메뉴 건너뛰기




Volumn 6, Issue 2, 2015, Pages 191-209

Processing of preribosomal RNA in Saccharomyces cerevisiae

Author keywords

[No Author keywords available]

Indexed keywords

ENZYME; PRERIBOSOMAL RNA; RIBOSOME RNA; RNA 18S; RNA 5.8S; RNA 5S; UNCLASSIFIED DRUG; RNA PRECURSOR;

EID: 84923044522     PISSN: 17577004     EISSN: 17577012     Source Type: Journal    
DOI: 10.1002/wrna.1267     Document Type: Review
Times cited : (78)

References (128)
  • 1
    • 0033229970 scopus 로고    scopus 로고
    • The economics of ribosome biosynthesis in yeast
    • Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 1999, 24:437-440.
    • (1999) Trends Biochem Sci , vol.24 , pp. 437-440
    • Warner, J.R.1
  • 2
    • 66149187105 scopus 로고    scopus 로고
    • Transcription termination by nuclear RNA polymerases
    • Richard P, Manley JL. Transcription termination by nuclear RNA polymerases. Genes Dev 2009, 23:1247-1269.
    • (2009) Genes Dev , vol.23 , pp. 1247-1269
    • Richard, P.1    Manley, J.L.2
  • 3
    • 0019332693 scopus 로고
    • The 5′ terminus of the precursor ribosomal RNA of Saccharomyces cerevisiae
    • Klemenz R, Geiduschek EP. The 5′ terminus of the precursor ribosomal RNA of Saccharomyces cerevisiae. Nucleic Acids Res 1980, 8:2679-2689.
    • (1980) Nucleic Acids Res , vol.8 , pp. 2679-2689
    • Klemenz, R.1    Geiduschek, E.P.2
  • 4
    • 0033031442 scopus 로고    scopus 로고
    • Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3′ ETS but not the 5′ ETS
    • Kufel J, Dichtl B, Tollervey D. Yeast Rnt1p is required for cleavage of the pre-ribosomal RNA in the 3′ ETS but not the 5′ ETS. RNA 1999, 5:909-917.
    • (1999) RNA , vol.5 , pp. 909-917
    • Kufel, J.1    Dichtl, B.2    Tollervey, D.3
  • 5
    • 0032740975 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae RNA polymerase I terminates transcription at the Reb1 terminator in vivo
    • Reeder RH, Guevara P, Roan JG. Saccharomyces cerevisiae RNA polymerase I terminates transcription at the Reb1 terminator in vivo. Mol Cell Biol 1999, 19:7369-7376.
    • (1999) Mol Cell Biol , vol.19 , pp. 7369-7376
    • Reeder, R.H.1    Guevara, P.2    Roan, J.G.3
  • 6
    • 0029919935 scopus 로고    scopus 로고
    • RNase III cleaves eukaryotic preribosomal RNA at a U3 snoRNP-dependent site
    • Abou Elela S, Igel H, Ares M Jr. RNase III cleaves eukaryotic preribosomal RNA at a U3 snoRNP-dependent site. Cell 1996, 85:115-124.
    • (1996) Cell , vol.85 , pp. 115-124
    • Abou Elela, S.1    Igel, H.2    Ares, M.3
  • 7
    • 42149123284 scopus 로고    scopus 로고
    • Efficient termination of transcription by RNA polymerase I requires the 5′ exonuclease Rat1 in yeast
    • El Hage A, Koper M, Kufel J, Tollervey D. Efficient termination of transcription by RNA polymerase I requires the 5′ exonuclease Rat1 in yeast. Genes Dev 2008, 22:1069-1081.
    • (2008) Genes Dev , vol.22 , pp. 1069-1081
    • El Hage, A.1    Koper, M.2    Kufel, J.3    Tollervey, D.4
  • 8
    • 42149154858 scopus 로고    scopus 로고
    • Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination
    • Kawauchi J, Mischo H, Braglia P, Rondon A, Proudfoot NJ. Budding yeast RNA polymerases I and II employ parallel mechanisms of transcriptional termination. Genes Dev 2008, 22:1082-1092.
    • (2008) Genes Dev , vol.22 , pp. 1082-1092
    • Kawauchi, J.1    Mischo, H.2    Braglia, P.3    Rondon, A.4    Proudfoot, N.J.5
  • 9
    • 0025932166 scopus 로고
    • Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA
    • Hughes JMX, Ares M Jr. Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA. EMBO J 1991, 10:4231-4239.
    • (1991) EMBO J , vol.10 , pp. 4231-4239
    • Hughes, J.M.X.1    Ares, M.2
  • 10
    • 0019182650 scopus 로고
    • Some characteristics of processing sites in ribosomal precursor RNA of yeast
    • Veldman GM, Brand RC, Klootwijk J, Planta R. Some characteristics of processing sites in ribosomal precursor RNA of yeast. Nucleic Acids Res 1980, 8:2907-2920.
    • (1980) Nucleic Acids Res , vol.8 , pp. 2907-2920
    • Veldman, G.M.1    Brand, R.C.2    Klootwijk, J.3    Planta, R.4
  • 11
    • 0024278055 scopus 로고
    • Rapid initial cleavage of nascent pre-rRNA transcripts in yeast
    • Veinot-Drebot LM, Singer RA, Johnston GC. Rapid initial cleavage of nascent pre-rRNA transcripts in yeast. J Mol Biol 1988, 199:107-113.
    • (1988) J Mol Biol , vol.199 , pp. 107-113
    • Veinot-Drebot, L.M.1    Singer, R.A.2    Johnston, G.C.3
  • 12
    • 77949563362 scopus 로고    scopus 로고
    • Yeast pre-rRNA processing and modification occur cotranscriptionally
    • Kos M, Tollervey D. Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol Cell 2010, 37:809-820.
    • (2010) Mol Cell , vol.37 , pp. 809-820
    • Kos, M.1    Tollervey, D.2
  • 13
    • 10944222974 scopus 로고    scopus 로고
    • Pre-18S ribosomal RNA is structurally compacted into the SSU processome prior to being cleaved from nascent transcripts in Saccharomyces cerevisiae
    • Osheim YN, French SL, Keck KM, Champion EA, Spasov K, Dragon F, Baserga SJ, Beyer AL. Pre-18S ribosomal RNA is structurally compacted into the SSU processome prior to being cleaved from nascent transcripts in Saccharomyces cerevisiae. Mol Cell 2004, 16:943-954.
