-
1
-
-
23844558266
-
A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine
-
Wallace D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39:359-407.
-
(2005)
Annu. Rev. Genet.
, vol.39
, pp. 359-407
-
-
Wallace, D.C.1
-
2
-
-
84878782495
-
The power of yeast to model diseases of the powerhouse of the cell
-
Baile M.G., Claypool S.M. The power of yeast to model diseases of the powerhouse of the cell. Front. Biosci. 2013, 18:241-278.
-
(2013)
Front. Biosci.
, vol.18
, pp. 241-278
-
-
Baile, M.G.1
Claypool, S.M.2
-
3
-
-
84902491546
-
The yeast deletion collection: a decade of functional genomics
-
Giaever G., Nislow C. The yeast deletion collection: a decade of functional genomics. Genetics 2014, 197:451-465.
-
(2014)
Genetics
, vol.197
, pp. 451-465
-
-
Giaever, G.1
Nislow, C.2
-
4
-
-
3142536716
-
Exploration of essential gene functions via titratable promoter alleles
-
Mnaimneh S., et al. Exploration of essential gene functions via titratable promoter alleles. Cell 2004, 118:31-44.
-
(2004)
Cell
, vol.118
, pp. 31-44
-
-
Mnaimneh, S.1
-
5
-
-
40149109321
-
A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae
-
Jones G.M., et al. A systematic library for comprehensive overexpression screens in Saccharomyces cerevisiae. Nat. Methods 2008, 5:239-241.
-
(2008)
Nat. Methods
, vol.5
, pp. 239-241
-
-
Jones, G.M.1
-
6
-
-
34147092780
-
Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae
-
Hu Y., et al. Approaching a complete repository of sequence-verified protein-encoding clones for Saccharomyces cerevisiae. Genome Res. 2007, 17:536-543.
-
(2007)
Genome Res.
, vol.17
, pp. 536-543
-
-
Hu, Y.1
-
7
-
-
0142184341
-
Global analysis of protein localization in budding yeast
-
Huh W.K., et al. Global analysis of protein localization in budding yeast. Nature 2003, 425:686-691.
-
(2003)
Nature
, vol.425
, pp. 686-691
-
-
Huh, W.K.1
-
8
-
-
26844489762
-
Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile
-
Schuldiner M., et al. Exploration of the function and organization of the yeast early secretory pathway through an epistatic miniarray profile. Cell 2005, 123:507-519.
-
(2005)
Cell
, vol.123
, pp. 507-519
-
-
Schuldiner, M.1
-
9
-
-
84871792997
-
Mitochondrial protein import: common principles and physiological networks
-
Dudek J., et al. Mitochondrial protein import: common principles and physiological networks. Biochim. Biophys. Acta 2013, 1833:274-285.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 274-285
-
-
Dudek, J.1
-
10
-
-
84910141948
-
Mitochondrial dynamics and inheritance during cell division, development and disease
-
Mishra P., Chan D.C. Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 2014, 15:634-646.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 634-646
-
-
Mishra, P.1
Chan, D.C.2
-
11
-
-
84862884156
-
Mitochondrial quality control: an integrated network of pathways
-
Fischer F., et al. Mitochondrial quality control: an integrated network of pathways. Trends Biochem. Sci. 2012, 37:284-292.
-
(2012)
Trends Biochem. Sci.
, vol.37
, pp. 284-292
-
-
Fischer, F.1
-
12
-
-
84901410479
-
Mitochondria as signaling organelles
-
Chandel N.S. Mitochondria as signaling organelles. BMC Biol. 2014, 12:34.
-
(2014)
BMC Biol.
, vol.12
, pp. 34
-
-
Chandel, N.S.1
-
13
-
-
33845298268
-
Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process
-
Fontanesi F., et al. Assembly of mitochondrial cytochrome c-oxidase, a complicated and highly regulated cellular process. Am. J. Physiol. Cell Physiol. 2006, 291:C1129-C1147.
-
(2006)
Am. J. Physiol. Cell Physiol.
, vol.291
, pp. C1129-C1147
-
-
Fontanesi, F.1
-
14
-
-
84863741781
-
Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology
-
Ghezzi D., Zeviani M. Assembly factors of human mitochondrial respiratory chain complexes: physiology and pathophysiology. Adv. Exp. Med. Biol. 2012, 748:65-106.
-
(2012)
Adv. Exp. Med. Biol.
, vol.748
, pp. 65-106
-
-
Ghezzi, D.1
Zeviani, M.2
-
15
-
-
84863746788
-
The many clinical faces of cytochrome c oxidase deficiency
-
DiMauro S., et al. The many clinical faces of cytochrome c oxidase deficiency. Adv. Exp. Med. Biol. 2012, 748:341-357.
-
(2012)
Adv. Exp. Med. Biol.
, vol.748
, pp. 341-357
-
-
DiMauro, S.1
-
16
-
-
56149104649
-
Cytochrome c oxidase biogenesis: new levels of regulation
-
Fontanesi F., et al. Cytochrome c oxidase biogenesis: new levels of regulation. IUBMB Life 2008, 60:557-568.
-
(2008)
IUBMB Life
, vol.60
, pp. 557-568
-
-
Fontanesi, F.1
-
17
-
-
41449117631
-
Function and redox state of mitochondrial localized cysteine-rich proteins important in the assembly of cytochrome c oxidase
-
Khalimonchuk O., Winge D.R. Function and redox state of mitochondrial localized cysteine-rich proteins important in the assembly of cytochrome c oxidase. Biochim. Biophys. Acta 2008, 1783:618-628.
-
(2008)
Biochim. Biophys. Acta
, vol.1783
, pp. 618-628
-
-
Khalimonchuk, O.1
Winge, D.R.2
-
18
-
-
84860697026
-
Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core
-
Soto I.C., et al. Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core. Biochim. Biophys. Acta 2012, 1817:883-897.
