicarboxylate carrier plays a role in mitochondrial malate transport and in the regulation of glucose-stimulated insulin secretion from rat pancreatic β cells. Diabetologia 2011, 54:135-145.
    • (2011) Diabetologia , vol.54 , pp. 135-145
    • Huypens, P.1
  • 58
    • 0035144432 scopus 로고    scopus 로고
    • The yeast mitochondrial carrier Leu5p and its human homologue Graves' disease protein are required for accumulation of coenzyme A in the matrix
    • Prohl C., et al. The yeast mitochondrial carrier Leu5p and its human homologue Graves' disease protein are required for accumulation of coenzyme A in the matrix. Mol. Cell. Biol. 2001, 21:1089-1097.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 1089-1097
    • Prohl, C.1
  • 59
    • 67650561215 scopus 로고    scopus 로고
    • A novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme A and adenosine 3',5'-diphosphate in human mitochondria
    • Fiermonte G., et al. A novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme A and adenosine 3',5'-diphosphate in human mitochondria. J. Biol. Chem. 2009, 284:18152-18159.
    • (2009) J. Biol. Chem. , vol.284 , pp. 18152-18159
    • Fiermonte, G.1
  • 60
    • 84878441922 scopus 로고    scopus 로고
    • Identification of mitochondrial coenzyme a transporters from maize and Arabidopsis
    • Zallot R., et al. Identification of mitochondrial coenzyme a transporters from maize and Arabidopsis. Plant Physiol. 2013, 162:581-588.
    • (2013) Plant Physiol. , vol.162 , pp. 581-588
    • Zallot, R.1
  • 61
    • 0037025331 scopus 로고    scopus 로고
    • Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain
    • Foury F., Roganti T. Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J. Biol. Chem. 2002, 277:24475-24483.
    • (2002) J. Biol. Chem. , vol.277 , pp. 24475-24483
    • Foury, F.1    Roganti, T.2
  • 62
    • 17044451174 scopus 로고    scopus 로고
    • A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions
    • Muhlenhoff U., et al. A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions. J. Biol. Chem. 2003, 278:40612-40620.
    • (2003) J. Biol. Chem. , vol.278 , pp. 40612-40620
    • Muhlenhoff, U.1
  • 63
    • 65249089204 scopus 로고    scopus 로고
    • The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane
    • Froschauer E.M., et al. The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane. Biochim. Biophys. Acta 2009, 1788:1044-1050.
    • (2009) Biochim. Biophys. Acta , vol.1788 , pp. 1044-1050
    • Froschauer, E.M.1
  • 64
    • 33747330134 scopus 로고    scopus 로고
    • Mrs3p, Mrs4p, and frataxin provide iron for Fe-S cluster synthesis in mitochondria
    • Zhang Y., et al. Mrs3p, Mrs4p, and frataxin provide iron for Fe-S cluster synthesis in mitochondria. J. Biol. Chem. 2006, 281:22493-22502.
    • (2006) J. Biol. Chem. , vol.281 , pp. 22493-22502
    • Zhang, Y.1
  • 65
    • 33644748145 scopus 로고    scopus 로고
    • Mitoferrin is essential for erythroid iron assimilation
    • Shaw G.C., et al. Mitoferrin is essential for erythroid iron assimilation. Nature 2006, 440:96-100.
    • (2006) Nature , vol.440 , pp. 96-100
    • Shaw, G.C.1
  • 66
    • 80051946060 scopus 로고    scopus 로고
    • Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter
    • Baughman J.M., et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 2011, 476:341-345.
    • (2011) Nature , vol.476 , pp. 341-345
    • Baughman, J.M.1
  • 67
    • 84861219896 scopus 로고    scopus 로고
    • Evolutionary diversity of the mitochondrial calcium uniporter
    • Bick A.G., et al. Evolutionary diversity of the mitochondrial calcium uniporter. Science 2012, 336:886.
    • (2012) Science , vol.336 , pp. 886
    • Bick, A.G.1
  • 68
    • 84879052051 scopus 로고    scopus 로고
    • MCU encodes the pore conducting mitochondrial calcium currents
    • Chaudhuri D., et al. MCU encodes the pore conducting mitochondrial calcium currents. Elife 2013, 2:e00704.
