메뉴 건너뛰기




Volumn 22, Issue 3, 2015, Pages 389-397

Autophagy and regulation of cilia function and assembly

Author keywords

[No Author keywords available]

Indexed keywords

BETA CATENIN; ESCRT PROTEIN; HISTONE DEACETYLASE 6; PERICENTRIN; PHOSPHATIDYLINOSITOL 3 KINASE; PHOSPHATIDYLINOSITOL 3 PHOSPHATE; PLATELET DERIVED GROWTH FACTOR ALPHA RECEPTOR; PROTEIN BCL 2; RAB11 PROTEIN; RAB7 PROTEIN; REACTIVE OXYGEN METABOLITE; SONIC HEDGEHOG PROTEIN; TRANSCRIPTION FACTOR GLI2; TRANSCRIPTION FACTOR GLI3;

EID: 84922527388     PISSN: 13509047     EISSN: 14765403     Source Type: Journal    
DOI: 10.1038/cdd.2014.171     Document Type: Review
Times cited : (66)

References (110)
  • 1
    • 77956404377 scopus 로고    scopus 로고
    • Eaten alive: A history of macroautophagy
    • Yang Z, Klionsky DJ. Eaten alive: a history of macroautophagy. Nat Cell Biol 2010; 12: 814-822.
    • (2010) Nat Cell Biol , vol.12 , pp. 814-822
    • Yang, Z.1    Klionsky, D.J.2
  • 2
    • 84877609568 scopus 로고    scopus 로고
    • Autophagy in human health and disease
    • Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med 2013; 368: 1845-1846.
    • (2013) N Engl J Med , vol.368 , pp. 1845-1846
    • Choi, A.M.1    Ryter, S.W.2    Levine, B.3
  • 3
    • 84866122688 scopus 로고    scopus 로고
    • Autophagy modulation as a potential therapeutic target for diverse diseases
    • Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 2012; 11: 709-730.
    • (2012) Nat Rev Drug Discov , vol.11 , pp. 709-730
    • Rubinsztein, D.C.1    Codogno, P.2    Levine, B.3
  • 4
    • 33947384151 scopus 로고    scopus 로고
    • Overview of structure and function of mammalian cilia
    • Satir P, Christensen ST. Overview of structure and function of mammalian cilia. Annu Rev Physiol 2007; 69: 377-400.
    • (2007) Annu Rev Physiol , vol.69 , pp. 377-400
    • Satir, P.1    Christensen, S.T.2
  • 6
    • 33846211025 scopus 로고    scopus 로고
    • Sensory cilia and integration of signal transduction in human health and disease
    • Christensen ST, Pedersen LB, Schneider L, Satir P. Sensory cilia and integration of signal transduction in human health and disease. Traffic 2007; 8: 97-109.
    • (2007) Traffic , vol.8 , pp. 97-109
    • Christensen, S.T.1    Pedersen, L.B.2    Schneider, L.3    Satir, P.4
  • 9
    • 84885638436 scopus 로고    scopus 로고
    • Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites
    • Tang Z, Lin MG, Stowe TR, Chen S, Zhu M, Stearns T et al. Autophagy promotes primary ciliogenesis by removing OFD1 from centriolar satellites. Nature 2013; 502: 254-257.
    • (2013) Nature , vol.502 , pp. 254-257
    • Tang, Z.1    Lin, M.G.2    Stowe, T.R.3    Chen, S.4    Zhu, M.5    Stearns, T.6
  • 10
    • 84856360973 scopus 로고    scopus 로고
    • Structure and function of vertebrate cilia, towards a new taxonomy
    • Takeda S, Narita K. Structure and function of vertebrate cilia, towards a new taxonomy. Differentiation 2012; 83: S4-11.
    • (2012) Differentiation , vol.83 , pp. S4-S11
    • Takeda, S.1    Narita, K.2
  • 11
    • 79551712329 scopus 로고    scopus 로고
    • The ciliary pocket: A once-forgotten membrane domain at the base of cilia
    • Ghossoub R, Molla-Herman A, Bastin P, Benmerah A. The ciliary pocket: a once-forgotten membrane domain at the base of cilia. Biol Cell 2011; 103: 131-144.
    • (2011) Biol Cell , vol.103 , pp. 131-144
    • Ghossoub, R.1    Molla-Herman, A.2    Bastin, P.3    Benmerah, A.4
  • 12
  • 14
    • 77952407399 scopus 로고    scopus 로고
    • The ciliary pocket: An endocytic membrane domain at the base of primary and motile cilia
    • Molla-Herman A, Ghossoub R, Blisnick T, Meunier A, Serres C, Silbermann F et al. The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J Cell Sci 2010; 123: 1785-1795.
    • (2010) J Cell Sci , vol.123 , pp. 1785-1795
    • Molla-Herman, A.1    Ghossoub, R.2    Blisnick, T.3    Meunier, A.4    Serres, C.5    Silbermann, F.6
  • 15
    • 84863327175 scopus 로고    scopus 로고
    • The base of the cilium: Roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization
    • Reiter JF, Blacque OE, Leroux MR. The base of the cilium: roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep 2012; 13: 608-618.