-
(2012)
Biochim. Biophys. Acta
, vol.1817
, pp. 883-897
-
-
Soto, I.C.1
-
19
-
-
84860697620
-
Understanding mitochondrial complex I assembly in health and disease
-
Mimaki M., et al. Understanding mitochondrial complex I assembly in health and disease. Biochim Biophys. Acta 2012, 1817:851-862.
-
(2012)
Biochim Biophys. Acta
, vol.1817
, pp. 851-862
-
-
Mimaki, M.1
-
20
-
-
77952885778
-
Succinate dehydrogenase - assembly, regulation and role in human disease
-
Rutter J., et al. Succinate dehydrogenase - assembly, regulation and role in human disease. Mitochondrion 2010, 10:393-401.
-
(2010)
Mitochondrion
, vol.10
, pp. 393-401
-
-
Rutter, J.1
-
21
-
-
69549088424
-
SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma
-
Hao H.X., et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325:11391142.
-
(2009)
Science
, vol.325
, pp. 11391142
-
-
Hao, H.X.1
-
22
-
-
67349189168
-
SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy
-
Ghezzi D., et al. SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat. Genet. 2009, 41:654-656.
-
(2009)
Nat. Genet.
, vol.41
, pp. 654-656
-
-
Ghezzi, D.1
-
23
-
-
84905860097
-
The LYR factors SDHAF1 and SDHAF3 mediate maturation of the iron-sulfur subunit of succinate dehydrogenase
-
Na U., et al. The LYR factors SDHAF1 and SDHAF3 mediate maturation of the iron-sulfur subunit of succinate dehydrogenase. Cell. Metab. 2014, 20:253-266.
-
(2014)
Cell. Metab.
, vol.20
, pp. 253-266
-
-
Na, U.1
-
24
-
-
84905821769
-
SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration
-
Van Vranken J.G., et al. SDHAF4 promotes mitochondrial succinate dehydrogenase activity and prevents neurodegeneration. Cell Metab. 2014, 20:241-252.
-
(2014)
Cell Metab.
, vol.20
, pp. 241-252
-
-
Van Vranken, J.G.1
-
25
-
-
84928818532
-
Protein-mediated assembly of succinate dehydrogenase and its cofactors
-
Published online December 9, 2014.
-
Van Vranken J.G. Protein-mediated assembly of succinate dehydrogenase and its cofactors. Crit. Rev. Biochem. Mol. Biol. 2014, Published online December 9, 2014. http://dx.doi.org/10.3109/10409238.2014.990556.
-
(2014)
Crit. Rev. Biochem. Mol. Biol.
-
-
Van Vranken, J.G.1
-
26
-
-
84863474422
-
Mitochondrial ATP synthase: architecture, function and pathology
-
Jonckheere A.I., et al. Mitochondrial ATP synthase: architecture, function and pathology. J. Inherit. Metab. Dis. 2012, 35:211-225.
-
(2012)
J. Inherit. Metab. Dis.
, vol.35
, pp. 211-225
-
-
Jonckheere, A.I.1
-
27
-
-
0021766172
-
Hypothesis. The mechanism of ATP synthase. Conformational change by rotation of the beta-subunit
-
Cox G.B., et al. Hypothesis. The mechanism of ATP synthase. Conformational change by rotation of the beta-subunit. Biochim. Biophys. Acta 1984, 768:201-208.
-
(1984)
Biochim. Biophys. Acta
, vol.768
, pp. 201-208
-
-
Cox, G.B.1
-
28
-
-
0031008228
-
The ATP synthase - a splendid molecular machine
-
Boyer P.D. The ATP synthase - a splendid molecular machine. Annu. Rev. Biochem. 1997, 66:717-749.
-
(1997)
Annu. Rev. Biochem.
, vol.66
, pp. 717-749
-
-
Boyer, P.D.1
-
29
-
-
0033607504
-
Molecular architecture of the rotary motor in ATP synthase
-
Stock D., et al. Molecular architecture of the rotary motor in ATP synthase. Science 1999, 286:1700-1705.
-
(1999)
Science
, vol.286
, pp. 1700-1705
-
-
Stock, D.1
-
30
-
-
79952282995
-
Modular assembly of yeast mitochondrial ATP synthase
-
Rak M., et al. Modular assembly of yeast mitochondrial ATP synthase. EMBO J. 2011, 30:920-930.
-
(2011)
EMBO J.
, vol.30
, pp. 920-930
-
-
Rak, M.1
-
31
-
-
0037056022
-
Atp11p and Atp12p are chaperones for F1-ATPase biogenesis in mitochondria
-
Ackerman S.H. Atp11p and Atp12p are chaperones for F1-ATPase biogenesis in mitochondria. Biochim. Biophys. Acta 2002, 1555:101-105.
-
(2002)
Biochim. Biophys. Acta
, vol.1555
, pp. 101-105
-
-
Ackerman, S.H.1
-
33
-
-
0025781386
-
1-ATPase
-
1-ATPase. J. Biol. Chem. 1991, 266:7517-7523.
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 7517-7523
-
-
Bowman, S.1
-
34
-
-
0035903210
-
1-ATPase in human mitochondria
-
1-ATPase in human mitochondria. J. Biol. Chem. 2001, 276:30773-30778.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 30773-30778
-
-
Wang, Z.G.1
-
35
-
-
1242269834
-
Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12
-
De Meirleir L., et al. Respiratory chain complex V deficiency due to a mutation in the assembly gene ATP12. J. Med. Genet. 2004, 41:120-124.