    • (2004) Mol Cell , vol.16 , pp. 943-954
    • Osheim, Y.N.1    French, S.L.2    Keck, K.M.3    Champion, E.A.4    Spasov, K.5    Dragon, F.6    Baserga, S.J.7    Beyer, A.L.8
  • 14
    • 84895459016 scopus 로고    scopus 로고
    • Kinetic analysis demonstrates a requirement for the Rat1 exonuclease in cotranscriptional pre-rRNA cleavage
    • Axt K, French SL, Beyer AL, Tollervey D. Kinetic analysis demonstrates a requirement for the Rat1 exonuclease in cotranscriptional pre-rRNA cleavage. PLoS One 2014, 9:e85703.
    • (2014) PLoS One , vol.9 , pp. e85703
    • Axt, K.1    French, S.L.2    Beyer, A.L.3    Tollervey, D.4
  • 16
    • 0015935199 scopus 로고
    • The cytoplasmic maturation of a ribosomal precursor ribonucleic acid in yeast
    • Udem SA, Warner JR. The cytoplasmic maturation of a ribosomal precursor ribonucleic acid in yeast. J Biol Chem 1973, 248:1412-1416.
    • (1973) J Biol Chem , vol.248 , pp. 1412-1416
    • Udem, S.A.1    Warner, J.R.2
  • 17
    • 30544439063 scopus 로고    scopus 로고
    • Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells
    • Rouquette J, Choesmel V, Gleizes PE. Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells. EMBO J 2005, 24:2862-2872.
    • (2005) EMBO J , vol.24 , pp. 2862-2872
    • Rouquette, J.1    Choesmel, V.2    Gleizes, P.E.3
  • 18
    • 0028054796 scopus 로고
    • The RNA of RNase MRP is required for normal processing of ribosomal RNA
    • Chu S, Archer RH, Zengel JM, Lindahl L. The RNA of RNase MRP is required for normal processing of ribosomal RNA. Proc Natl Acad Sci U S A 1994, 91:659-663.
    • (1994) Proc Natl Acad Sci U S A , vol.91 , pp. 659-663
    • Chu, S.1    Archer, R.H.2    Zengel, J.M.3    Lindahl, L.4
  • 19
    • 0028342849 scopus 로고
    • The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site
    • Henry Y, Wood H, Morrissey JP, Petfalski E, Kearsey S, Tollervey D. The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J 1994, 13:2452-2463.
    • (1994) EMBO J , vol.13 , pp. 2452-2463
    • Henry, Y.1    Wood, H.2    Morrissey, J.P.3    Petfalski, E.4    Kearsey, S.5    Tollervey, D.6
  • 21
  • 22
    • 0019791882 scopus 로고
    • The nucleotide sequence of the intergenic region between the 5.8S and 26S rRNA genes of the yeast ribosomal RNA operon. Possible implications for the interaction between 5.8S and 26S rRNA and the processing of the primary transcript
    • Veldman GM, Klootwijk J, van Heerikhuizen H, Planta RJ. The nucleotide sequence of the intergenic region between the 5.8S and 26S rRNA genes of the yeast ribosomal RNA operon. Possible implications for the interaction between 5.8S and 26S rRNA and the processing of the primary transcript. Nucleic Acids Res 1981, 9:4847-4863.
    • (1981) Nucleic Acids Res , vol.9 , pp. 4847-4863
    • Veldman, G.M.1    Klootwijk, J.2    van Heerikhuizen, H.3    Planta, R.J.4
  • 23
    • 0036719183 scopus 로고    scopus 로고
    • Ngl2p is a Ccr4p-like RNA nuclease essential for the final step in 3′- end processing of 5.8S rRNA in Saccharomyces cerevisiae
    • Faber AW, Van Dijk M, Raué HA, Vos JC. Ngl2p is a Ccr4p-like RNA nuclease essential for the final step in 3′- end processing of 5.8S rRNA in Saccharomyces cerevisiae. RNA 2002, 8:1095-1101.
    • (2002) RNA , vol.8 , pp. 1095-1101
    • Faber, A.W.1    Van Dijk, M.2    Raué, H.A.3    Vos, J.C.4
  • 25
    • 0032557455 scopus 로고    scopus 로고
    • Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8S rRNA 3′ end formation
    • Briggs MW, Burkard KTD, Butler JS. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8S rRNA 3′ end formation. J Biol Chem 1998, 273:13255-13263.
    • (1998) J Biol Chem , vol.273 , pp. 13255-13263
    • Briggs, M.W.1    Burkard, K.T.D.2    Butler, J.S.3
  • 26
    • 0034653440 scopus 로고    scopus 로고
    • Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast
    • van Hoof A, Lennertz P, Parker R. Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast. EMBO J 2000, 19:1357-1365.
    • (2000) EMBO J , vol.19 , pp. 1357-1365
    • van Hoof, A.1    Lennertz, P.2    Parker, R.3
  • 27
    • 75749108257 scopus 로고    scopus 로고
    • The final step in 5.8S rRNA processing is cytoplasmic in Saccharomyces cerevisiae
    • Thomson E, Tollervey D. The final step in 5.8S rRNA processing is cytoplasmic in Saccharomyces cerevisiae. Mol Cell Biol 2010, 30:976-984.
    • (2010) Mol Cell Biol , vol.30 , pp. 976-984
    • Thomson, E.1    Tollervey, D.2
  • 28
    • 0034548433 scopus 로고    scopus 로고
    • The final step in the formation of 25S rRNA in Saccharomyces cerevisiae is performed by 5′-3′ exonucleases
    • Geerlings TH, Vos JC, Raué HA. The final step in the formation of 25S rRNA in Saccharomyces cerevisiae is performed by 5′-3′ exonucleases. RNA 2000, 6:1698-1703.
    • (2000) RNA , vol.6 , pp. 1698-1703
    • Geerlings, T.H.1    Vos, J.C.2    Raué, H.A.3
  • 29
    • 84856807167 scopus 로고    scopus 로고
    • The evolutionarily conserved protein Las1 is required for pre-rRNA processing at both ends of ITS2
    • Schillewaert S, Wacheul L, Lhomme F, Lafontaine DL. The evolutionarily conserved protein Las1 is required for pre-rRNA processing at both ends of ITS2. Mol Cell Biol 2011, 32:430-444.