    • (2012) EMBO Rep , vol.13 , pp. 608-618
    • Reiter, J.F.1    Blacque, O.E.2    Leroux, M.R.3
  • 16
    • 84862780073 scopus 로고    scopus 로고
    • A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia
    • Kee HL, Dishinger JF, Blasius TL, Liu CJ, Margolis B, Verhey KJ. A size-exclusion permeability barrier and nucleoporins characterize a ciliary pore complex that regulates transport into cilia. Nat Cell Biol 2012; 14: 431-437.
    • (2012) Nat Cell Biol , vol.14 , pp. 431-437
    • Kee, H.L.1    Dishinger, J.F.2    Blasius, T.L.3    Liu, C.J.4    Margolis, B.5    Verhey, K.J.6
  • 18
    • 77951101203 scopus 로고    scopus 로고
    • The primary cilium: A signalling centre during vertebrate development
    • Goetz SC, Anderson KV. The primary cilium: a signalling centre during vertebrate development. Nat Rev Genet 2010; 11: 331-344.
    • (2010) Nat Rev Genet , vol.11 , pp. 331-344
    • Goetz, S.C.1    Anderson, K.V.2
  • 19
    • 33748327050 scopus 로고    scopus 로고
    • The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly
    • Follit JA, Tuft RA, Fogarty KE, Pazour GJ. The intraflagellar transport protein IFT20 is associated with the Golgi complex and is required for cilia assembly. Mol Biol Cell 2006; 17: 3781-3792.
    • (2006) Mol Biol Cell , vol.17 , pp. 3781-3792
    • Follit, J.A.1    Tuft, R.A.2    Fogarty, K.E.3    Pazour, G.J.4
  • 20
    • 79953323847 scopus 로고    scopus 로고
    • IFT20 is required for opsin trafficking and photoreceptor outer segment development
    • Keady BT, Le YZ, Pazour GJ. IFT20 is required for opsin trafficking and photoreceptor outer segment development. Mol Biol Cell 2011; 22: 921-930.
    • (2011) Mol Biol Cell , vol.22 , pp. 921-930
    • Keady, B.T.1    Le, Y.Z.2    Pazour, G.J.3
  • 21
    • 84893407429 scopus 로고    scopus 로고
    • The roles of evolutionarily conserved functional modules in cilia-related trafficking
    • Sung CH, Leroux MR. The roles of evolutionarily conserved functional modules in cilia-related trafficking. Nat Cell Biol 2013; 15: 1387-1397.
    • (2013) Nat Cell Biol , vol.15 , pp. 1387-1397
    • Sung, C.H.1    Leroux, M.R.2
  • 23
    • 84879414522 scopus 로고    scopus 로고
    • The mechanisms of Hedgehog signalling and its roles in development and disease
    • Briscoe J, Therond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 2013; 14: 416-429.
    • (2013) Nat Rev Mol Cell Biol , vol.14 , pp. 416-429
    • Briscoe, J.1    Therond, P.P.2
  • 24
    • 67349165028 scopus 로고    scopus 로고
    • Trafficking, development and hedgehog
    • Simpson F, Kerr MC, Wicking C. Trafficking, development and hedgehog. Mech Dev 2009; 126: 279-288.
    • (2009) Mech Dev , vol.126 , pp. 279-288
    • Simpson, F.1    Kerr, M.C.2    Wicking, C.3
  • 25
    • 79956308325 scopus 로고    scopus 로고
    • Mechanisms and functions of Hedgehog signalling across the metazoa
    • Ingham PW, Nakano Y, Seger C. Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet 2011; 12: 393-406.
    • (2011) Nat Rev Genet , vol.12 , pp. 393-406
    • Ingham, P.W.1    Nakano, Y.2    Seger, C.3
  • 26
    • 51949085076 scopus 로고    scopus 로고
    • Hedgehog: Functions and mechanisms
    • Varjosalo M, Taipale J. Hedgehog: functions and mechanisms. Genes Dev 2008; 22: 2454-2472.
    • (2008) Genes Dev , vol.22 , pp. 2454-2472
    • Varjosalo, M.1    Taipale, J.2
  • 27
    • 84905586280 scopus 로고    scopus 로고
    • Context-dependent signal integration by the GLI code: The oncogenic load, pathways, modifiers and implications for cancer therapy
    • Aberger F, Ruiz IAA. Context-dependent signal integration by the GLI code: the oncogenic load, pathways, modifiers and implications for cancer therapy. Semin Cell Dev Biol 2014; 33C: 93-104.
    • (2014) Semin Cell Dev Biol , vol.33 C , pp. 93-104
    • Aberger, F.1    Ruiz, I.A.A.2
  • 28
    • 80054022786 scopus 로고    scopus 로고
    • Gli proteins in development and disease
    • Hui CC, Angers S. Gli proteins in development and disease. Annu Rev Cell Dev Biol 2011; 27: 513-537.