    • (2013) Elife , vol.2 , pp. e00704
    • Chaudhuri, D.1
  • 69
    • 80051936634 scopus 로고    scopus 로고
    • A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter
    • De Stefani D., et al. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 2011, 476:336-340.
    • (2011) Nature , vol.476 , pp. 336-340
    • De Stefani, D.1
  • 70
    • 84870621600 scopus 로고    scopus 로고
    • 2+ uptake that regulates cellular metabolism
    • 2+ uptake that regulates cellular metabolism. Nat. Cell Biol. 2012, 14:1336-1343.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1336-1343
    • Mallilankaraman, K.1
  • 71
    • 84876242675 scopus 로고    scopus 로고
    • The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles
    • Patron M., et al. The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles. J. Biol. Chem. 2013, 288:10750-10758.
    • (2013) J. Biol. Chem. , vol.288 , pp. 10750-10758
    • Patron, M.1
  • 72
    • 84890116192 scopus 로고    scopus 로고
    • EMRE is an essential component of the mitochondrial calcium uniporter complex
    • Sancak Y., et al. EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 2013, 342:1379-1382.
    • (2013) Science , vol.342 , pp. 1379-1382
    • Sancak, Y.1
  • 73
    • 84863552418 scopus 로고    scopus 로고
    • A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
    • Bricker D.K., et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 2012, 337:96-100.
    • (2012) Science , vol.337 , pp. 96-100
    • Bricker, D.K.1
  • 74
    • 84863553135 scopus 로고    scopus 로고
    • Identification and functional expression of the mitochondrial pyruvate carrier
    • Herzig S., et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science 2012, 337:93-96.
    • (2012) Science , vol.337 , pp. 93-96
    • Herzig, S.1
  • 75
    • 84877771544 scopus 로고    scopus 로고
    • Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT) - relationship to newly identified mitochondrial pyruvate carrier proteins
    • Colca J.R., et al. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT) - relationship to newly identified mitochondrial pyruvate carrier proteins. PLoS ONE 2013, 8:e61551.
    • (2013) PLoS ONE , vol.8 , pp. e61551
    • Colca, J.R.1
  • 76
    • 84875858252 scopus 로고    scopus 로고
    • Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier
    • Divakaruni A.S., et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5422-5427.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 5422-5427
    • Divakaruni, A.S.1
  • 77
    • 84900459053 scopus 로고    scopus 로고
    • Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion
    • Patterson J.N., et al. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion. J. Biol. Chem. 2014, 289:13335-13346.
    • (2014) J. Biol. Chem. , vol.289 , pp. 13335-13346
    • Patterson, J.N.1
  • 78
    • 84877057467 scopus 로고    scopus 로고
    • Novel insulin sensitizer modulates nutrient sensing pathways and maintains β-cell phenotype in human islets
    • Rohatgi N., et al. Novel insulin sensitizer modulates nutrient sensing pathways and maintains β-cell phenotype in human islets. PLoS ONE 2013, 8:e62012.
    • (2013) PLoS ONE , vol.8 , pp. e62012
    • Rohatgi, N.1
  • 79
    • 84896711181 scopus 로고    scopus 로고
    • Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast
    • Timon-Gomez A., et al. Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast. PLoS ONE 2013, 8:e79405.
    • (2013) PLoS ONE , vol.8 , pp. e79405
    • Timon-Gomez, A.1
  • 80
    • 84911473884 scopus 로고    scopus 로고
    • Structures of bacterial homologues of SWEET transporters in two distinct conformations
    • Xu Y., et al. Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 2014, 515:448-452.
    • (2014) Nature , vol.515 , pp. 448-452
    • Xu, Y.1
  • 81
    • 84884353644 scopus 로고    scopus 로고
    • Prediction of the functional effect of novel SLC25A13 variants using a S. cerevisiae model of AGC2 deficiency
    • Wongkittichote P., et al. Prediction of the functional effect of novel SLC25A13 variants using a S. cerevisiae model of AGC2 deficiency. J. Inherit. Metab. Dis. 2013, 36:821-830.