    • (2011) Mol Cell Biol , vol.32 , pp. 430-444
    • Schillewaert, S.1    Wacheul, L.2    Lhomme, F.3    Lafontaine, D.L.4
  • 31
    • 0033367325 scopus 로고    scopus 로고
    • Ribosome synthesis in Saccharomyces cerevisiae
    • Venema J, Tollervey D. Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet 1999, 33:261-311.
    • (1999) Annu Rev Genet , vol.33 , pp. 261-311
    • Venema, J.1    Tollervey, D.2
  • 32
    • 0029618257 scopus 로고
    • Processing of pre-ribosomal RNA in Saccharomyces cerevisiae
    • Venema J, Tollervey D. Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast 1995, 11:1629-1650.
    • (1995) Yeast , vol.11 , pp. 1629-1650
    • Venema, J.1    Tollervey, D.2
  • 33
    • 0033509092 scopus 로고    scopus 로고
    • Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae
    • Kressler D, Linder P, de la Cruz J. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 1999, 19:7897-7912.
    • (1999) Mol Cell Biol , vol.19 , pp. 7897-7912
    • Kressler, D.1    Linder, P.2    de la Cruz, J.3
  • 36
    • 84861634017 scopus 로고    scopus 로고
    • Mapping the cleavage sites on mammalian pre-rRNAs: where do we stand?
    • Mullineux ST, Lafontaine DL. Mapping the cleavage sites on mammalian pre-rRNAs: where do we stand? Biochimie 2012, 94:1521-1532.
    • (2012) Biochimie , vol.94 , pp. 1521-1532
    • Mullineux, S.T.1    Lafontaine, D.L.2
  • 37
    • 11144272393 scopus 로고    scopus 로고
    • Pre-ribosomal RNA processing in multicellular organisms
    • In: Olson MOJ, ed. Georgetown, TX: Landes Biosciences/Eurekah.com;
    • Gerbi SA, Borovjagin AV. Pre-ribosomal RNA processing in multicellular organisms. In: Olson MOJ, ed. Nucleolus. Georgetown, TX: Landes Biosciences/Eurekah.com; 2004, 170-198.
    • (2004) Nucleolus , pp. 170-198
    • Gerbi, S.A.1    Borovjagin, A.V.2
  • 39
    • 84887113964 scopus 로고    scopus 로고
    • Ribosome biogenesis in the yeast Saccharomyces cerevisiae
    • Woolford JL Jr, Baserga SJ. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 2013, 195:643-681.
    • (2013) Genetics , vol.195 , pp. 643-681
    • Woolford, J.L.1    Baserga, S.J.2
  • 40
    • 84872873185 scopus 로고    scopus 로고
    • Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites
    • Hartman E, Wang Z, Zhang Q, Roy K, Chanfreau G, Feigon J. Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites. J Mol Biol 2013, 425:546-562.
    • (2013) J Mol Biol , vol.425 , pp. 546-562
    • Hartman, E.1    Wang, Z.2    Zhang, Q.3    Roy, K.4    Chanfreau, G.5    Feigon, J.6
  • 41
    • 0032562647 scopus 로고    scopus 로고
    • The role of the 3′ external transcribed spacer in yeast pre-rRNA processing
    • Allmang C, Tollervey D. The role of the 3′ external transcribed spacer in yeast pre-rRNA processing. J Mol Biol 1998, 278:67-78.
    • (1998) J Mol Biol , vol.278 , pp. 67-78
    • Allmang, C.1    Tollervey, D.2
  • 42
    • 0029118645 scopus 로고
    • Two distinct recognition signals define the site of endonucleolytic cleavage at the 5′-end of yeast 18S rRNA
    • Venema J, Henry Y, Tollervey D. Two distinct recognition signals define the site of endonucleolytic cleavage at the 5′-end of yeast 18S rRNA. EMBO J 1995, 14:4883-4892.
    • (1995) EMBO J , vol.14 , pp. 4883-4892
    • Venema, J.1    Henry, Y.2    Tollervey, D.3
  • 43
    • 0031935899 scopus 로고    scopus 로고
    • Processing of the precursors to small nucleolar RNAs and rRNAs requires common components
    • Petfalski E, Dandekar T, Henry Y, Tollervey D. Processing of the precursors to small nucleolar RNAs and rRNAs requires common components. Mol Cell Biol 1998, 18:1181-1189.
    • (1998) Mol Cell Biol , vol.18 , pp. 1181-1189
    • Petfalski, E.1    Dandekar, T.2    Henry, Y.3    Tollervey, D.4
  • 44
    • 0032481316 scopus 로고    scopus 로고
    • Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3′ end formation of 5.8S rRNA in Saccharomyces cerevisiae
    • de la Cruz J, Kressler D, Tollervey D, Linder P. Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3′ end formation of 5.8S rRNA in Saccharomyces cerevisiae. EMBO J 1998, 17:1128-1140.
    • (1998) EMBO J , vol.17 , pp. 1128-1140
    • de la Cruz, J.1    Kressler, D.2    Tollervey, D.3    Linder, P.4
  • 45
    • 34547163927 scopus 로고    scopus 로고
    • The 90S preribosome is a multimodular structure that is assembled through a hierarchical mechanism
    • Pérez-Fernández J, Roman A, de Las RJ, Bustelo XR, Dosil M. The 90S preribosome is a multimodular structure that is assembled through a hierarchical mechanism. Mol Cell Biol 2007, 27:5414-5429.
    • (2007) Mol Cell Biol , vol.27 , pp. 5414-5429
    • Pérez-Fernández, J.1    Roman, A.2    de Las, R.J.3    Bustelo, X.R.4    Dosil, M.5
  • 46
    • 0027043311 scopus 로고
    • Structure analysis of the 5′ external transcribed spacer of the precursor ribosomal RNA from Saccharomyces cerevisiae
    • Yeh L-CC, Lee JC. Structure analysis of the 5′ external transcribed spacer of the precursor ribosomal RNA from Saccharomyces cerevisiae. J Mol Biol 1992, 228:827-839.
    • (1992) J Mol Biol , vol.228 , pp. 827-839
    • Yeh, L.-C.1    Lee, J.C.2
  • 47
    • 79960229982 scopus 로고    scopus 로고
    • The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing
    • Dutca LM, Gallagher JE, Baserga SJ. The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing. Nucleic Acids Res 2011, 39:5164-5180.