    • (2011) Annu Rev Cell Dev Biol , vol.27 , pp. 513-537
    • Hui, C.C.1    Angers, S.2
  • 29
    • 84867799739 scopus 로고    scopus 로고
    • The Hedgehog signal transduction network
    • Robbins DJ, Fei DL, Riobo NA. The Hedgehog signal transduction network. Sci Signal 2012; 5: re6.
    • (2012) Sci Signal , vol.5 , pp. re6
    • Robbins, D.J.1    Fei, D.L.2    Riobo, N.A.3
  • 30
    • 84903701173 scopus 로고    scopus 로고
    • The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment
    • He M, Subramanian R, Bangs F, Omelchenko T, Liem KF Jr., Kapoor TM et al. The kinesin-4 protein Kif7 regulates mammalian Hedgehog signalling by organizing the cilium tip compartment. Nat Cell Biol 2014; 16: 663-672.
    • (2014) Nat Cell Biol , vol.16 , pp. 663-672
    • He, M.1    Subramanian, R.2    Bangs, F.3    Omelchenko, T.4    Liem, K.F.5    Kapoor, T.M.6
  • 31
    • 57049089995 scopus 로고    scopus 로고
    • Hedgehog signaling in development and cancer
    • Jiang J, Hui CC. Hedgehog signaling in development and cancer. Dev Cell 2008; 15: 801-812.
    • (2008) Dev Cell , vol.15 , pp. 801-812
    • Jiang, J.1    Hui, C.C.2
  • 32
    • 84876315016 scopus 로고    scopus 로고
    • PDGFRalpha signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2-ERK1/2-p90RSK and AKT signaling pathways
    • Clement DL, Mally S, Stock C, Lethan M, Satir P, Schwab A et al. PDGFRalpha signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2-ERK1/2-p90RSK and AKT signaling pathways. J Cell Sci 2013; 126: 953-965.
    • (2013) J Cell Sci , vol.126 , pp. 953-965
    • Clement, D.L.1    Mally, S.2    Stock, C.3    Lethan, M.4    Satir, P.5    Schwab, A.6
  • 33
    • 65249108743 scopus 로고    scopus 로고
    • The Na+/H+ exchanger NHE1 is required for directional migration stimulated via PDGFR-alpha in the primary cilium
    • Schneider L, Stock CM, Dieterich P, Jensen BH, Pedersen LB, Satir P et al. The Na+/H+ exchanger NHE1 is required for directional migration stimulated via PDGFR-alpha in the primary cilium. J Cell Biol 2009; 185: 163-176.
    • (2009) J Cell Biol , vol.185 , pp. 163-176
    • Schneider, L.1    Stock, C.M.2    Dieterich, P.3    Jensen, B.H.4    Pedersen, L.B.5    Satir, P.6
  • 35
    • 67649470380 scopus 로고    scopus 로고
    • Proximal events in Wnt signal transduction
    • Angers S, Moon RT. Proximal events in Wnt signal transduction. Nat Rev Mol Cell Biol 2009; 10: 468-477.
    • (2009) Nat Rev Mol Cell Biol , vol.10 , pp. 468-477
    • Angers, S.1    Moon, R.T.2
  • 36
    • 39749147015 scopus 로고    scopus 로고
    • From individual Wnt pathways towards a Wnt signalling network
    • Kestler HA, Kuhl M. From individual Wnt pathways towards a Wnt signalling network. Philos Trans R Soc Lond B Biol Sci 2008; 363: 1333-1347.
    • (2008) Philos Trans R Soc Lond B Biol Sci , vol.363 , pp. 1333-1347
    • Kestler, H.A.1    Kuhl, M.2
  • 37
    • 84868657171 scopus 로고    scopus 로고
    • Cilia, Wnt signaling, and the cytoskeleton
    • May-Simera HL, Kelley MW. Cilia, Wnt signaling, and the cytoskeleton. Cilia 2012; 1: 7.
    • (2012) Cilia , vol.1 , pp. 7
    • May-Simera, H.L.1    Kelley, M.W.2
  • 38
    • 84920083456 scopus 로고    scopus 로고
    • The Primary cilium calcium channels and their role in flow sensing
    • e-pub ahead of print 26 April 2014
    • Patel A. The Primary cilium calcium channels and their role in flow sensing. Pflugers Arch 2014; e-pub ahead of print 26 April 2014.
    • (2014) Pflugers Arch
    • Patel, A.1
  • 39
    • 77956261961 scopus 로고    scopus 로고
    • Polycystins and renovascular mechanosensory transduction
    • Patel A, Honore E. Polycystins and renovascular mechanosensory transduction. Nat Rev Nephrol 2010; 6: 530-538.
    • (2010) Nat Rev Nephrol , vol.6 , pp. 530-538
    • Patel, A.1    Honore, E.2
  • 40
    • 39849099174 scopus 로고    scopus 로고
    • Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1
    • Nauli SM, Kawanabe Y, Kaminski JJ, Pearce WJ, Ingber DE, Zhou J. Endothelial cilia are fluid shear sensors that regulate calcium signaling and nitric oxide production through polycystin-1. Circulation 2008; 117: 1161-1171.