-
(2004)
J. Med. Genet.
, vol.41
, pp. 120-124
-
-
De Meirleir, L.1
-
36
-
-
77950473492
-
Defining the pathogenesis of the human Atp12p W94R mutation using a Saccharomyces cerevisiae yeast model
-
Meulemans A., et al. Defining the pathogenesis of the human Atp12p W94R mutation using a Saccharomyces cerevisiae yeast model. J. Biol. Chem. 2010, 285:4099-4109.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 4099-4109
-
-
Meulemans, A.1
-
37
-
-
0035794147
-
1-ATPase in heat stress conditions
-
1-ATPase in heat stress conditions. J. Biol. Chem. 2001, 276:6789-6796.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 6789-6796
-
-
Lefebvre-Legendre, L.1
-
38
-
-
33846826875
-
0-ATP synthase
-
0-ATP synthase. Mol. Biol. Cell 2007, 18:627-635.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 627-635
-
-
Osman, C.1
-
39
-
-
33846813499
-
The metalloprotease encoded by ATP23 has a dual function in processing and assembly of subunit 6 of mitochondrial ATPase
-
Zeng X., et al. The metalloprotease encoded by ATP23 has a dual function in processing and assembly of subunit 6 of mitochondrial ATPase. Mol. Biol. Cell 2007, 18:617-626.
-
(2007)
Mol. Biol. Cell
, vol.18
, pp. 617-626
-
-
Zeng, X.1
-
41
-
-
2442489927
-
0 unit of the yeast mitochondrial ATPase
-
0 unit of the yeast mitochondrial ATPase. J. Biol. Chem. 2004, 279:19775-19780.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 19775-19780
-
-
Tzagoloff, A.1
-
42
-
-
84905390734
-
0-ATP synthase
-
0-ATP synthase. EMBO J. 2014, 33:1624-1638.
-
(2014)
EMBO J.
, vol.33
, pp. 1624-1638
-
-
Lytovchenko, O.1
-
43
-
-
46349088952
-
Diseases caused by defects of mitochondrial carriers: a review
-
Palmieri F. Diseases caused by defects of mitochondrial carriers: a review. Biochim. Biophys. Acta 2008, 1777:564-578.
-
(2008)
Biochim. Biophys. Acta
, vol.1777
, pp. 564-578
-
-
Palmieri, F.1
-
44
-
-
79951962628
-
Mitochondrial metabolite transport
-
Palmieri F., Pierri C.L. Mitochondrial metabolite transport. Essays Biochem. 2010, 47:37-52.
-
(2010)
Essays Biochem.
, vol.47
, pp. 37-52
-
-
Palmieri, F.1
Pierri, C.L.2
-
45
-
-
84875218644
-
The mitochondrial transporter family SLC25: identification, properties and physiopathology
-
Palmieri F. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol. Aspects Med. 2013, 34:465-484.
-
(2013)
Mol. Aspects Med.
, vol.34
, pp. 465-484
-
-
Palmieri, F.1
-
46
-
-
0020473533
-
Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase
-
Saraste M., Walker J.E. Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett. 1982, 144:250-254.
-
(1982)
FEBS Lett.
, vol.144
, pp. 250-254
-
-
Saraste, M.1
Walker, J.E.2
-
47
-
-
1942468196
-
The role and structure of mitochondrial carriers
-
Kunji E.R. The role and structure of mitochondrial carriers. FEBS Lett. 2004, 564:239-244.
-
(2004)
FEBS Lett.
, vol.564
, pp. 239-244
-
-
Kunji, E.R.1
-
48
-
-
0034053925
-
Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance
-
Palmieri L., et al. Yeast mitochondrial carriers: bacterial expression, biochemical identification and metabolic significance. J. Bioenerg. Biomembr. 2000, 32:67-77.
-
(2000)
J. Bioenerg. Biomembr.
, vol.32
, pp. 67-77
-
-
Palmieri, L.1
-
49
-
-
0030927298
-
Phylogenetic classification of the mitochondrial carrier family of Saccharomyces cerevisiae
-
el Moualij B., et al. Phylogenetic classification of the mitochondrial carrier family of Saccharomyces cerevisiae. Yeast 1997, 13:573-581.
-
(1997)
Yeast
, vol.13
, pp. 573-581
-
-
el Moualij, B.1
-
50
-
-
33748976734
-
Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins
-
Palmieri F., et al. Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. Biochim. Biophys. Acta 2006, 1757:1249-1262.
-
(2006)
Biochim. Biophys. Acta
, vol.1757
, pp. 1249-1262
-
-
Palmieri, F.1
-
51
-
-
52049113898
-
The ADP and ATP transport in mitochondria and its carrier
-
Klingenberg M. The ADP and ATP transport in mitochondria and its carrier. Biochim. Biophys. Acta 2008, 1778:1978-2021.
-
(2008)
Biochim. Biophys. Acta
, vol.1778
, pp. 1978-2021
-
-
Klingenberg, M.1
-
52
-
-
27544494568
-
Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy
-
Palmieri L., et al. Complete loss-of-function of the heart/muscle-specific adenine nucleotide translocator is associated with mitochondrial myopathy and cardiomyopathy. Hum. Mol. Genet. 2005, 14:3079-3088.
-
(2005)
Hum. Mol. Genet.
, vol.14
, pp. 3079-3088
-
-
Palmieri, L.1
-
53
-
-
84855984937
-
Complete loss of expression of the ANT1 gene causing cardiomyopathy and myopathy
-
Echaniz-Laguna A., et al. Complete loss of expression of the ANT1 gene causing cardiomyopathy and myopathy. J. Med. Genet. 2012, 49:146-150.