    • (2011) Nucleic Acids Res , vol.39 , pp. 5164-5180
    • Dutca, L.M.1    Gallagher, J.E.2    Baserga, S.J.3
  • 48
    • 0034595214 scopus 로고    scopus 로고
    • Rcl1p, the yeast protein similar to the RNA 3′-phosphate cyclase, associates with U3 snoRNP and is required for 18S rRNA biogenesis
    • Billy E, Wegierski T, Nasr F, Filipowicz W. Rcl1p, the yeast protein similar to the RNA 3′-phosphate cyclase, associates with U3 snoRNP and is required for 18S rRNA biogenesis. EMBO J 2000, 19:2115-2126.
    • (2000) EMBO J , vol.19 , pp. 2115-2126
    • Billy, E.1    Wegierski, T.2    Nasr, F.3    Filipowicz, W.4
  • 49
    • 80053196804 scopus 로고    scopus 로고
    • Rcl1 protein, a novel nuclease for 18S ribosomal RNA production
    • Horn DM, Mason SL, Karbstein K. Rcl1 protein, a novel nuclease for 18S ribosomal RNA production. J Biol Chem 2011, 286:34082-34087.
    • (2011) J Biol Chem , vol.286 , pp. 34082-34087
    • Horn, D.M.1    Mason, S.L.2    Karbstein, K.3
  • 50
    • 0025303096 scopus 로고
    • Internal transcribed spacer 1 of the yeast precursor ribosomal RNA. Higher order structure and common structural motifs
    • Yeh L-CC, Thweatt R, Lee JC. Internal transcribed spacer 1 of the yeast precursor ribosomal RNA. Higher order structure and common structural motifs. Biochemistry 1990, 29:5911-5918.
    • (1990) Biochemistry , vol.29 , pp. 5911-5918
    • Yeh, L.-C.1    Thweatt, R.2    Lee, J.C.3
  • 51
    • 33745462567 scopus 로고    scopus 로고
    • The PINc domain protein Utp24, a putative nuclease, is required for the early cleavage steps in 18S rRNA maturation
    • Bleichert F, Granneman S, Osheim YN, Beyer AL, Baserga SJ. The PINc domain protein Utp24, a putative nuclease, is required for the early cleavage steps in 18S rRNA maturation. Proc Natl Acad Sci U S A 2006, 103:9464-9469.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 9464-9469
    • Bleichert, F.1    Granneman, S.2    Osheim, Y.N.3    Beyer, A.L.4    Baserga, S.J.5
  • 52
    • 70149120737 scopus 로고    scopus 로고
    • Nob1 binds the single-stranded cleavage site D at the 3′-end of 18S rRNA with its PIN domain
    • Lamanna AC, Karbstein K. Nob1 binds the single-stranded cleavage site D at the 3′-end of 18S rRNA with its PIN domain. Proc Natl Acad Sci U S A 2009, 106:14259-14264.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 14259-14264
    • Lamanna, A.C.1    Karbstein, K.2
  • 53
    • 0034972845 scopus 로고    scopus 로고
    • Identification of cis-acting elements involved in 3′-end formation of Saccharomyces cerevisiae 18S rRNA
    • van Beekvelt CA, Jeeninga RE, van't Riet J, Venema J, Raué HA. Identification of cis-acting elements involved in 3′-end formation of Saccharomyces cerevisiae 18S rRNA. RNA 2001, 7:896-903.
    • (2001) RNA , vol.7 , pp. 896-903
    • van Beekvelt, C.A.1    Jeeninga, R.E.2    van't Riet, J.3    Venema, J.4    Raué, H.A.5
  • 54
    • 0025720230 scopus 로고
    • Fragments of the internal transcribed spacer 1 of pre-rRNA accumulate in Saccharomyces cerevisiae lacking 5′Æ3′ exoribonuclease 1
    • Stevens A, Hsu CL, Isham KR, Larimer FW. Fragments of the internal transcribed spacer 1 of pre-rRNA accumulate in Saccharomyces cerevisiae lacking 5′Æ3′ exoribonuclease 1. J Bacteriol 1991, 173:7024-7028.
    • (1991) J Bacteriol , vol.173 , pp. 7024-7028
    • Stevens, A.1    Hsu, C.L.2    Isham, K.R.3    Larimer, F.W.4
  • 55
    • 0037369912 scopus 로고    scopus 로고
    • Nob1p is required for cleavage of the 3′ end of 18S rRNA
    • Fatica A, Oeffinger M, Dlakic M, Tollervey D. Nob1p is required for cleavage of the 3′ end of 18S rRNA. Mol Cell Biol 2003, 23:1798-1807.
    • (2003) Mol Cell Biol , vol.23 , pp. 1798-1807
    • Fatica, A.1    Oeffinger, M.2    Dlakic, M.3    Tollervey, D.4
  • 56
    • 77953622163 scopus 로고    scopus 로고
    • Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA-protein cross-linking
    • Granneman S, Petfalski E, Swiatkowska A, Tollervey D. Cracking pre-40S ribosomal subunit structure by systematic analyses of RNA-protein cross-linking. EMBO J 2010, 29:2026-2036.
    • (2010) EMBO J , vol.29 , pp. 2026-2036
    • Granneman, S.1    Petfalski, E.2    Swiatkowska, A.3    Tollervey, D.4
  • 57
    • 70449656291 scopus 로고    scopus 로고
    • RNA helicase Prp43 and its co-factor Pfa1 promote 20 to 18S rRNA processing catalyzed by the endonuclease Nob1
    • Pertschy B, Schneider C, Gnadig M, Schafer T, Tollervey D, Hurt E. RNA helicase Prp43 and its co-factor Pfa1 promote 20 to 18S rRNA processing catalyzed by the endonuclease Nob1. J Biol Chem 2009, 284:35079-35091.
    • (2009) J Biol Chem , vol.284 , pp. 35079-35091
    • Pertschy, B.1    Schneider, C.2    Gnadig, M.3    Schafer, T.4    Tollervey, D.5    Hurt, E.6
  • 59
    • 78650413785 scopus 로고    scopus 로고
    • An RNA conformational switch regulates pre-18S rRNA cleavage
    • Lamanna AC, Karbstein K. An RNA conformational switch regulates pre-18S rRNA cleavage. J Mol Biol 2011, 405:3-17.