    • (2013) J. Inherit. Metab. Dis. , vol.36 , pp. 821-830
    • Wongkittichote, P.1
  • 82
    • 84899633300 scopus 로고    scopus 로고
    • A novel mutation in the SLC25A15 gene in a Turkish patient with HHH syndrome: functional analysis of the mutant protein
    • Ersoy Tunali N., et al. A novel mutation in the SLC25A15 gene in a Turkish patient with HHH syndrome: functional analysis of the mutant protein. Mol. Genet. Metab. 2014, 112:25-29.
    • (2014) Mol. Genet. Metab. , vol.112 , pp. 25-29
    • Ersoy Tunali, N.1
  • 83
    • 0029780377 scopus 로고    scopus 로고
    • The ARG11 gene of Saccharomyces cerevisiae encodes a mitochondrial integral membrane protein required for arginine biosynthesis
    • Crabeel M., et al. The ARG11 gene of Saccharomyces cerevisiae encodes a mitochondrial integral membrane protein required for arginine biosynthesis. J. Biol. Chem. 1996, 271:25011-25018.
    • (1996) J. Biol. Chem. , vol.271 , pp. 25011-25018
    • Crabeel, M.1
  • 84
    • 0030825368 scopus 로고    scopus 로고
    • Identification of the yeast ARG-11 gene as a mitochondrial ornithine carrier involved in arginine biosynthesis
    • Palmieri L., et al. Identification of the yeast ARG-11 gene as a mitochondrial ornithine carrier involved in arginine biosynthesis. FEBS Lett. 1997, 410:447-451.
    • (1997) FEBS Lett. , vol.410 , pp. 447-451
    • Palmieri, L.1
  • 85
    • 0033030998 scopus 로고    scopus 로고
    • Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter
    • Camacho J.A., et al. Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat. Genet. 1999, 22:151-158.
    • (1999) Nat. Genet. , vol.22 , pp. 151-158
    • Camacho, J.A.1
  • 86
    • 33748093283 scopus 로고    scopus 로고
    • Identification of Tam41 maintaining integrity of the TIM23 protein translocator complex in mitochondria
    • Tamura Y., et al. Identification of Tam41 maintaining integrity of the TIM23 protein translocator complex in mitochondria. J. Cell Biol. 2006, 174:631-637.
    • (2006) J. Cell Biol. , vol.174 , pp. 631-637
    • Tamura, Y.1
  • 87
    • 33747422544 scopus 로고    scopus 로고
    • Ups1p, a conserved intermembrane space protein, regulates mitochondrial shape and alternative topogenesis of Mgm1p
    • Sesaki H., et al. Ups1p, a conserved intermembrane space protein, regulates mitochondrial shape and alternative topogenesis of Mgm1p. J. Cell Biol. 2006, 173:651-658.
    • (2006) J. Cell Biol. , vol.173 , pp. 651-658
    • Sesaki, H.1
  • 89
    • 84906318502 scopus 로고    scopus 로고
    • Phospholipid transport via mitochondria
    • Tamura Y., et al. Phospholipid transport via mitochondria. Traffic 2014, 15:933-945.
    • (2014) Traffic , vol.15 , pp. 933-945
    • Tamura, Y.1
  • 90
    • 84855581252 scopus 로고    scopus 로고
    • The complexity of cardiolipin in health and disease
    • Claypool S.M., Koehler C.M. The complexity of cardiolipin in health and disease. Trends Biochem. Sci. 2012, 37:32-41.
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 32-41
    • Claypool, S.M.1    Koehler, C.M.2
  • 91
    • 0347595327 scopus 로고    scopus 로고
    • Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth syndrome
    • Gu Z., et al. Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth syndrome. Mol. Microbiol. 2004, 51:149-158.
    • (2004) Mol. Microbiol. , vol.51 , pp. 149-158
    • Gu, Z.1
  • 92
    • 0020974404 scopus 로고
    • An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes
    • Barth P.G., et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J. Neurol. Sci. 1983, 62:327-355.