-
(2012)
J. Med. Genet.
, vol.49
, pp. 146-150
-
-
Echaniz-Laguna, A.1
-
54
-
-
0032904532
-
The mitochondrial dicarboxylate carrier is essential for the growth of Saccharomyces cerevisiae on ethanol or acetate as the sole carbon source
-
Palmieri L., et al. The mitochondrial dicarboxylate carrier is essential for the growth of Saccharomyces cerevisiae on ethanol or acetate as the sole carbon source. Mol. Microbiol. 1999, 31:569-577.
-
(1999)
Mol. Microbiol.
, vol.31
, pp. 569-577
-
-
Palmieri, L.1
-
55
-
-
0023933703
-
Purification and reconstitution of two anion carriers from rat liver mitochondria: the dicarboxylate and the 2-oxoglutarate carrier
-
Bisaccia F., et al. Purification and reconstitution of two anion carriers from rat liver mitochondria: the dicarboxylate and the 2-oxoglutarate carrier. Biochim. Biophys. Acta 1988, 933:229-240.
-
(1988)
Biochim. Biophys. Acta
, vol.933
, pp. 229-240
-
-
Bisaccia, F.1
-
56
-
-
0032544362
-
The sequence, bacterial expression, and functional reconstitution of the rat mitochondrial dicarboxylate transporter cloned via distant homologs in yeast and Caenorhabditis elegans
-
Fiermonte G., et al. The sequence, bacterial expression, and functional reconstitution of the rat mitochondrial dicarboxylate transporter cloned via distant homologs in yeast and Caenorhabditis elegans. J. Biol. Chem. 1998, 273:24754-24759.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 24754-24759
-
-
Fiermonte, G.1
-
57
-
-
79953775104
-
The dicarboxylate carrier plays a role in mitochondrial malate transport and in the regulation of glucose-stimulated insulin secretion from rat pancreatic β cells
-
Huypens P., et al. The dicarboxylate carrier plays a role in mitochondrial malate transport and in the regulation of glucose-stimulated insulin secretion from rat pancreatic β cells. Diabetologia 2011, 54:135-145.
-
(2011)
Diabetologia
, vol.54
, pp. 135-145
-
-
Huypens, P.1
-
58
-
-
0035144432
-
The yeast mitochondrial carrier Leu5p and its human homologue Graves' disease protein are required for accumulation of coenzyme A in the matrix
-
Prohl C., et al. The yeast mitochondrial carrier Leu5p and its human homologue Graves' disease protein are required for accumulation of coenzyme A in the matrix. Mol. Cell. Biol. 2001, 21:1089-1097.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 1089-1097
-
-
Prohl, C.1
-
59
-
-
67650561215
-
A novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme A and adenosine 3',5'-diphosphate in human mitochondria
-
Fiermonte G., et al. A novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme A and adenosine 3',5'-diphosphate in human mitochondria. J. Biol. Chem. 2009, 284:18152-18159.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 18152-18159
-
-
Fiermonte, G.1
-
60
-
-
84878441922
-
Identification of mitochondrial coenzyme a transporters from maize and Arabidopsis
-
Zallot R., et al. Identification of mitochondrial coenzyme a transporters from maize and Arabidopsis. Plant Physiol. 2013, 162:581-588.
-
(2013)
Plant Physiol.
, vol.162
, pp. 581-588
-
-
Zallot, R.1
-
61
-
-
0037025331
-
Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain
-
Foury F., Roganti T. Deletion of the mitochondrial carrier genes MRS3 and MRS4 suppresses mitochondrial iron accumulation in a yeast frataxin-deficient strain. J. Biol. Chem. 2002, 277:24475-24483.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 24475-24483
-
-
Foury, F.1
Roganti, T.2
-
62
-
-
17044451174
-
A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions
-
Muhlenhoff U., et al. A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions. J. Biol. Chem. 2003, 278:40612-40620.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 40612-40620
-
-
Muhlenhoff, U.1
-
63
-
-
65249089204
-
The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane
-
Froschauer E.M., et al. The yeast mitochondrial carrier proteins Mrs3p/Mrs4p mediate iron transport across the inner mitochondrial membrane. Biochim. Biophys. Acta 2009, 1788:1044-1050.
-
(2009)
Biochim. Biophys. Acta
, vol.1788
, pp. 1044-1050
-
-
Froschauer, E.M.1
-
64
-
-
33747330134
-
Mrs3p, Mrs4p, and frataxin provide iron for Fe-S cluster synthesis in mitochondria
-
Zhang Y., et al. Mrs3p, Mrs4p, and frataxin provide iron for Fe-S cluster synthesis in mitochondria. J. Biol. Chem. 2006, 281:22493-22502.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 22493-22502
-
-
Zhang, Y.1
-
65
-
-
33644748145
-
Mitoferrin is essential for erythroid iron assimilation
-
Shaw G.C., et al. Mitoferrin is essential for erythroid iron assimilation. Nature 2006, 440:96-100.
-
(2006)
Nature
, vol.440
, pp. 96-100
-
-
Shaw, G.C.1
-
66
-
-
80051946060
-
Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter
-
Baughman J.M., et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 2011, 476:341-345.
-
(2011)
Nature
, vol.476
, pp. 341-345
-
-
Baughman, J.M.1
-
67
-
-
84861219896
-
Evolutionary diversity of the mitochondrial calcium uniporter
-
Bick A.G., et al. Evolutionary diversity of the mitochondrial calcium uniporter. Science 2012, 336:886.
-
(2012)
Science
, vol.336
, pp. 886
-
-
Bick, A.G.1
-
68
-
-
84879052051
-
MCU encodes the pore conducting mitochondrial calcium currents
-
Chaudhuri D., et al. MCU encodes the pore conducting mitochondrial calcium currents. Elife 2013, 2:e00704.
-
(2013)
Elife
, vol.2
, pp. e00704
-
-
Chaudhuri, D.1
-
69
-
-
80051936634
-
A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter
-
De Stefani D., et al. A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 2011, 476:336-340.
