메뉴 건너뛰기




Volumn 4, Issue 8, 2014, Pages 600-623

Biomedical applications of nanofiber scaffolds in tissue engineering

Author keywords

Cell delivery; Nanofiber; Regenerative medicine; Tissue engineering

Indexed keywords

BIOLOGICAL FACTOR; CHITIN; CHITOSAN; COLLAGEN; ELASTIN; GELATIN; HYALURONIC ACID; MOLECULAR SCAFFOLD; NANOFIBER; NYLON;

EID: 84921655144     PISSN: 21579083     EISSN: 21579091     Source Type: Journal    
DOI: 10.1166/jbt.2014.1214     Document Type: Review
Times cited : (30)

References (230)
  • 1
    • 79960351640 scopus 로고    scopus 로고
    • Whole-organ tissue engineering: Decellularization and recellularization of threedimensional matrix scaffolds
    • S. F. Badylak, D. Taylor, and K. Uygun, Whole-organ tissue engineering: Decellularization and recellularization of threedimensional matrix scaffolds. Annu. Rev. Biomed. Eng. 13, 27 (2011).
    • (2011) Annu. Rev. Biomed. Eng , vol.13 , pp. 27
    • Badylak, S.F.1    Taylor, D.2    Uygun, K.3
  • 2
    • 0027595948 scopus 로고
    • Tissue engineering
    • R. Langer and J. P. Vacanti, Tissue engineering. Science 260, 920 (1993).
    • (1993) Science , vol.260 , pp. 920
    • Langer, R.1    Vacanti, J.P.2
  • 3
    • 33750608853 scopus 로고    scopus 로고
    • Challenges in tissue engineering
    • Y. Ikada, Challenges in tissue engineering. J. R. Soc. Interface 3, 589 (2006).
    • (2006) J. R. Soc. Interface , vol.3 , pp. 589
    • Ikada, Y.1
  • 5
    • 84885027284 scopus 로고    scopus 로고
    • Stimuli-sensitive hydrogels: An excellent carrier for drug and cell delivery
    • T. Garg, S. Singh, and A. K. Goyal, Stimuli-sensitive hydrogels: An excellent carrier for drug and cell delivery. Crit. Rev. Ther. Drug Carrier Syst. 30, 369 (2013).
    • (2013) Crit. Rev. Ther. Drug Carrier Syst , vol.30 , pp. 369
    • Garg, T.1    Singh, S.2    Goyal, A.K.3
  • 6
    • 78650602529 scopus 로고    scopus 로고
    • Nanotechnological strategies for engineering complex tissues. Nat
    • T. Dvir, B. P. Timko, D. S. Kohane, and R. Langer, Nanotechnological strategies for engineering complex tissues. Nat. Nanotechnol. 6, 13 (2011).
    • (2011) Nanotechnol , vol.6 , pp. 13
    • Dvir, T.1    Timko, B.P.2    Kohane, D.S.3    Langer, R.4
  • 7
    • 36248962668 scopus 로고    scopus 로고
    • Nanofiber technology: Designing the next generation of tissue engineering scaffolds
    • C. P. Barnes, S. A. Sell, E. D. Boland, D. G. Simpson, and G. L. Bowlin, Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev. 59, 1413 (2007).
    • (2007) Adv. Drug Deliv. Rev , vol.59 , pp. 1413
    • Barnes, C.P.1    Sell, S.A.2    Boland, E.D.3    Simpson, D.G.4    Bowlin, G.L.5
  • 8
    • 63649141917 scopus 로고    scopus 로고
    • Fabrication and application of nanofibrous scaffolds in tissue engineering
    • W. J. Li and R. S. Tuan, Fabrication and application of nanofibrous scaffolds in tissue engineering. Current Protocols in Cell Biology 25.2, 1 (2009).
    • (2009) Current Protocols in Cell Biology , vol.2 , Issue.1 , pp. 25
    • Li, W.J.1    Tuan, R.S.2
  • 11
    • 0032949079 scopus 로고    scopus 로고
    • Synthetic nano-scale fibrous extracellular matrix
    • P. X. Ma and R. Zhang, Synthetic nano-scale fibrous extracellular matrix. J. Biomed. Mater. Res. 46, 60 (1999).
    • (1999) J. Biomed. Mater. Res , vol.46 , pp. 60
    • Ma, P.X.1    Zhang, R.2
  • 12
    • 0141765883 scopus 로고    scopus 로고
    • Fabrication of novel biomaterials through molecular selfassembly
    • S. Zhang, Fabrication of novel biomaterials through molecular selfassembly. Nat. Biotechnol. 21, 1171 (2003).
    • (2003) Nat. Biotechnol , vol.21 , pp. 1171
    • Zhang, S.1
  • 13
    • 11144281219 scopus 로고    scopus 로고
    • Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: Structural characteristics, mechanical properties and cell adhesion potential
    • I. K. Kwon, S. Kidoaki, and T. Matsuda, Electrospun nano- to microfiber fabrics made of biodegradable copolyesters: Structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26, 3929 (2005).
    • (2005) Biomaterials , vol.26 , pp. 3929
    • Kwon, I.K.1    Kidoaki, S.2    Matsuda, T.3
  • 14
    • 33745799503 scopus 로고    scopus 로고
    • Electrospinning of polymeric nanofibers for tissue engineering applications: A review
    • Q. P. Pham, U. Sharma, and A. G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 12, 1197 (2006).
    • (2006) Tissue Eng , vol.12 , pp. 1197
    • Pham, Q.P.1    Sharma, U.2    Mikos, A.G.3
  • 15
    • 70349792411 scopus 로고    scopus 로고
    • Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery
    • H. S. Yoo, T. G. Kim, and T. G. Park, Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 61, 1033 (2009).
    • (2009) Adv. Drug Deliv. Rev , vol.61 , pp. 1033
    • Yoo, H.S.1    Kim, T.G.2    Park, T.G.3
  • 17
    • 33748905939 scopus 로고    scopus 로고
    • Mechanical properties of single electrospun drug-encapsulated nanofibres
    • S. Y. Chew, T. C. Hufnagel, C. T. Lim, and K. W. Leong, Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology 17, 3880 (2006).
    • (2006) Nanotechnology , vol.17 , pp. 3880
    • Chew, S.Y.1    Hufnagel, T.C.2    Lim, C.T.3    Leong, K.W.4
  • 19
    • 1642619615 scopus 로고    scopus 로고
    • Physical properties of a single polymeric nanofiber
    • E. Tan and C. Lim, Physical properties of a single polymeric nanofiber. Appl. Phys. Lett. 84, 1603 (2004).
    • (2004) Appl. Phys. Lett , vol.84 , pp. 1603
    • Tan, E.1    Lim, C.2
  • 20
    • 28344440709 scopus 로고    scopus 로고
    • Nanoindentation study of nanofibers
    • E. Tan and C. Lim, Nanoindentation study of nanofibers. Appl. Phys. Lett. 87, 123106 (2005).
    • (2005) Appl. Phys. Lett , vol.87 , pp. 123106
    • Tan, E.1    Lim, C.2
  • 21
    • 7444234178 scopus 로고    scopus 로고
    • Tensile testing of a single ultrafine polymeric fiber
    • E. Tan, S. Ng, and C. Lim, Tensile testing of a single ultrafine polymeric fiber. Biomaterials 26, 1453 (2005).
    • (2005) Biomaterials , vol.26 , pp. 1453
    • Tan, E.1    Ng, S.2    Lim, C.3
  • 22
    • 33646718176 scopus 로고    scopus 로고
    • Effects of annealing on the structural and mechanical properties of electrospun polymeric nanofibres
    • E. P. Tan and C. Lim, Effects of annealing on the structural and mechanical properties of electrospun polymeric nanofibres. Nanotechnology 17, 2649 (2006).
    • (2006) Nanotechnology , vol.17 , pp. 2649
    • Tan, E.P.1    Lim, C.2
  • 23
    • 42149144763 scopus 로고    scopus 로고
    • Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers
    • C. Lim, E. Tan, and S. Ng, Effects of crystalline morphology on the tensile properties of electrospun polymer nanofibers. Appl. Phys. Lett. 92, 141908 (2008).
    • (2008) Appl. Phys. Lett , vol.92 , pp. 141908
    • Lim, C.1    Tan, E.2    Ng, S.3
  • 24
    • 33748905939 scopus 로고    scopus 로고
    • Mechanical properties of single electrospun drug-encapsulated nanofibres
    • S. Y. Chew, T. C. Hufnagel, C. T. Lim, and K. W. Leong, Mechanical properties of single electrospun drug-encapsulated nanofibres. Nanotechnology 17, 3880 (2006).
    • (2006) Nanotechnology , vol.17 , pp. 3880
    • Chew, S.Y.1    Hufnagel, T.C.2    Lim, C.T.3    Leong, K.W.4
  • 25
    • 34147094231 scopus 로고    scopus 로고
    • Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend
    • E. Schnell, K. Klinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton, and J. Mey, Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend. Biomaterials 28, 3012 (2007).