    • (2011) J Mol Biol , vol.405 , pp. 3-17
    • Lamanna, A.C.1    Karbstein, K.2
  • 62
    • 84905563228 scopus 로고    scopus 로고
    • Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes
    • Ferreira-Cerca S, Kiburu I, Thomson E, LaRonde N, Hurt E. Dominant Rio1 kinase/ATPase catalytic mutant induces trapping of late pre-40S biogenesis factors in 80S-like ribosomes. Nucleic Acids Res 2014, 42:8635-8647.
    • (2014) Nucleic Acids Res , vol.42 , pp. 8635-8647
    • Ferreira-Cerca, S.1    Kiburu, I.2    Thomson, E.3    LaRonde, N.4    Hurt, E.5
  • 64
    • 0030726285 scopus 로고    scopus 로고
    • Lithium toxicity in yeast is due the inhibition of RNA processing enzymes
    • Dichtl B, Stevens A, Tollervey D. Lithium toxicity in yeast is due the inhibition of RNA processing enzymes. EMBO J 1997, 16:7184-7195.
    • (1997) EMBO J , vol.16 , pp. 7184-7195
    • Dichtl, B.1    Stevens, A.2    Tollervey, D.3
  • 65
    • 77956049347 scopus 로고    scopus 로고
    • Of proteins and RNA: the RNase P/MRP family
    • Esakova O, Krasilnikov AS. Of proteins and RNA: the RNase P/MRP family. RNA 2010, 16:1725-1747.
    • (2010) RNA , vol.16 , pp. 1725-1747
    • Esakova, O.1    Krasilnikov, A.S.2
  • 66
    • 2642635832 scopus 로고    scopus 로고
    • Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP
    • Chamberlain JR, Lee Y, Lane WS, Engelke DR. Purification and characterization of the nuclear RNase P holoenzyme complex reveals extensive subunit overlap with RNase MRP. Genes Dev 1998, 12:1678-1690.
    • (1998) Genes Dev , vol.12 , pp. 1678-1690
    • Chamberlain, J.R.1    Lee, Y.2    Lane, W.S.3    Engelke, D.R.4
  • 67
    • 0027367147 scopus 로고
    • Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae
    • Schmitt ME, Clayton DA. Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 1993, 13:7935-7941.
    • (1993) Mol Cell Biol , vol.13 , pp. 7935-7941
    • Schmitt, M.E.1    Clayton, D.A.2
  • 69
    • 0029853905 scopus 로고    scopus 로고
    • RRP5 is required for formation of both 18S and 5.8S rRNA in yeast
    • Venema J, Tollervey D. RRP5 is required for formation of both 18S and 5.8S rRNA in yeast. EMBO J 1996, 15:5701-5714.
    • (1996) EMBO J , vol.15 , pp. 5701-5714
    • Venema, J.1    Tollervey, D.2
  • 70
    • 0032983093 scopus 로고    scopus 로고
    • The roles of Rrp5p in the synthesis of yeast 18S and 5.8S rRNA can be functionally and physically separated
    • Eppens NA, Rensen S, Granneman S, Raué HA, Venema J. The roles of Rrp5p in the synthesis of yeast 18S and 5.8S rRNA can be functionally and physically separated. RNA 1999, 5:779-793.
    • (1999) RNA , vol.5 , pp. 779-793
    • Eppens, N.A.1    Rensen, S.2    Granneman, S.3    Raué, H.A.4    Venema, J.5
  • 71
    • 84877921903 scopus 로고    scopus 로고
    • Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives
    • Rodríguez-Galán O, García-Gómez JJ, de la Cruz J. Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. Biochim Biophys Acta 2013, 1829:775-790.
    • (2013) Biochim Biophys Acta , vol.1829 , pp. 775-790
    • Rodríguez-Galán, O.1    García-Gómez, J.J.2    de la Cruz, J.3
  • 72
    • 0029981894 scopus 로고    scopus 로고
    • Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro
    • Lygerou Z, Allmang C, Tollervey D, Séraphin B. Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science 1996, 272:268-270.
    • (1996) Science , vol.272 , pp. 268-270
    • Lygerou, Z.1    Allmang, C.2    Tollervey, D.3    Séraphin, B.4
  • 74
    • 0031587993 scopus 로고    scopus 로고
    • Structural modifications of RNA influence the 5′ exoribonucleolytic hydrolysis by XRN1 and HKE1 of Saccharomyces cerevisiae
    • Poole SJ, Stevens A. Structural modifications of RNA influence the 5′ exoribonucleolytic hydrolysis by XRN1 and HKE1 of Saccharomyces cerevisiae. Biochem Byophys Res Commun 1997, 235:799-805.
    • (1997) Biochem Byophys Res Commun , vol.235 , pp. 799-805
    • Poole, S.J.1    Stevens, A.2
  • 75
    • 0030764692 scopus 로고    scopus 로고
    • Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively
    • Johnson AW. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol Cell Biol 1997, 17:6122-6130.
    • (1997) Mol Cell Biol , vol.17 , pp. 6122-6130
    • Johnson, A.W.1
  • 76
    • 0034073993 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p
    • Xue Y, Bai X, Lee I, Kallstrom G, Ho J, Brown J, Stevens A, Johnson AW. Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p. Mol Cell Biol 2000, 20:4006-4015.
    • (2000) Mol Cell Biol , vol.20 , pp. 4006-4015
    • Xue, Y.1    Bai, X.2    Lee, I.3    Kallstrom, G.4    Ho, J.5    Brown, J.6    Stevens, A.7    Johnson, A.W.8
  • 77
    • 80053590899 scopus 로고    scopus 로고
    • Assembly of Saccharomyces cerevisiae 60S ribosomal subunits: role of factors required for 27S pre-rRNA processing
    • Sahasranaman A, Dembowski J, Strahler J, Andrews P, Maddock J, Woolford JL Jr. Assembly of Saccharomyces cerevisiae 60S ribosomal subunits: role of factors required for 27S pre-rRNA processing. EMBO J 2011, 30:4020-4032.