    • (2008) Circulation , vol.117 , pp. 1161-1171
    • Nauli, S.M.1    Kawanabe, Y.2    Kaminski, J.J.3    Pearce, W.J.4    Ingber, D.E.5    Zhou, J.6
  • 41
    • 80052270782 scopus 로고    scopus 로고
    • Putative roles of cilia in polycystic kidney disease
    • Winyard P, Jenkins D. Putative roles of cilia in polycystic kidney disease. Biochim Biophys Acta 2011; 1812: 1256-1262.
    • (2011) Biochim Biophys Acta , vol.1812 , pp. 1256-1262
    • Winyard, P.1    Jenkins, D.2
  • 42
    • 0142025370 scopus 로고    scopus 로고
    • Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct
    • Liu W, Xu S, Woda C, Kim P, Weinbaum S, Satlin LM. Effect of flow and stretch on the [Ca2+]i response of principal and intercalated cells in cortical collecting duct. Am J Physiol Renal Physiol 2003; 285: F998-F1012.
    • (2003) Am J Physiol Renal Physiol , vol.285 , pp. F998-F1012
    • Liu, W.1    Xu, S.2    Woda, C.3    Kim, P.4    Weinbaum, S.5    Satlin, L.M.6
  • 43
    • 84891515759 scopus 로고    scopus 로고
    • Shear stress-induced Ca(2)(+) mobilization in MDCK cells is ATP dependent, no matter the primary cilium
    • Rodat-Despoix L, Hao J, Dandonneau M, Delmas P. Shear stress-induced Ca(2)(+) mobilization in MDCK cells is ATP dependent, no matter the primary cilium. Cell Calcium 2013; 53: 327-337.
    • (2013) Cell Calcium , vol.53 , pp. 327-337
    • Rodat-Despoix, L.1    Hao, J.2    Dandonneau, M.3    Delmas, P.4
  • 45
    • 84880376355 scopus 로고    scopus 로고
    • Emerging regulation and functions of autophagy
    • Boya P, Reggiori F, Codogno P. Emerging regulation and functions of autophagy. Nat Cell Biol 2013; 15: 713-720.
    • (2013) Nat Cell Biol , vol.15 , pp. 713-720
    • Boya, P.1    Reggiori, F.2    Codogno, P.3
  • 46
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008; 132: 27-42.
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 47
    • 81055144784 scopus 로고    scopus 로고
    • Autophagy: Renovation of cells and tissues
    • Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell 2011; 147: 728-741.
    • (2011) Cell , vol.147 , pp. 728-741
    • Mizushima, N.1    Komatsu, M.2
  • 48
    • 1542283812 scopus 로고    scopus 로고
    • In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker
    • Mizushima N, Yamamoto A, Matsui M, Yoshimori T, Ohsumi Y. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell 2004; 15: 1101-1111.
    • (2004) Mol Biol Cell , vol.15 , pp. 1101-1111
    • Mizushima, N.1    Yamamoto, A.2    Matsui, M.3    Yoshimori, T.4    Ohsumi, Y.5
  • 49
    • 84942552963 scopus 로고    scopus 로고
    • Regulation of autophagy by amino acids and mTOR-dependent signal transduction
    • e-pub ahead of print 1 June 2014
    • Meijer AJ, Lorin S, Blommaart EF, Codogno P. Regulation of autophagy by amino acids and mTOR-dependent signal transduction. Amino Acids 2014; e-pub ahead of print 1 June 2014.
    • (2014) Amino Acids
    • Meijer, A.J.1    Lorin, S.2    Blommaart, E.F.3    Codogno, P.4
  • 50
    • 11144245626 scopus 로고    scopus 로고
    • The role of autophagy during the early neonatal starvation period
    • Kuma A, Hatano M, Matsui M, Yamamoto A, Nakaya H, Yoshimori T et al. The role of autophagy during the early neonatal starvation period. Nature 2004; 432: 1032-1036.
    • (2004) Nature , vol.432 , pp. 1032-1036
    • Kuma, A.1    Hatano, M.2    Matsui, M.3    Yamamoto, A.4    Nakaya, H.5    Yoshimori, T.6
  • 51
    • 84883414890 scopus 로고    scopus 로고
    • The LIR motif - Crucial for selective autophagy
    • Birgisdottir AB, Lamark T, Johansen T. The LIR motif - crucial for selective autophagy. J Cell Sci 2013; 126: 3237-3247.
    • (2013) J Cell Sci , vol.126 , pp. 3237-3247
    • Birgisdottir, A.B.1    Lamark, T.2    Johansen, T.3
  • 52
    • 84901801108 scopus 로고    scopus 로고
    • Organellophagy: Eliminating cellular building blocks via selective autophagy
    • Okamoto K. Organellophagy: eliminating cellular building blocks via selective autophagy. J Cell Biol 2014; 205: 435-445.