    • (1983) J. Neurol. Sci. , vol.62 , pp. 327-355
    • Barth, P.G.1
  • 93
    • 33749061065 scopus 로고    scopus 로고
    • Barth syndrome, a human disorder of cardiolipin metabolism
    • Schlame M., Ren M. Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett. 2006, 580:5450-5455.
    • (2006) FEBS Lett. , vol.580 , pp. 5450-5455
    • Schlame, M.1    Ren, M.2
  • 94
    • 0032540270 scopus 로고    scopus 로고
    • The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero-phosphate synthase of Saccharomyces cerevisiae
    • Chang S.C., et al. The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero-phosphate synthase of Saccharomyces cerevisiae. J. Biol. Chem. 1998, 273:9829-9836.
    • (1998) J. Biol. Chem. , vol.273 , pp. 9829-9836
    • Chang, S.C.1
  • 95
    • 0032511048 scopus 로고    scopus 로고
    • Isolation and characterization of the gene (CLS1) encoding cardiolipin synthase in Saccharomyces cerevisiae
    • Chang S.C., et al. Isolation and characterization of the gene (CLS1) encoding cardiolipin synthase in Saccharomyces cerevisiae. J. Biol. Chem. 1998, 273:14933-14941.
    • (1998) J. Biol. Chem. , vol.273 , pp. 14933-14941
    • Chang, S.C.1
  • 96
    • 0032472289 scopus 로고    scopus 로고
    • YDL142c encodes cardiolipin synthase (Cls1p) and is non-essential for aerobic growth of Saccharomyces cerevisiae
    • Tuller G., et al. YDL142c encodes cardiolipin synthase (Cls1p) and is non-essential for aerobic growth of Saccharomyces cerevisiae. FEBS Lett. 1998, 421:15-18.
    • (1998) FEBS Lett. , vol.421 , pp. 15-18
    • Tuller, G.1
  • 97
    • 33748347104 scopus 로고    scopus 로고
    • Identification and functional characterization of hCLS1, a human cardiolipin synthase localized in mitochondria
    • Chen D., et al. Identification and functional characterization of hCLS1, a human cardiolipin synthase localized in mitochondria. Biochem. J. 2006, 398:169-176.
    • (2006) Biochem. J. , vol.398 , pp. 169-176
    • Chen, D.1
  • 98
    • 33646748055 scopus 로고    scopus 로고
    • Identification and characterization of human cardiolipin synthase
    • Houtkooper R.H., et al. Identification and characterization of human cardiolipin synthase. FEBS Lett. 2006, 580:3059-3064.
    • (2006) FEBS Lett. , vol.580 , pp. 3059-3064
    • Houtkooper, R.H.1
  • 99
    • 0033555937 scopus 로고    scopus 로고
    • Isolation of a chinese hamster ovary (CHO) cDNA encoding phosphatidylglycerophosphate (PGP) synthase, expression of which corrects the mitochondrial abnormalities of a PGP synthase-defective mutant of CHO-K1 cells
    • Kawasaki K., et al. Isolation of a chinese hamster ovary (CHO) cDNA encoding phosphatidylglycerophosphate (PGP) synthase, expression of which corrects the mitochondrial abnormalities of a PGP synthase-defective mutant of CHO-K1 cells. J. Biol. Chem. 1999, 274:1828-1834.
    • (1999) J. Biol. Chem. , vol.274 , pp. 1828-1834
    • Kawasaki, K.1
  • 100
    • 0011017943 scopus 로고
    • A simplified preparation of cardiolipin, with note on purification of lecithin for serologic use
    • Pangborn M.C. A simplified preparation of cardiolipin, with note on purification of lecithin for serologic use. J. Biol. Chem. 1945, 161:71-82.
    • (1945) J. Biol. Chem. , vol.161 , pp. 71-82
    • Pangborn, M.C.1
  • 101
    • 0022457112 scopus 로고
    • Subcellular and submitochondrial localization of phospholipid-synthesizing enzymes in Saccharomyces cerevisiae
    • Kuchler K., et al. Subcellular and submitochondrial localization of phospholipid-synthesizing enzymes in Saccharomyces cerevisiae. J. Bacteriol. 1986, 165:901-910.