-
(2011)
Nature
, vol.476
, pp. 336-340
-
-
De Stefani, D.1
-
70
-
-
84870621600
-
2+ uptake that regulates cellular metabolism
-
2+ uptake that regulates cellular metabolism. Nat. Cell Biol. 2012, 14:1336-1343.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1336-1343
-
-
Mallilankaraman, K.1
-
71
-
-
84876242675
-
The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles
-
Patron M., et al. The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles. J. Biol. Chem. 2013, 288:10750-10758.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 10750-10758
-
-
Patron, M.1
-
72
-
-
84890116192
-
EMRE is an essential component of the mitochondrial calcium uniporter complex
-
Sancak Y., et al. EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 2013, 342:1379-1382.
-
(2013)
Science
, vol.342
, pp. 1379-1382
-
-
Sancak, Y.1
-
73
-
-
84863552418
-
A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans
-
Bricker D.K., et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science 2012, 337:96-100.
-
(2012)
Science
, vol.337
, pp. 96-100
-
-
Bricker, D.K.1
-
74
-
-
84863553135
-
Identification and functional expression of the mitochondrial pyruvate carrier
-
Herzig S., et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science 2012, 337:93-96.
-
(2012)
Science
, vol.337
, pp. 93-96
-
-
Herzig, S.1
-
75
-
-
84877771544
-
Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT) - relationship to newly identified mitochondrial pyruvate carrier proteins
-
Colca J.R., et al. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT) - relationship to newly identified mitochondrial pyruvate carrier proteins. PLoS ONE 2013, 8:e61551.
-
(2013)
PLoS ONE
, vol.8
, pp. e61551
-
-
Colca, J.R.1
-
76
-
-
84875858252
-
Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier
-
Divakaruni A.S., et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:5422-5427.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 5422-5427
-
-
Divakaruni, A.S.1
-
77
-
-
84900459053
-
Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion
-
Patterson J.N., et al. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion. J. Biol. Chem. 2014, 289:13335-13346.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 13335-13346
-
-
Patterson, J.N.1
-
78
-
-
84877057467
-
Novel insulin sensitizer modulates nutrient sensing pathways and maintains β-cell phenotype in human islets
-
Rohatgi N., et al. Novel insulin sensitizer modulates nutrient sensing pathways and maintains β-cell phenotype in human islets. PLoS ONE 2013, 8:e62012.
-
(2013)
PLoS ONE
, vol.8
, pp. e62012
-
-
Rohatgi, N.1
-
79
-
-
84896711181
-
Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast
-
Timon-Gomez A., et al. Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast. PLoS ONE 2013, 8:e79405.
-
(2013)
PLoS ONE
, vol.8
, pp. e79405
-
-
Timon-Gomez, A.1
-
80
-
-
84911473884
-
Structures of bacterial homologues of SWEET transporters in two distinct conformations
-
Xu Y., et al. Structures of bacterial homologues of SWEET transporters in two distinct conformations. Nature 2014, 515:448-452.
-
(2014)
Nature
, vol.515
, pp. 448-452
-
-
Xu, Y.1
-
81
-
-
84884353644
-
Prediction of the functional effect of novel SLC25A13 variants using a S. cerevisiae model of AGC2 deficiency
-
Wongkittichote P., et al. Prediction of the functional effect of novel SLC25A13 variants using a S. cerevisiae model of AGC2 deficiency. J. Inherit. Metab. Dis. 2013, 36:821-830.
-
(2013)
J. Inherit. Metab. Dis.
, vol.36
, pp. 821-830
-
-
Wongkittichote, P.1
-
82
-
-
84899633300
-
A novel mutation in the SLC25A15 gene in a Turkish patient with HHH syndrome: functional analysis of the mutant protein
-
Ersoy Tunali N., et al. A novel mutation in the SLC25A15 gene in a Turkish patient with HHH syndrome: functional analysis of the mutant protein. Mol. Genet. Metab. 2014, 112:25-29.
-
(2014)
Mol. Genet. Metab.
, vol.112
, pp. 25-29
-
-
Ersoy Tunali, N.1
-
83
-
-
0029780377
-
The ARG11 gene of Saccharomyces cerevisiae encodes a mitochondrial integral membrane protein required for arginine biosynthesis
-
Crabeel M., et al. The ARG11 gene of Saccharomyces cerevisiae encodes a mitochondrial integral membrane protein required for arginine biosynthesis. J. Biol. Chem. 1996, 271:25011-25018.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 25011-25018
-
-
Crabeel, M.1
-
84
-
-
0030825368
-
Identification of the yeast ARG-11 gene as a mitochondrial ornithine carrier involved in arginine biosynthesis
-
Palmieri L., et al. Identification of the yeast ARG-11 gene as a mitochondrial ornithine carrier involved in arginine biosynthesis. FEBS Lett. 1997, 410:447-451.
-
(1997)
FEBS Lett.
, vol.410
, pp. 447-451
-
-
Palmieri, L.1
-
85
-
-
0033030998
-
Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter
-
Camacho J.A., et al. Hyperornithinaemia-hyperammonaemia-homocitrullinuria syndrome is caused by mutations in a gene encoding a mitochondrial ornithine transporter. Nat. Genet. 1999, 22:151-158.
-
(1999)
Nat. Genet.
, vol.22
, pp. 151-158
-
-
Camacho, J.A.1
-
86
-
-
33748093283
-
Identification of Tam41 maintaining integrity of the TIM23 protein translocator complex in mitochondria
-
Tamura Y., et al. Identification of Tam41 maintaining integrity of the TIM23 protein translocator complex in mitochondria. J. Cell Biol. 2006, 174:631-637.