    • (2014) J Cell Biol , vol.205 , pp. 435-445
    • Okamoto, K.1
  • 53
    • 84892859905 scopus 로고    scopus 로고
    • Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy
    • Rogov V, Dotsch V, Johansen T, Kirkin V. Interactions between autophagy receptors and ubiquitin-like proteins form the molecular basis for selective autophagy. Mol Cell 2014; 53: 167-178.
    • (2014) Mol Cell , vol.53 , pp. 167-178
    • Rogov, V.1    Dotsch, V.2    Johansen, T.3    Kirkin, V.4
  • 54
    • 84901815187 scopus 로고    scopus 로고
    • Cargo recognition and trafficking in selective autophagy
    • Stolz A, Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol 2014; 16: 495-501.
    • (2014) Nat Cell Biol , vol.16 , pp. 495-501
    • Stolz, A.1    Ernst, A.2    Dikic, I.3
  • 55
    • 84886797274 scopus 로고    scopus 로고
    • Autophagy in infection, inflammation and immunity
    • Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol 2013; 13: 722-737.
    • (2013) Nat Rev Immunol , vol.13 , pp. 722-737
    • Deretic, V.1    Saitoh, T.2    Akira, S.3
  • 56
    • 84901833411 scopus 로고    scopus 로고
    • Autophagy and human disease: Emerging themes
    • Schneider JL, Cuervo AM. Autophagy and human disease: emerging themes. Curr Opin Genet Dev 2014; 26C: 16-23.
    • (2014) Curr Opin Genet Dev , vol.26 C , pp. 16-23
    • Schneider, J.L.1    Cuervo, A.M.2
  • 57
    • 84905405893 scopus 로고    scopus 로고
    • Getting ready for building: Signaling and autophagosome biogenesis
    • Abada A, Elazar Z. Getting ready for building: signaling and autophagosome biogenesis. EMBO Rep 2014; 15: 839-852.
    • (2014) EMBO Rep , vol.15 , pp. 839-852
    • Abada, A.1    Elazar, Z.2
  • 58
    • 84888380983 scopus 로고    scopus 로고
    • The autophagosome: Origins unknown, biogenesis complex
    • Lamb CA, Yoshimori T, Tooze SA. The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 2013; 14: 759-774.
    • (2013) Nat Rev Mol Cell Biol , vol.14 , pp. 759-774
    • Lamb, C.A.1    Yoshimori, T.2    Tooze, S.A.3
  • 60
  • 61
    • 84891748139 scopus 로고    scopus 로고
    • A current perspective of autophagosome biogenesis
    • Shibutani ST, Yoshimori T. A current perspective of autophagosome biogenesis. Cell Res 2014; 24: 58-68.
    • (2014) Cell Res , vol.24 , pp. 58-68
    • Shibutani, S.T.1    Yoshimori, T.2
  • 62
    • 50249084987 scopus 로고    scopus 로고
    • Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum
    • Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL, Habermann A et al. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 2008; 182: 685-701.
    • (2008) J Cell Biol , vol.182 , pp. 685-701
    • Axe, E.L.1    Walker, S.A.2    Manifava, M.3    Chandra, P.4    Roderick, H.L.5    Habermann, A.6
  • 63
    • 84988422403 scopus 로고    scopus 로고
    • ATG16L1 meets ATG9 in recycling endosomes: Additional roles for the plasma membrane and endocytosis in autophagosome biogenesis
    • Puri C, Renna M, Bento CF, Moreau K, Rubinsztein DC. ATG16L1 meets ATG9 in recycling endosomes: additional roles for the plasma membrane and endocytosis in autophagosome biogenesis. Autophagy 2014; 10: 182-184.
    • (2014) Autophagy , vol.10 , pp. 182-184
    • Puri, C.1    Renna, M.2    Bento, C.F.3    Moreau, K.4    Rubinsztein, D.C.5
  • 64
    • 84861158462 scopus 로고    scopus 로고
    • Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy
    • Orsi A, Razi M, Dooley HC, Robinson D, Weston AE, Collinson LM et al. Dynamic and transient interactions of Atg9 with autophagosomes, but not membrane integration, are required for autophagy. Mol Biol Cell 2012; 23: 1860-1873.
    • (2012) Mol Biol Cell , vol.23 , pp. 1860-1873
    • Orsi, A.1    Razi, M.2    Dooley, H.C.3    Robinson, D.4    Weston, A.E.5    Collinson, L.M.6
  • 65
    • 84878897444 scopus 로고    scopus 로고
    • Biology and trafficking of ATG9 and ATG16L1, two proteins that regulate autophagosome formation
    • Zavodszky E, Vicinanza M, Rubinsztein DC. Biology and trafficking of ATG9 and ATG16L1, two proteins that regulate autophagosome formation. FEBS Lett 2013; 587: 1988-1996.