    • (1986) J. Bacteriol. , vol.165 , pp. 901-910
    • Kuchler, K.1
  • 102
    • 0030023391 scopus 로고    scopus 로고
    • The CDS1 gene encoding CDP-diacylglycerol synthase in Saccharomyces cerevisiae is essential for cell growth
    • Shen H., et al. The CDS1 gene encoding CDP-diacylglycerol synthase in Saccharomyces cerevisiae is essential for cell growth. J. Biol. Chem. 1996, 271:789-795.
    • (1996) J. Biol. Chem. , vol.271 , pp. 789-795
    • Shen, H.1
  • 103
    • 84877584085 scopus 로고    scopus 로고
    • Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria
    • Tamura Y., et al. Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria. Cell Metab. 2013, 17:709-718.
    • (2013) Cell Metab. , vol.17 , pp. 709-718
    • Tamura, Y.1
  • 104
    • 59449088611 scopus 로고    scopus 로고
    • The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis
    • Kutik S., et al. The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis. J. Cell Biol. 2008, 183:1213-1221.
    • (2008) J. Cell Biol. , vol.183 , pp. 1213-1221
    • Kutik, S.1
  • 105
    • 61449229779 scopus 로고    scopus 로고
    • The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria
    • 583-196
    • Osman C., et al. The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria. J. Cell Biol. 2009, 184. 583-196.
    • (2009) J. Cell Biol. , vol.184
    • Osman, C.1
  • 106
    • 77953614272 scopus 로고    scopus 로고
    • A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4
    • Osman C., et al. A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4. EMBO J. 2010, 29:1976-1987.
    • (2010) EMBO J. , vol.29 , pp. 1976-1987
    • Osman, C.1
  • 107
    • 79958034094 scopus 로고    scopus 로고
    • Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis
    • Zhang J., et al. Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab. 2011, 13:690-700.
    • (2011) Cell Metab. , vol.13 , pp. 690-700
    • Zhang, J.1
  • 108
    • 84880617115 scopus 로고    scopus 로고
    • Organization and function of membrane contact sites
    • Helle S.C., et al. Organization and function of membrane contact sites. Biochim. Biophys. Acta 2013, 1833:2526-2541.
    • (2013) Biochim. Biophys. Acta , vol.1833 , pp. 2526-2541
    • Helle, S.C.1
  • 109
    • 67749122635 scopus 로고    scopus 로고
    • An ER-mitochondria tethering complex revealed by a synthetic biology screen
    • Kornmann B., et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 2009, 325:477-481.
    • (2009) Science , vol.325 , pp. 477-481
    • Kornmann, B.1
  • 110
    • 80052172908 scopus 로고    scopus 로고
    • The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections
    • Kornmann B., et al. The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14151-14156.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 14151-14156
    • Kornmann, B.1
  • 111
    • 77955361329 scopus 로고    scopus 로고
    • Homology of SMP domains to the TULIP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria
    • Kopec K.O., et al. Homology of SMP domains to the TULIP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria. Bioinformatics 2010, 26:1927-1931.
    • (2010) Bioinformatics , vol.26 , pp. 1927-1931
    • Kopec, K.O.1
  • 112
    • 84860916316 scopus 로고    scopus 로고
    • Gem1 and ERMES do not directly affect phosphatidylserine transport from ER to mitochondria or mitochondrial inheritance
    • Nguyen T.T., et al. Gem1 and ERMES do not directly affect phosphatidylserine transport from ER to mitochondria or mitochondrial inheritance. Traffic 2012, 13:880-890.
    • (2012) Traffic , vol.13 , pp. 880-890
    • Nguyen, T.T.1
  • 113
    • 67449138848 scopus 로고    scopus 로고
    • Ups1p and Ups2p antagonistically regulate cardiolipin metabolism in mitochondria
    • Tamura Y., et al. Ups1p and Ups2p antagonistically regulate cardiolipin metabolism in mitochondria. J. Cell Biol. 2009, 185:1029-1045.