    • (2011) EMBO J , vol.30 , pp. 4020-4032
    • Sahasranaman, A.1    Dembowski, J.2    Strahler, J.3    Andrews, P.4    Maddock, J.5    Woolford, J.L.6
  • 78
    • 80053594862 scopus 로고    scopus 로고
    • A cluster of ribosome synthesis factors regulate pre-rRNA folding and 5.8S rRNA maturation by the Rat1 exonuclease
    • Granneman S, Petfalski E, Tollervey D. A cluster of ribosome synthesis factors regulate pre-rRNA folding and 5.8S rRNA maturation by the Rat1 exonuclease. EMBO J 2011, 30:4006-4019.
    • (2011) EMBO J , vol.30 , pp. 4006-4019
    • Granneman, S.1    Petfalski, E.2    Tollervey, D.3
  • 79
    • 84886862135 scopus 로고    scopus 로고
    • Has1 regulates consecutive maturation and processing steps for assembly of 60S ribosomal subunits
    • Dembowski JA, Kuo B, Woolford JL Jr. Has1 regulates consecutive maturation and processing steps for assembly of 60S ribosomal subunits. Nucleic Acids Res 2013, 41:7889-7904.
    • (2013) Nucleic Acids Res , vol.41 , pp. 7889-7904
    • Dembowski, J.A.1    Kuo, B.2    Woolford, J.L.3
  • 80
    • 84899149495 scopus 로고    scopus 로고
    • Ribosome assembly factors Pwp1 and Nop12 are important for folding of 5.8S rRNA during ribosome biogenesis in Saccharomyces cerevisiae
    • Talkish J, Campbell IW, Sahasranaman A, Jakovljevic J, Woolford JL Jr. Ribosome assembly factors Pwp1 and Nop12 are important for folding of 5.8S rRNA during ribosome biogenesis in Saccharomyces cerevisiae. Mol Cell Biol 2014, 34:1863-1877.
    • (2014) Mol Cell Biol , vol.34 , pp. 1863-1877
    • Talkish, J.1    Campbell, I.W.2    Sahasranaman, A.3    Jakovljevic, J.4    Woolford, J.L.5
  • 81
    • 84866914596 scopus 로고    scopus 로고
    • Hierarchical recruitment into nascent ribosomes of assembly factors required for 27SB pre-rRNA processing in Saccharomyces cerevisiae
    • Talkish J, Zhang J, Jakovljevic J, Horsey EW, Woolford JL Jr. Hierarchical recruitment into nascent ribosomes of assembly factors required for 27SB pre-rRNA processing in Saccharomyces cerevisiae. Nucleic Acids Res 2012, 40:8646-8661.
    • (2012) Nucleic Acids Res , vol.40 , pp. 8646-8661
    • Talkish, J.1    Zhang, J.2    Jakovljevic, J.3    Horsey, E.W.4    Woolford, J.L.5
  • 83
    • 10044286102 scopus 로고    scopus 로고
    • 5-Fluorouracil enhances exosome-dependent accumulation of polyadenylated rRNAs
    • Fang F, Hoskins J, Butler JS. 5-Fluorouracil enhances exosome-dependent accumulation of polyadenylated rRNAs. Mol Cell Biol 2004, 24:10766-10776.
    • (2004) Mol Cell Biol , vol.24 , pp. 10766-10776
    • Fang, F.1    Hoskins, J.2    Butler, J.S.3
  • 84
    • 0033485458 scopus 로고    scopus 로고
    • Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast
    • Joseph N, Krauskopf E, Vera MI, Michot B. Ribosomal internal transcribed spacer 2 (ITS2) exhibits a common core of secondary structure in vertebrates and yeast. Nucleic Acids Res 1999, 27:4533-4540.
    • (1999) Nucleic Acids Res , vol.27 , pp. 4533-4540
    • Joseph, N.1    Krauskopf, E.2    Vera, M.I.3    Michot, B.4
  • 85
    • 0025266635 scopus 로고
    • Structural analysis of the internal transcribed spacer 2 of the precursor ribosomal RNA from Saccharomyces cerevisiae
    • Yeh LC, Lee JC. Structural analysis of the internal transcribed spacer 2 of the precursor ribosomal RNA from Saccharomyces cerevisiae. J Mol Biol 1990, 211:699-712.
    • (1990) J Mol Biol , vol.211 , pp. 699-712
    • Yeh, L.C.1    Lee, J.C.2
  • 86
    • 0036276111 scopus 로고    scopus 로고
    • Dynamic conformational model for the role of ITS2 in pre-rRNA processing in yeast
    • Côté CA, Greer CL, Peculis BA. Dynamic conformational model for the role of ITS2 in pre-rRNA processing in yeast. RNA 2002, 8:786-797.
    • (2002) RNA , vol.8 , pp. 786-797
    • Côté, C.A.1    Greer, C.L.2    Peculis, B.A.3
  • 87
    • 84873692399 scopus 로고    scopus 로고
    • Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing
    • Gamalinda M, Jakovljevic J, Babiano R, Talkish J, de la Cruz J, Woolford JL Jr. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing. Nucleic Acids Res 2013, 41:1965-1983.
    • (2013) Nucleic Acids Res , vol.41 , pp. 1965-1983
    • Gamalinda, M.1    Jakovljevic, J.2    Babiano, R.3    Talkish, J.4    de la Cruz, J.5    Woolford, J.L.6
  • 88
    • 84888413916 scopus 로고    scopus 로고
    • Identification of the binding site of Rlp7 on assembling 60S ribosomal subunits in Saccharomyces cerevisiae
    • Dembowski JA, Ramesh M, McManus CJ, Woolford JL Jr. Identification of the binding site of Rlp7 on assembling 60S ribosomal subunits in Saccharomyces cerevisiae. RNA 2013, 19:1639-1647.
    • (2013) RNA , vol.19 , pp. 1639-1647
    • Dembowski, J.A.1    Ramesh, M.2    McManus, C.J.3    Woolford, J.L.4
  • 90
    • 84865140523 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae ribosomal protein L26 is not essential for ribosome assembly and function
    • Babiano R, Gamalinda M, Woolford JL Jr, de la Cruz J. Saccharomyces cerevisiae ribosomal protein L26 is not essential for ribosome assembly and function. Mol Cell Biol 2012, 32:3228-3241.
    • (2012) Mol Cell Biol , vol.32 , pp. 3228-3241
    • Babiano, R.1    Gamalinda, M.2    Woolford, J.L.3    de la Cruz, J.4
  • 91
    • 0029939247 scopus 로고    scopus 로고
    • The 3′ end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism
    • Mitchell P, Petfalski E, Tollervey D. The 3′ end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. Genes Dev 1996, 10:502-513.