    • (2013) FEBS Lett , vol.587 , pp. 1988-1996
    • Zavodszky, E.1    Vicinanza, M.2    Rubinsztein, D.C.3
  • 66
    • 84904575441 scopus 로고    scopus 로고
    • WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1
    • Dooley HC, Razi M, Polson HE, Girardin SE, Wilson MI, Tooze SA. WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol Cell 2014; 55: 238-252.
    • (2014) Mol Cell , vol.55 , pp. 238-252
    • Dooley, H.C.1    Razi, M.2    Polson, H.E.3    Girardin, S.E.4    Wilson, M.I.5    Tooze, S.A.6
  • 67
    • 84877916769 scopus 로고    scopus 로고
    • The role of membrane-trafficking small GTPases in the regulation of autophagy
    • Bento CF, Puri C, Moreau K, Rubinsztein DC. The role of membrane-trafficking small GTPases in the regulation of autophagy. J Cell Sci 2013; 126: 1059-1069.
    • (2013) J Cell Sci , vol.126 , pp. 1059-1069
    • Bento, C.F.1    Puri, C.2    Moreau, K.3    Rubinsztein, D.C.4
  • 68
    • 84870880174 scopus 로고    scopus 로고
    • The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
    • Itakura E, Kishi-Itakura C, Mizushima N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 2012; 151: 1256-1269.
    • (2012) Cell , vol.151 , pp. 1256-1269
    • Itakura, E.1    Kishi-Itakura, C.2    Mizushima, N.3
  • 69
    • 44349133382 scopus 로고    scopus 로고
    • ESCRT functions in autophagy and associated disease
    • Rusten TE, Simonsen A. ESCRT functions in autophagy and associated disease. Cell Cycle 2008; 7: 1166-1172.
    • (2008) Cell Cycle , vol.7 , pp. 1166-1172
    • Rusten, T.E.1    Simonsen, A.2
  • 71
    • 84901381389 scopus 로고    scopus 로고
    • The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17
    • Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, Natsume T et al. The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol Biol Cell 2014; 25: 1327-1337.
    • (2014) Mol Biol Cell , vol.25 , pp. 1327-1337
    • Jiang, P.1    Nishimura, T.2    Sakamaki, Y.3    Itakura, E.4    Hatta, T.5    Natsume, T.6
  • 72
    • 84892438559 scopus 로고    scopus 로고
    • The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39
    • Manil-Segalen M, Lefebvre C, Jenzer C, Trichet M, Boulogne C, Satiat-Jeunemaitre B et al. The C. elegans LC3 acts downstream of GABARAP to degrade autophagosomes by interacting with the HOPS subunit VPS39. Dev Cell 2014; 28: 43-55.
    • (2014) Dev Cell , vol.28 , pp. 43-55
    • Manil-Segalen, M.1    Lefebvre, C.2    Jenzer, C.3    Trichet, M.4    Boulogne, C.5    Satiat-Jeunemaitre, B.6
  • 73
    • 84901308155 scopus 로고    scopus 로고
    • Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila
    • Takats S, Pircs K, Nagy P, Varga A, Karpati M, Hegedus K et al. Interaction of the HOPS complex with Syntaxin 17 mediates autophagosome clearance in Drosophila. Mol Biol Cell 2014; 25: 1338-1354.
    • (2014) Mol Biol Cell , vol.25 , pp. 1338-1354
    • Takats, S.1    Pircs, K.2    Nagy, P.3    Varga, A.4    Karpati, M.5    Hegedus, K.6
  • 74
    • 43949112966 scopus 로고    scopus 로고
    • LAMP-2: A control step for phagosome and autophagosome maturation
    • Saftig P, Beertsen W, Eskelinen EL. LAMP-2: a control step for phagosome and autophagosome maturation. Autophagy 2008; 4: 510-512.
    • (2008) Autophagy , vol.4 , pp. 510-512
    • Saftig, P.1    Beertsen, W.2    Eskelinen, E.L.3
  • 75
    • 77953699711 scopus 로고    scopus 로고
    • Termination of autophagy and reformation of lysosomes regulated by mTOR
    • Yu L, McPhee CK, Zheng L, Mardones GA, Rong Y, Peng J et al. Termination of autophagy and reformation of lysosomes regulated by mTOR. Nature 2010; 465: 942-946.
    • (2010) Nature , vol.465 , pp. 942-946
    • Yu, L.1    McPhee, C.K.2    Zheng, L.3    Mardones, G.A.4    Rong, Y.5    Peng, J.6
  • 76
    • 84884220705 scopus 로고    scopus 로고
    • Diverse autophagosome membrane sources coalesce in recycling endosomes
    • Puri C, Renna M, Bento CF, Moreau K, Rubinsztein DC. Diverse autophagosome membrane sources coalesce in recycling endosomes. Cell 2013; 154: 1285-1299.
    • (2013) Cell , vol.154 , pp. 1285-1299
    • Puri, C.1    Renna, M.2    Bento, C.F.3    Moreau, K.4    Rubinsztein, D.C.5
  • 77
    • 79960774898 scopus 로고    scopus 로고
    • Autophagosome precursor maturation requires homotypic fusion
    • Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC. Autophagosome precursor maturation requires homotypic fusion. Cell 2011; 146: 303-317.