    • (2009) J. Cell Biol. , vol.185 , pp. 1029-1045
    • Tamura, Y.1
  • 114
    • 84868596965 scopus 로고    scopus 로고
    • Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein
    • Connerth M., et al. Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein. Science 2012, 338:815-818.
    • (2012) Science , vol.338 , pp. 815-818
    • Connerth, M.1
  • 115
    • 77956391459 scopus 로고    scopus 로고
    • Regulation of mitochondrial phospholipids by Ups1/PRELI-like proteins depends on proteolysis and Mdm35
    • Potting C., et al. Regulation of mitochondrial phospholipids by Ups1/PRELI-like proteins depends on proteolysis and Mdm35. EMBO J. 2010, 29:2888-2898.
    • (2010) EMBO J. , vol.29 , pp. 2888-2898
    • Potting, C.1
  • 116
    • 77956378766 scopus 로고    scopus 로고
    • Mdm35p imports Ups proteins into the mitochondrial intermembrane space by functional complex formation
    • Tamura Y., et al. Mdm35p imports Ups proteins into the mitochondrial intermembrane space by functional complex formation. EMBO J. 2010, 29:2875-2887.
    • (2010) EMBO J. , vol.29 , pp. 2875-2887
    • Tamura, Y.1
  • 117
    • 84881326056 scopus 로고    scopus 로고
    • TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid
    • Potting C., et al. TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid. Cell Metab. 2013, 18:287-295.
    • (2013) Cell Metab. , vol.18 , pp. 287-295
    • Potting, C.1
  • 118
    • 84906937036 scopus 로고    scopus 로고
    • Making connections: interorganelle contacts orchestrate mitochondrial behavior
    • Klecker T., et al. Making connections: interorganelle contacts orchestrate mitochondrial behavior. Trends Cell Biol. 2014, 24:537-545.
    • (2014) Trends Cell Biol. , vol.24 , pp. 537-545
    • Klecker, T.1
  • 119
    • 33845656956 scopus 로고    scopus 로고
    • Mitochondrial retrograde signaling
    • Liu Z., Butow R.A. Mitochondrial retrograde signaling. Annu. Rev. Genet. 2006, 40:159-185.
    • (2006) Annu. Rev. Genet. , vol.40 , pp. 159-185
    • Liu, Z.1    Butow, R.A.2
  • 120
    • 84906668555 scopus 로고    scopus 로고
    • The retrograde response: a conserved compensatory reaction to damage from within and from without
    • Jazwinski S.M. The retrograde response: a conserved compensatory reaction to damage from within and from without. Prog. Mol. Biol. Transl. Sci. 2014, 127:133-154.
    • (2014) Prog. Mol. Biol. Transl. Sci. , vol.127 , pp. 133-154
    • Jazwinski, S.M.1
  • 121
    • 84883451708 scopus 로고    scopus 로고
    • The molecular hug between the ER and the mitochondria
    • Kornmann B. The molecular hug between the ER and the mitochondria. Curr. Opin. Cell Biol. 2013, 25:443-448.
    • (2013) Curr. Opin. Cell Biol. , vol.25 , pp. 443-448
    • Kornmann, B.1
  • 122
    • 84873460115 scopus 로고    scopus 로고
    • Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria
    • Lackner L.L., et al. Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E458-E467.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. E458-E467
    • Lackner, L.L.1
  • 123
    • 84901821311 scopus 로고    scopus 로고
    • Peroxisomes are juxtaposed to strategic sites on mitochondria
    • Cohen Y., et al. Peroxisomes are juxtaposed to strategic sites on mitochondria. Mol. Biosyst. 2014, 10:1742-1748.
    • (2014) Mol. Biosyst. , vol.10 , pp. 1742-1748
    • Cohen, Y.1
  • 124
    • 84864067919 scopus 로고    scopus 로고
    • Fission and proliferation of peroxisomes
    • Schrader M., et al. Fission and proliferation of peroxisomes. Biochim. Biophys. Acta 2012, 1822:1343-1357.
    • (2012) Biochim. Biophys. Acta , vol.1822 , pp. 1343-1357
    • Schrader, M.1
  • 125
    • 38349023008 scopus 로고    scopus 로고
    • Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers
    • Neuspiel M., et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr. Biol. 2008, 18:102-108.