    • (1996) Genes Dev , vol.10 , pp. 502-513
    • Mitchell, P.1    Petfalski, E.2    Tollervey, D.3
  • 92
    • 33845407784 scopus 로고    scopus 로고
    • Reconstitution, activities, and structure of the eukaryotic RNA exosome
    • Liu Q, Greimann JC, Lima CD. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 2006, 127:1223-1237.
    • (2006) Cell , vol.127 , pp. 1223-1237
    • Liu, Q.1    Greimann, J.C.2    Lima, C.D.3
  • 93
    • 84874742223 scopus 로고    scopus 로고
    • Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex
    • Makino DL, Baumgartner M, Conti E. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 2013, 495:70-75.
    • (2013) Nature , vol.495 , pp. 70-75
    • Makino, D.L.1    Baumgartner, M.2    Conti, E.3
  • 95
    • 70350336247 scopus 로고    scopus 로고
    • The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation
    • Bonneau F, Basquin J, Ebert J, Lorentzen E, Conti E. The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 2009, 139:547-559.
    • (2009) Cell , vol.139 , pp. 547-559
    • Bonneau, F.1    Basquin, J.2    Ebert, J.3    Lorentzen, E.4    Conti, E.5
  • 96
    • 84893752136 scopus 로고    scopus 로고
    • Visualization of distinct substrate-recruitment pathways in the yeast exosome by EM
    • Liu JJ, Bratkowski MA, Liu X, Niu CY, Ke A, Wang HW. Visualization of distinct substrate-recruitment pathways in the yeast exosome by EM. Nat Struct Mol Biol 2014, 21:95-102.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 95-102
    • Liu, J.J.1    Bratkowski, M.A.2    Liu, X.3    Niu, C.Y.4    Ke, A.5    Wang, H.W.6
  • 97
    • 33846068920 scopus 로고    scopus 로고
    • A single subunit, Dis3, is essentially responsible for yeast exosome core activity
    • Dziembowski A, Lorentzen E, Conti E, Séraphin B. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 2007, 14:15-22.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 15-22
    • Dziembowski, A.1    Lorentzen, E.2    Conti, E.3    Séraphin, B.4
  • 99
    • 57749189164 scopus 로고    scopus 로고
    • Endonucleolytic RNA cleavage by a eukaryotic exosome
    • Lebreton A, Tomecki R, Dziembowski A, Seraphin B. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 2008, 456:993-996.
    • (2008) Nature , vol.456 , pp. 993-996
    • Lebreton, A.1    Tomecki, R.2    Dziembowski, A.3    Seraphin, B.4
  • 100
    • 0030702085 scopus 로고    scopus 로고
    • The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′-5′ exoribonucleases
    • Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′-5′ exoribonucleases. Cell 1997, 91:457-466.
    • (1997) Cell , vol.91 , pp. 457-466
    • Mitchell, P.1    Petfalski, E.2    Shevchenko, A.3    Mann, M.4    Tollervey, D.5
  • 101
    • 0033960962 scopus 로고    scopus 로고
    • A nuclear 3′-5′ exonuclease involved in mRNA degradation interacts with poly(A) polymerase and the hnRNA proteim Npl3p
    • Burkard KTD, Butler JS. A nuclear 3′-5′ exonuclease involved in mRNA degradation interacts with poly(A) polymerase and the hnRNA proteim Npl3p. Mol Cell Biol 2000, 20:604-616.
    • (2000) Mol Cell Biol , vol.20 , pp. 604-616
    • Burkard, K.T.D.1    Butler, J.S.2
  • 103
    • 62049085366 scopus 로고    scopus 로고
    • The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome
    • Schneider C, Leung E, Brown J, Tollervey D. The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 2009, 37:1127-1140.
    • (2009) Nucleic Acids Res , vol.37 , pp. 1127-1140
    • Schneider, C.1    Leung, E.2    Brown, J.3    Tollervey, D.4
  • 104
    • 60149090021 scopus 로고    scopus 로고
    • The many pathways of RNA degradation
    • Houseley J, Tollervey D. The many pathways of RNA degradation. Cell 2009, 136:763-776.
    • (2009) Cell , vol.136 , pp. 763-776
    • Houseley, J.1    Tollervey, D.2
  • 105
    • 57149094672 scopus 로고    scopus 로고
    • Evidence for core exosome independent function of the nuclear exoribonuclease Rrp6p
    • Callahan KP, Butler JS. Evidence for core exosome independent function of the nuclear exoribonuclease Rrp6p. Nucleic Acids Res 2008, 36:6645-6655.
    • (2008) Nucleic Acids Res , vol.36 , pp. 6645-6655
    • Callahan, K.P.1    Butler, J.S.2
  • 107
    • 77954952539 scopus 로고    scopus 로고
    • The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing
    • Jackson RN, Klauer AA, Hintze BJ, Robinson H, van Hoof A, Johnson SJ. The crystal structure of Mtr4 reveals a novel arch domain required for rRNA processing. EMBO J 2010, 29:2205-2216.
    • (2010) EMBO J , vol.29 , pp. 2205-2216
    • Jackson, R.N.1    Klauer, A.A.2    Hintze, B.J.3    Robinson, H.4    van Hoof, A.5    Johnson, S.J.6
  • 110
    • 50249112157 scopus 로고    scopus 로고
    • A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts
    • Milligan L, Decourty L, Saveanu C, Rappsilber J, Ceulemans H, Jacquier A, Tollervey D. A yeast exosome cofactor, Mpp6, functions in RNA surveillance and in the degradation of noncoding RNA transcripts. Mol Cell Biol 2008, 28:5446-5457.
    • (2008) Mol Cell Biol , vol.28 , pp. 5446-5457
    • Milligan, L.1    Decourty, L.2    Saveanu, C.3    Rappsilber, J.4    Ceulemans, H.5    Jacquier, A.6    Tollervey, D.7
  • 111
    • 84878388270 scopus 로고    scopus 로고
    • Assembly of the yeast exoribonuclease Rrp6 with its associated cofactor Rrp47 occurs in the nucleus and is critical for the controlled expression of Rrp47
    • Feigenbutz M, Jones R, Besong TM, Harding SE, Mitchell P. Assembly of the yeast exoribonuclease Rrp6 with its associated cofactor Rrp47 occurs in the nucleus and is critical for the controlled expression of Rrp47. J Biol Chem 2013, 288:15959-15970.