    • (2011) Cell , vol.146 , pp. 303-317
    • Moreau, K.1    Ravikumar, B.2    Renna, M.3    Puri, C.4    Rubinsztein, D.C.5
  • 81
    • 78349286779 scopus 로고    scopus 로고
    • The cell biology of polycystic kidney disease
    • Chapin HC, Caplan MJ. The cell biology of polycystic kidney disease. J Cell Biol 2010; 191: 701-710.
    • (2010) J Cell Biol , vol.191 , pp. 701-710
    • Chapin, H.C.1    Caplan, M.J.2
  • 82
    • 80052262467 scopus 로고    scopus 로고
    • Polycystic kidney disease: Pathogenesis and potential therapies
    • Takiar V, Caplan MJ. Polycystic kidney disease: pathogenesis and potential therapies. Biochim Biophys Acta 2011; 1812: 1337-1343.
    • (2011) Biochim Biophys Acta , vol.1812 , pp. 1337-1343
    • Takiar, V.1    Caplan, M.J.2
  • 83
    • 72049098241 scopus 로고    scopus 로고
    • Pkd1 haploinsufficiency increases renal damage and induces microcyst formation following ischemia/reperfusion
    • Bastos AP, Piontek K, Silva AM, Martini D, Menezes LF, Fonseca JM et al. Pkd1 haploinsufficiency increases renal damage and induces microcyst formation following ischemia/reperfusion. J Am Soc Nephrol 2009; 20: 2389-2402.
    • (2009) J Am Soc Nephrol , vol.20 , pp. 2389-2402
    • Bastos, A.P.1    Piontek, K.2    Silva, A.M.3    Martini, D.4    Menezes, L.F.5    Fonseca, J.M.6
  • 84
    • 73549122173 scopus 로고    scopus 로고
    • Pkd2 dosage influences cellular repair responses following ischemia-reperfusion injury
    • Prasad S, McDaid JP, Tam FW, Haylor JL, Ong AC. Pkd2 dosage influences cellular repair responses following ischemia-reperfusion injury. Am J Pathol 2009; 175: 1493-1503.
    • (2009) Am J Pathol , vol.175 , pp. 1493-1503
    • Prasad, S.1    McDaid, J.P.2    Tam, F.W.3    Haylor, J.L.4    Ong, A.C.5
  • 85
    • 38149098611 scopus 로고    scopus 로고
    • Calcium, cyclic AMP, and MAP kinases: Dysregulation in polycystic kidney disease
    • Cowley BD Jr. Calcium, cyclic AMP, and MAP kinases: dysregulation in polycystic kidney disease. Kidney Int 2008; 73: 251-253.
    • (2008) Kidney Int , vol.73 , pp. 251-253
    • Cowley, B.D.1
  • 86
    • 0034735526 scopus 로고    scopus 로고
    • Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella
    • Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB et al. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 2000; 151: 709-718.
    • (2000) J Cell Biol , vol.151 , pp. 709-718
    • Pazour, G.J.1    Dickert, B.L.2    Vucica, Y.3    Seeley, E.S.4    Rosenbaum, J.L.5    Witman, G.B.6
  • 87
    • 0037377655 scopus 로고    scopus 로고
    • Delayed cystogenesis and increased ciliogenesis associated with the re-expression of polaris in Tg737 mutant mice
    • Brown NE, Murcia NS. Delayed cystogenesis and increased ciliogenesis associated with the re-expression of polaris in Tg737 mutant mice. Kidney Int 2003; 63: 1220-1229.
    • (2003) Kidney Int , vol.63 , pp. 1220-1229
    • Brown, N.E.1    Murcia, N.S.2
  • 89
    • 84892613717 scopus 로고    scopus 로고
    • Autophagy in kidney health and disease
    • Wang Z, Choi ME. Autophagy in kidney health and disease. Antioxid Redox Signal 2014; 20: 519-537.
    • (2014) Antioxid Redox Signal , vol.20 , pp. 519-537
    • Wang, Z.1    Choi, M.E.2
  • 90
    • 84893406789 scopus 로고    scopus 로고
    • Polycystic kidney disease: A case of suppressed autophagy?
    • Ravichandran K, Edelstein CL. Polycystic kidney disease: a case of suppressed autophagy? Semin Nephrol 2014; 34: 27-33.
    • (2014) Semin Nephrol , vol.34 , pp. 27-33
    • Ravichandran, K.1    Edelstein, C.L.2
  • 91
    • 33645769011 scopus 로고    scopus 로고
    • The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease
    • Shillingford JM, Murcia NS, Larson CH, Low SH, Hedgepeth R, Brown N et al. The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA 2006; 103: 5466-5471.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 5466-5471
    • Shillingford, J.M.1    Murcia, N.S.2    Larson, C.H.3    Low, S.H.4    Hedgepeth, R.5    Brown, N.6
  • 94
    • 84878434156 scopus 로고    scopus 로고
    • Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy
    • Rowe I, Chiaravalli M, Mannella V, Ulisse V, Quilici G, Pema M et al. Defective glucose metabolism in polycystic kidney disease identifies a new therapeutic strategy. Nat Med 2013; 19: 488-493.