    • (2008) Curr. Biol. , vol.18 , pp. 102-108
    • Neuspiel, M.1
  • 126
    • 0025879774 scopus 로고
    • +-ATPase activity
    • +-ATPase activity. J. Biol. Chem. 1991, 266:13971-13977.
    • (1991) J. Biol. Chem. , vol.266 , pp. 13971-13977
    • Ohya, Y.1
  • 127
    • 62949218373 scopus 로고    scopus 로고
    • The yeast lysosome-like vacuole: endpoint and crossroads
    • Li S.C., Kane P.M. The yeast lysosome-like vacuole: endpoint and crossroads. Biochim. Biophys. Acta 2009, 1793:650-663.
    • (2009) Biochim. Biophys. Acta , vol.1793 , pp. 650-663
    • Li, S.C.1    Kane, P.M.2
  • 128
    • 76249088524 scopus 로고    scopus 로고
    • Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae
    • Merz S., Westermann B. Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae. Genome Biol. 2009, 10:R95.
    • (2009) Genome Biol. , vol.10 , pp. R95
    • Merz, S.1    Westermann, B.2
  • 129
    • 84876582502 scopus 로고    scopus 로고
    • +-ATPase (V-ATPase) activity in yeast generates an iron deprivation signal that is moderated by induction of the peroxiredoxin TSA2
    • +-ATPase (V-ATPase) activity in yeast generates an iron deprivation signal that is moderated by induction of the peroxiredoxin TSA2. J. Biol. Chem. 2013, 288:11366-11377.
    • (2013) J. Biol. Chem. , vol.288 , pp. 11366-11377
    • Diab, H.I.1    Kane, P.M.2
  • 130
    • 34147107933 scopus 로고    scopus 로고
    • Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress
    • Milgrom E., et al. Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress. J. Biol. Chem. 2007, 282:7125-7136.
    • (2007) J. Biol. Chem. , vol.282 , pp. 7125-7136
    • Milgrom, E.1
  • 131
    • 0027508062 scopus 로고
    • +-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism
    • +-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. Mol. Gen. Genet. 1993, 241:447-456.
    • (1993) Mol. Gen. Genet. , vol.241 , pp. 447-456
    • Eide, D.J.1
  • 132
    • 84871011474 scopus 로고    scopus 로고
    • An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast
    • Hughes A.L., Gottschling D.E. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 2012, 492:261-265.
    • (2012) Nature , vol.492 , pp. 261-265
    • Hughes, A.L.1    Gottschling, D.E.2
  • 133
    • 84904270185 scopus 로고    scopus 로고
    • A dynamic interface between vacuoles and mitochondria in yeast
    • Elbaz-Alon Y., et al. A dynamic interface between vacuoles and mitochondria in yeast. Dev. Cell 2014, 30:95-102.
    • (2014) Dev. Cell , vol.30 , pp. 95-102
    • Elbaz-Alon, Y.1
  • 134
    • 84904255813 scopus 로고    scopus 로고
    • Cellular metabolism regulates contact sites between vacuoles and mitochondria
    • Honscher C., et al. Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev. Cell 2014, 30:86-94.
    • (2014) Dev. Cell , vol.30 , pp. 86-94
    • Honscher, C.1
  • 135
    • 0035833253 scopus 로고    scopus 로고
    • Human Vam6p promotes lysosome clustering and fusion in vivo
    • Caplan S., et al. Human Vam6p promotes lysosome clustering and fusion in vivo. J. Cell Biol. 2001, 154:109-122.
    • (2001) J. Cell Biol. , vol.154 , pp. 109-122
    • Caplan, S.1
  • 136
    • 84894363239 scopus 로고    scopus 로고
    • Mitochondria and melanosomes establish physical contacts modulated by Mfn2 and involved in organelle biogenesis
    • Daniele T., et al. Mitochondria and melanosomes establish physical contacts modulated by Mfn2 and involved in organelle biogenesis. Curr. Biol. 2014, 24:393-403.
    • (2014) Curr. Biol. , vol.24 , pp. 393-403
    • Daniele, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.