    • (2013) J Biol Chem , vol.288 , pp. 15959-15970
    • Feigenbutz, M.1    Jones, R.2    Besong, T.M.3    Harding, S.E.4    Mitchell, P.5
  • 113
    • 0037054550 scopus 로고    scopus 로고
    • Rlp7p is associated with 60S preribosomes, restricted to the granular component of the nucleolus, and required for pre-rRNA processing
    • Gadal O, Strauss D, Petfalski E, Gleizes PE, Gas N, Tollervey D, Hurt E. Rlp7p is associated with 60S preribosomes, restricted to the granular component of the nucleolus, and required for pre-rRNA processing. J Cell Biol 2002, 157:941-951.
    • (2002) J Cell Biol , vol.157 , pp. 941-951
    • Gadal, O.1    Strauss, D.2    Petfalski, E.3    Gleizes, P.E.4    Gas, N.5    Tollervey, D.6    Hurt, E.7
  • 114
    • 25844461364 scopus 로고    scopus 로고
    • Rat1p and Rai1p function with the nuclear exosome in the processing and degradation of rRNA precursors
    • Fang F, Phillips S, Butler JS. Rat1p and Rai1p function with the nuclear exosome in the processing and degradation of rRNA precursors. RNA 2005, 11:1571-1778.
    • (2005) RNA , vol.11 , pp. 1571-1778
    • Fang, F.1    Phillips, S.2    Butler, J.S.3
  • 116
    • 0030906991 scopus 로고    scopus 로고
    • Ribosomal 5S rRNA maturation in Saccharomyces cerevisiae
    • Lee Y, Nazar RN. Ribosomal 5S rRNA maturation in Saccharomyces cerevisiae. J Biol Chem 1997, 272:15206-15212.
    • (1997) J Biol Chem , vol.272 , pp. 15206-15212
    • Lee, Y.1    Nazar, R.N.2
  • 117
    • 0021092833 scopus 로고
    • Altered maturation of sequences at the 3′ terminus of 5S gene transcripts in a Saccharomyces cerevisiae mutant that lacks a RNA processing endonuclease
    • Piper PW, Bellatin JA, Lockheart A. Altered maturation of sequences at the 3′ terminus of 5S gene transcripts in a Saccharomyces cerevisiae mutant that lacks a RNA processing endonuclease. EMBO J 1983, 2:353-359.
    • (1983) EMBO J , vol.2 , pp. 353-359
    • Piper, P.W.1    Bellatin, J.A.2    Lockheart, A.3
  • 118
    • 0033612556 scopus 로고    scopus 로고
    • Assembly of 5S ribosomal RNA is required at a specific step of the pre-rRNA processing pathway
    • Dechampesme A-M, Koroleva O, Léger-Silvestre I, Gas N, Camier S. Assembly of 5S ribosomal RNA is required at a specific step of the pre-rRNA processing pathway. J Cell Biol 1999, 145:1369-1380.
    • (1999) J Cell Biol , vol.145 , pp. 1369-1380
    • Dechampesme, A.-M.1    Koroleva, O.2    Léger-Silvestre, I.3    Gas, N.4    Camier, S.5
  • 119
    • 23844511660 scopus 로고    scopus 로고
    • Synergistic defect in 60S ribosomal subunit assembly caused by a mutation of Rrs1p, a ribosomal protein L11-binding protein, and 3′-extension of 5S rRNA in Saccharomyces cerevisiae
    • Nariai M, Tanaka T, Okada T, Shirai C, Horigome C, Mizuta K. Synergistic defect in 60S ribosomal subunit assembly caused by a mutation of Rrs1p, a ribosomal protein L11-binding protein, and 3′-extension of 5S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res 2005, 33:4553-4562.
    • (2005) Nucleic Acids Res , vol.33 , pp. 4553-4562
    • Nariai, M.1    Tanaka, T.2    Okada, T.3    Shirai, C.4    Horigome, C.5    Mizuta, K.6
  • 121
    • 79956302113 scopus 로고    scopus 로고
    • Human eIF4AIII interacts with an eIF4G-like partner, NOM1, revealing an evolutionarily conserved function outside the exon junction complex
    • Alexandrov A, Colognori D, Steitz JA. Human eIF4AIII interacts with an eIF4G-like partner, NOM1, revealing an evolutionarily conserved function outside the exon junction complex. Genes Dev 2011, 25:1078-1090.
    • (2011) Genes Dev , vol.25 , pp. 1078-1090
    • Alexandrov, A.1    Colognori, D.2    Steitz, J.A.3
  • 122
    • 84874994356 scopus 로고    scopus 로고
    • Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing
    • Sloan KE, Mattijssen S, Lebaron S, Tollervey D, Pruijn GJ, Watkins NJ. Both endonucleolytic and exonucleolytic cleavage mediate ITS1 removal during human ribosomal RNA processing. J Cell Biol 2013, 200:577-588.
    • (2013) J Cell Biol , vol.200 , pp. 577-588
    • Sloan, K.E.1    Mattijssen, S.2    Lebaron, S.3    Tollervey, D.4    Pruijn, G.J.5    Watkins, N.J.6
  • 124
    • 77953449290 scopus 로고    scopus 로고
    • Mammalian DEAD box protein Ddx51 acts in 3′ end maturation of 28S rRNA by promoting the release of U8 snoRNA
    • Srivastava L, Lapik YR, Wang M, Pestov DG. Mammalian DEAD box protein Ddx51 acts in 3′ end maturation of 28S rRNA by promoting the release of U8 snoRNA. Mol Cell Biol 2010, 30:2947-2956.
    • (2010) Mol Cell Biol , vol.30 , pp. 2947-2956
    • Srivastava, L.1    Lapik, Y.R.2    Wang, M.3    Pestov, D.G.4
  • 128
    • 84893757096 scopus 로고    scopus 로고
    • Looking into the barrel of the RNA exosome
    • Schneider C, Tollervey D. Looking into the barrel of the RNA exosome. Nat Struct Mol Biol 2014, 21:17-18.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 17-18
    • Schneider, C.1    Tollervey, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.