    • (2013) Nat Med , vol.19 , pp. 488-493
    • Rowe, I.1    Chiaravalli, M.2    Mannella, V.3    Ulisse, V.4    Quilici, G.5    Pema, M.6
  • 95
    • 84896790090 scopus 로고    scopus 로고
    • Polycystin-1 negatively regulates polycystin-2 expression via the aggresome/autophagosome pathway
    • Cebotaru V, Cebotaru L, Kim H, Chiaravalli M, Boletta A, Qian F et al. Polycystin-1 negatively regulates polycystin-2 expression via the aggresome/autophagosome pathway. J Biol Chem 2014; 289: 6404-6414.
    • (2014) J Biol Chem , vol.289 , pp. 6404-6414
    • Cebotaru, V.1    Cebotaru, L.2    Kim, H.3    Chiaravalli, M.4    Boletta, A.5    Qian, F.6
  • 99
    • 0034721232 scopus 로고    scopus 로고
    • Chronic obstructive pulmonary disease
    • Barnes PJ. Chronic obstructive pulmonary disease. N Engl J Med 2000; 343: 269-280.
    • (2000) N Engl J Med , vol.343 , pp. 269-280
    • Barnes, P.J.1
  • 100
    • 84904785682 scopus 로고    scopus 로고
    • Intraflagellar transport gene expression associated with short cilia in smoking and COPD
    • Hessel J, Heldrich J, Fuller J, Staudt MR, Radisch S, Hollmann C et al. Intraflagellar transport gene expression associated with short cilia in smoking and COPD. PLoS One 2014; 9: e85453.
    • (2014) PLoS One , vol.9 , pp. e85453
    • Hessel, J.1    Heldrich, J.2    Fuller, J.3    Staudt, M.R.4    Radisch, S.5    Hollmann, C.6
  • 102
    • 53749087325 scopus 로고    scopus 로고
    • Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease
    • Chen ZH, Kim HP, Sciurba FC, Lee SJ, Feghali-Bostwick C, Stolz DB et al. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease. PLoS One 2008; 3: e3316.
    • (2008) PLoS One , vol.3 , pp. e3316
    • Chen, Z.H.1    Kim, H.P.2    Sciurba, F.C.3    Lee, S.J.4    Feghali-Bostwick, C.5    Stolz, D.B.6
  • 103
    • 58949085532 scopus 로고    scopus 로고
    • Zebrafish Tsc1 reveals functional interactions between the cilium and the TOR pathway
    • DiBella LM, Park A, Sun Z. Zebrafish Tsc1 reveals functional interactions between the cilium and the TOR pathway. Hum Mol Genet 2009; 18: 595-606.
    • (2009) Hum Mol Genet , vol.18 , pp. 595-606
    • DiBella, L.M.1    Park, A.2    Sun, Z.3
  • 105
    • 84896955758 scopus 로고    scopus 로고
    • 'Ciliophagy': The consumption of cilia components by autophagy
    • Cloonan SM, Lam HC, Ryter SW, Choi AM. 'Ciliophagy': the consumption of cilia components by autophagy. Autophagy 2014; 10: 532-534.
    • (2014) Autophagy , vol.10 , pp. 532-534
    • Cloonan, S.M.1    Lam, H.C.2    Ryter, S.W.3    Choi, A.M.4
  • 106
    • 33646164168 scopus 로고    scopus 로고
    • Intraflagellar transport and cilium-based signaling
    • Scholey JM, Anderson KV. Intraflagellar transport and cilium-based signaling. Cell 2006; 125: 439-442.
    • (2006) Cell , vol.125 , pp. 439-442
    • Scholey, J.M.1    Anderson, K.V.2
  • 107
    • 1842583789 scopus 로고    scopus 로고
    • Development by self-digestion: Molecular mechanisms and biological functions of autophagy
    • Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6: 463-477.
    • (2004) Dev Cell , vol.6 , pp. 463-477
    • Levine, B.1    Klionsky, D.J.2
  • 109
    • 84872554899 scopus 로고    scopus 로고
    • The role of autophagy in Drosophila metamorphosis
    • Tracy K, Baehrecke EH. The role of autophagy in Drosophila metamorphosis. Curr Top Dev Biol 2013; 103: 101-125.
    • (2013) Curr Top Dev Biol , vol.103 , pp. 101-125
    • Tracy, K.1    Baehrecke, E.H.2
  • 110
    • 84891748146 scopus 로고    scopus 로고
    • You are what you eat: Multifaceted functions of autophagy during C. elegans development
    • Yang P, Zhang H. You are what you eat: multifaceted functions of autophagy during C. elegans development. Cell Res 2014; 24: 80-91.
    • (2014) Cell Res , vol.24 , pp. 80-91
    • Yang, P.1    Zhang, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.