-
(2006)
J. Cell Biol.
, vol.174
, pp. 631-637
-
-
Tamura, Y.1
-
87
-
-
33747422544
-
Ups1p, a conserved intermembrane space protein, regulates mitochondrial shape and alternative topogenesis of Mgm1p
-
Sesaki H., et al. Ups1p, a conserved intermembrane space protein, regulates mitochondrial shape and alternative topogenesis of Mgm1p. J. Cell Biol. 2006, 173:651-658.
-
(2006)
J. Cell Biol.
, vol.173
, pp. 651-658
-
-
Sesaki, H.1
-
89
-
-
84906318502
-
Phospholipid transport via mitochondria
-
Tamura Y., et al. Phospholipid transport via mitochondria. Traffic 2014, 15:933-945.
-
(2014)
Traffic
, vol.15
, pp. 933-945
-
-
Tamura, Y.1
-
90
-
-
84855581252
-
The complexity of cardiolipin in health and disease
-
Claypool S.M., Koehler C.M. The complexity of cardiolipin in health and disease. Trends Biochem. Sci. 2012, 37:32-41.
-
(2012)
Trends Biochem. Sci.
, vol.37
, pp. 32-41
-
-
Claypool, S.M.1
Koehler, C.M.2
-
91
-
-
0347595327
-
Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth syndrome
-
Gu Z., et al. Aberrant cardiolipin metabolism in the yeast taz1 mutant: a model for Barth syndrome. Mol. Microbiol. 2004, 51:149-158.
-
(2004)
Mol. Microbiol.
, vol.51
, pp. 149-158
-
-
Gu, Z.1
-
92
-
-
0020974404
-
An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes
-
Barth P.G., et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J. Neurol. Sci. 1983, 62:327-355.
-
(1983)
J. Neurol. Sci.
, vol.62
, pp. 327-355
-
-
Barth, P.G.1
-
93
-
-
33749061065
-
Barth syndrome, a human disorder of cardiolipin metabolism
-
Schlame M., Ren M. Barth syndrome, a human disorder of cardiolipin metabolism. FEBS Lett. 2006, 580:5450-5455.
-
(2006)
FEBS Lett.
, vol.580
, pp. 5450-5455
-
-
Schlame, M.1
Ren, M.2
-
94
-
-
0032540270
-
The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero-phosphate synthase of Saccharomyces cerevisiae
-
Chang S.C., et al. The PEL1 gene (renamed PGS1) encodes the phosphatidylglycero-phosphate synthase of Saccharomyces cerevisiae. J. Biol. Chem. 1998, 273:9829-9836.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 9829-9836
-
-
Chang, S.C.1
-
95
-
-
0032511048
-
Isolation and characterization of the gene (CLS1) encoding cardiolipin synthase in Saccharomyces cerevisiae
-
Chang S.C., et al. Isolation and characterization of the gene (CLS1) encoding cardiolipin synthase in Saccharomyces cerevisiae. J. Biol. Chem. 1998, 273:14933-14941.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 14933-14941
-
-
Chang, S.C.1
-
96
-
-
0032472289
-
YDL142c encodes cardiolipin synthase (Cls1p) and is non-essential for aerobic growth of Saccharomyces cerevisiae
-
Tuller G., et al. YDL142c encodes cardiolipin synthase (Cls1p) and is non-essential for aerobic growth of Saccharomyces cerevisiae. FEBS Lett. 1998, 421:15-18.
-
(1998)
FEBS Lett.
, vol.421
, pp. 15-18
-
-
Tuller, G.1
-
97
-
-
33748347104
-
Identification and functional characterization of hCLS1, a human cardiolipin synthase localized in mitochondria
-
Chen D., et al. Identification and functional characterization of hCLS1, a human cardiolipin synthase localized in mitochondria. Biochem. J. 2006, 398:169-176.
-
(2006)
Biochem. J.
, vol.398
, pp. 169-176
-
-
Chen, D.1
-
98
-
-
33646748055
-
Identification and characterization of human cardiolipin synthase
-
Houtkooper R.H., et al. Identification and characterization of human cardiolipin synthase. FEBS Lett. 2006, 580:3059-3064.
-
(2006)
FEBS Lett.
, vol.580
, pp. 3059-3064
-
-
Houtkooper, R.H.1
-
99
-
-
0033555937
-
Isolation of a chinese hamster ovary (CHO) cDNA encoding phosphatidylglycerophosphate (PGP) synthase, expression of which corrects the mitochondrial abnormalities of a PGP synthase-defective mutant of CHO-K1 cells
-
Kawasaki K., et al. Isolation of a chinese hamster ovary (CHO) cDNA encoding phosphatidylglycerophosphate (PGP) synthase, expression of which corrects the mitochondrial abnormalities of a PGP synthase-defective mutant of CHO-K1 cells. J. Biol. Chem. 1999, 274:1828-1834.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 1828-1834
-
-
Kawasaki, K.1
-
100
-
-
0011017943
-
A simplified preparation of cardiolipin, with note on purification of lecithin for serologic use
-
Pangborn M.C. A simplified preparation of cardiolipin, with note on purification of lecithin for serologic use. J. Biol. Chem. 1945, 161:71-82.
-
(1945)
J. Biol. Chem.
, vol.161
, pp. 71-82
-
-
Pangborn, M.C.1
-
101
-
-
0022457112
-
Subcellular and submitochondrial localization of phospholipid-synthesizing enzymes in Saccharomyces cerevisiae
-
Kuchler K., et al. Subcellular and submitochondrial localization of phospholipid-synthesizing enzymes in Saccharomyces cerevisiae. J. Bacteriol. 1986, 165:901-910.
-
(1986)
J. Bacteriol.
, vol.165
, pp. 901-910
-
-
Kuchler, K.1
-
102
-
-
0030023391
-
The CDS1 gene encoding CDP-diacylglycerol synthase in Saccharomyces cerevisiae is essential for cell growth
-
Shen H., et al. The CDS1 gene encoding CDP-diacylglycerol synthase in Saccharomyces cerevisiae is essential for cell growth. J. Biol. Chem. 1996, 271:789-795.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 789-795
-
-
Shen, H.1
-
103
-
-
84877584085
-
Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria
-
Tamura Y., et al. Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria. Cell Metab. 2013, 17:709-718.
-
(2013)
Cell Metab.
, vol.17
, pp. 709-718
-
-
Tamura, Y.1
-
104
-
-
59449088611
-
The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis
-
Kutik S., et al. The translocator maintenance protein Tam41 is required for mitochondrial cardiolipin biosynthesis. J. Cell Biol. 2008, 183:1213-1221.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 1213-1221
-
-
Kutik, S.1
-
105
-
-
61449229779
-
The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria
-
583-196
-
Osman C., et al. The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria. J. Cell Biol. 2009, 184. 583-196.
-
(2009)
J. Cell Biol.
, vol.184
-
-
Osman, C.1
-
106
-
-
77953614272
-
A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4
-
Osman C., et al. A mitochondrial phosphatase required for cardiolipin biosynthesis: the PGP phosphatase Gep4. EMBO J. 2010, 29:1976-1987.
-
(2010)
EMBO J.
, vol.29
, pp. 1976-1987
-
-
Osman, C.1
-
107
-
-
79958034094
-
Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis
-
Zhang J., et al. Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab. 2011, 13:690-700.
-
(2011)
Cell Metab.
, vol.13
, pp. 690-700
-
-
Zhang, J.1
-
108
-
-
84880617115
-
Organization and function of membrane contact sites
-
Helle S.C., et al. Organization and function of membrane contact sites. Biochim. Biophys. Acta 2013, 1833:2526-2541.
-
(2013)
Biochim. Biophys. Acta
, vol.1833
, pp. 2526-2541
-
-
Helle, S.C.1
-
109
-
-
67749122635
-
An ER-mitochondria tethering complex revealed by a synthetic biology screen
-
Kornmann B., et al. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 2009, 325:477-481.
-
(2009)
Science
, vol.325
, pp. 477-481
-
-
Kornmann, B.1
-
110
-
-
80052172908
-
The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections
-
Kornmann B., et al. The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14151-14156.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 14151-14156
-
-
Kornmann, B.1
-
111
-
-
77955361329
-
Homology of SMP domains to the TULIP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria
-
Kopec K.O., et al. Homology of SMP domains to the TULIP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria. Bioinformatics 2010, 26:1927-1931.
-
(2010)
Bioinformatics
, vol.26
, pp. 1927-1931
-
-
Kopec, K.O.1
-
112
-
-
84860916316
-
Gem1 and ERMES do not directly affect phosphatidylserine transport from ER to mitochondria or mitochondrial inheritance
-
Nguyen T.T., et al. Gem1 and ERMES do not directly affect phosphatidylserine transport from ER to mitochondria or mitochondrial inheritance. Traffic 2012, 13:880-890.
-
(2012)
Traffic
, vol.13
, pp. 880-890
-
-
Nguyen, T.T.1
-
113
-
-
67449138848
-
Ups1p and Ups2p antagonistically regulate cardiolipin metabolism in mitochondria
-
Tamura Y., et al. Ups1p and Ups2p antagonistically regulate cardiolipin metabolism in mitochondria. J. Cell Biol. 2009, 185:1029-1045.
-
(2009)
J. Cell Biol.
, vol.185
, pp. 1029-1045
-
-
Tamura, Y.1
-
114
-
-
84868596965
-
Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein
-
Connerth M., et al. Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein. Science 2012, 338:815-818.
-
(2012)
Science
, vol.338
, pp. 815-818
-
-
Connerth, M.1
-
115
-
-
77956391459
-
Regulation of mitochondrial phospholipids by Ups1/PRELI-like proteins depends on proteolysis and Mdm35
-
Potting C., et al. Regulation of mitochondrial phospholipids by Ups1/PRELI-like proteins depends on proteolysis and Mdm35. EMBO J. 2010, 29:2888-2898.
-
(2010)
EMBO J.
, vol.29
, pp. 2888-2898
-
-
Potting, C.1
-
116
-
-
77956378766
-
Mdm35p imports Ups proteins into the mitochondrial intermembrane space by functional complex formation
-
Tamura Y., et al. Mdm35p imports Ups proteins into the mitochondrial intermembrane space by functional complex formation. EMBO J. 2010, 29:2875-2887.
-
(2010)
EMBO J.
, vol.29
, pp. 2875-2887
-
-
Tamura, Y.1
-
117
-
-
84881326056
-
TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid
-
Potting C., et al. TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid. Cell Metab. 2013, 18:287-295.
-
(2013)
Cell Metab.
, vol.18
, pp. 287-295
-
-
Potting, C.1
-
118
-
-
84906937036
-
Making connections: interorganelle contacts orchestrate mitochondrial behavior
-
Klecker T., et al. Making connections: interorganelle contacts orchestrate mitochondrial behavior. Trends Cell Biol. 2014, 24:537-545.
-
(2014)
Trends Cell Biol.
, vol.24
, pp. 537-545
-
-
Klecker, T.1
-
119
-
-
33845656956
-
Mitochondrial retrograde signaling
-
Liu Z., Butow R.A. Mitochondrial retrograde signaling. Annu. Rev. Genet. 2006, 40:159-185.
-
(2006)
Annu. Rev. Genet.
, vol.40
, pp. 159-185
-
-
Liu, Z.1
Butow, R.A.2
-
120
-
-
84906668555
-
The retrograde response: a conserved compensatory reaction to damage from within and from without
-
Jazwinski S.M. The retrograde response: a conserved compensatory reaction to damage from within and from without. Prog. Mol. Biol. Transl. Sci. 2014, 127:133-154.
-
(2014)
Prog. Mol. Biol. Transl. Sci.
, vol.127
, pp. 133-154
-
-
Jazwinski, S.M.1
-
121
-
-
84883451708
-
The molecular hug between the ER and the mitochondria
-
Kornmann B. The molecular hug between the ER and the mitochondria. Curr. Opin. Cell Biol. 2013, 25:443-448.
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 443-448
-
-
Kornmann, B.1
-
122
-
-
84873460115
-
Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria
-
Lackner L.L., et al. Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:E458-E467.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. E458-E467
-
-
Lackner, L.L.1
-
123
-
-
84901821311
-
Peroxisomes are juxtaposed to strategic sites on mitochondria
-
Cohen Y., et al. Peroxisomes are juxtaposed to strategic sites on mitochondria. Mol. Biosyst. 2014, 10:1742-1748.
-
(2014)
Mol. Biosyst.
, vol.10
, pp. 1742-1748
-
-
Cohen, Y.1
-
124
-
-
84864067919
-
Fission and proliferation of peroxisomes
-
Schrader M., et al. Fission and proliferation of peroxisomes. Biochim. Biophys. Acta 2012, 1822:1343-1357.
-
(2012)
Biochim. Biophys. Acta
, vol.1822
, pp. 1343-1357
-
-
Schrader, M.1
-
125
-
-
38349023008
-
Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers
-
Neuspiel M., et al. Cargo-selected transport from the mitochondria to peroxisomes is mediated by vesicular carriers. Curr. Biol. 2008, 18:102-108.
-
(2008)
Curr. Biol.
, vol.18
, pp. 102-108
-
-
Neuspiel, M.1
-
126
-
-
0025879774
-
+-ATPase activity
-
+-ATPase activity. J. Biol. Chem. 1991, 266:13971-13977.
-
(1991)
J. Biol. Chem.
, vol.266
, pp. 13971-13977
-
-
Ohya, Y.1
-
127
-
-
62949218373
-
The yeast lysosome-like vacuole: endpoint and crossroads
-
Li S.C., Kane P.M. The yeast lysosome-like vacuole: endpoint and crossroads. Biochim. Biophys. Acta 2009, 1793:650-663.
-
(2009)
Biochim. Biophys. Acta
, vol.1793
, pp. 650-663
-
-
Li, S.C.1
Kane, P.M.2
-
128
-
-
76249088524
-
Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae
-
Merz S., Westermann B. Genome-wide deletion mutant analysis reveals genes required for respiratory growth, mitochondrial genome maintenance and mitochondrial protein synthesis in Saccharomyces cerevisiae. Genome Biol. 2009, 10:R95.
-
(2009)
Genome Biol.
, vol.10
, pp. R95
-
-
Merz, S.1
Westermann, B.2
-
129
-
-
84876582502
-
+-ATPase (V-ATPase) activity in yeast generates an iron deprivation signal that is moderated by induction of the peroxiredoxin TSA2
-
+-ATPase (V-ATPase) activity in yeast generates an iron deprivation signal that is moderated by induction of the peroxiredoxin TSA2. J. Biol. Chem. 2013, 288:11366-11377.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 11366-11377
-
-
Diab, H.I.1
Kane, P.M.2
-
130
-
-
34147107933
-
Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress
-
Milgrom E., et al. Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress. J. Biol. Chem. 2007, 282:7125-7136.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 7125-7136
-
-
Milgrom, E.1
-
131
-
-
0027508062
-
+-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism
-
+-ATPase of Saccharomyces cerevisiae is required for efficient copper detoxification, mitochondrial function, and iron metabolism. Mol. Gen. Genet. 1993, 241:447-456.
-
(1993)
Mol. Gen. Genet.
, vol.241
, pp. 447-456
-
-
Eide, D.J.1
-
132
-
-
84871011474
-
An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast
-
Hughes A.L., Gottschling D.E. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 2012, 492:261-265.
-
(2012)
Nature
, vol.492
, pp. 261-265
-
-
Hughes, A.L.1
Gottschling, D.E.2
-
133
-
-
84904270185
-
A dynamic interface between vacuoles and mitochondria in yeast
-
Elbaz-Alon Y., et al. A dynamic interface between vacuoles and mitochondria in yeast. Dev. Cell 2014, 30:95-102.
-
(2014)
Dev. Cell
, vol.30
, pp. 95-102
-
-
Elbaz-Alon, Y.1
-
134
-
-
84904255813
-
Cellular metabolism regulates contact sites between vacuoles and mitochondria
-
Honscher C., et al. Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev. Cell 2014, 30:86-94.
-
(2014)
Dev. Cell
, vol.30
, pp. 86-94
-
-
Honscher, C.1
-
135
-
-
0035833253
-
Human Vam6p promotes lysosome clustering and fusion in vivo
-
Caplan S., et al. Human Vam6p promotes lysosome clustering and fusion in vivo. J. Cell Biol. 2001, 154:109-122.
-
(2001)
J. Cell Biol.
, vol.154
, pp. 109-122
-
-
Caplan, S.1
-
136
-
-
84894363239
-
Mitochondria and melanosomes establish physical contacts modulated by Mfn2 and involved in organelle biogenesis
-
Daniele T., et al. Mitochondria and melanosomes establish physical contacts modulated by Mfn2 and involved in organelle biogenesis. Curr. Biol. 2014, 24:393-403.
-
(2014)
Curr. Biol.
, vol.24
, pp. 393-403
-
-
Daniele, T.1
|