    • (2007) Biomaterials , vol.28 , pp. 3012
    • Schnell, E.1    Klinkhammer, K.2    Balzer, S.3    Brook, G.4    Klee, D.5    Dalton, P.6    Mey, J.7
  • 26
    • 33749552865 scopus 로고    scopus 로고
    • Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold
    • X. Xin, M. Hussain, and J. J. Mao, Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 28, 316 (2007).
    • (2007) Biomaterials , vol.28 , pp. 316
    • Xin, X.1    Hussain, M.2    Mao, J.J.3
  • 28
    • 9744227221 scopus 로고    scopus 로고
    • Electrospun poly (L-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration
    • T. Bini, S. Gao, S. Wang, A. Lim, L. B. Hai, and S. Ramakrishna, Electrospun poly (L-lactide-co-glycolide) biodegradable polymer nanofibre tubes for peripheral nerve regeneration. Nanotechnology 15, 1459 (2004).
    • (2004) Nanotechnology , vol.15 , pp. 1459
    • Bini, T.1    Gao, S.2    Wang, S.3    Lim, A.4    Hai, L.B.5    Ramakrishna, S.6
  • 29
    • 10044289544 scopus 로고    scopus 로고
    • Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering
    • F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26, 2603 (2005).
    • (2005) Biomaterials , vol.26 , pp. 2603
    • Yang, F.1    Murugan, R.2    Wang, S.3    Ramakrishna, S.4
  • 30
    • 4744359026 scopus 로고    scopus 로고
    • Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast
    • C. H. Lee, H. J. Shin, I. H. Cho, Y. M. Kang, I. A. Kim, K. D. Park, and J. W. Shin, Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26, 1261 (2005).
    • (2005) Biomaterials , vol.26 , pp. 1261
    • Lee, C.H.1    Shin, H.J.2    Cho, I.H.3    Kang, Y.M.4    Kim, I.A.5    Park, K.D.6    Shin, J.W.7
  • 31
    • 36048959183 scopus 로고    scopus 로고
    • Vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF)
    • J. S. Choi, K. W. Leong, and H. S. Yoo, In vivo wound healing of diabetic ulcers using electrospun nanofibers immobilized with human epidermal growth factor (EGF). Biomaterials 29, 587 (2008).
    • (2008) Biomaterials , vol.29 , pp. 587
    • Choi, J.S.1    Leong, K.W.2    Yoo, H.S.3
  • 32
    • 0242607105 scopus 로고    scopus 로고
    • Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering
    • C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, Aligned biodegradable nanofibrous structure: A potential scaffold for blood vessel engineering. Biomaterials 25, 877 (2004).
    • (2004) Biomaterials , vol.25 , pp. 877
    • Xu, C.1    Inai, R.2    Kotaki, M.3    Ramakrishna, S.4
  • 33
    • 4544386133 scopus 로고    scopus 로고
    • Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering
    • C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, Electrospun nanofiber fabrication as synthetic extracellular matrix and its potential for vascular tissue engineering. Tissue Eng. 10, 1160 (2004).
    • (2004) Tissue Eng , vol.10 , pp. 1160
    • Xu, C.1    Inai, R.2    Kotaki, M.3    Ramakrishna, S.4
  • 34
    • 0027308691 scopus 로고
    • Foreign body reactions to resorbable poly(L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures
    • E. J. Bergsma, F. R. Rozema, R. R. Bos, and W. C. de Bruijn, Foreign body reactions to resorbable poly(L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J. Oral Maxillofac Surg. 51, 666 (1993).
    • (1993) J. Oral Maxillofac Surg , vol.51 , pp. 666
    • Bergsma, E.J.1    Rozema, F.R.2    Bos, R.R.3    De Bruijn, W.C.4
  • 35
    • 70249125098 scopus 로고    scopus 로고
    • Progress in the field of electrospinning for tissue engineering applications
    • S. Agarwal, J. H. Wendorff, and A. Greiner, Progress in the field of electrospinning for tissue engineering applications. Adv. Mater. 21, 3343 (2009).
    • (2009) Adv. Mater , vol.21 , pp. 3343
    • Agarwal, S.1    Wendorff, J.H.2    Greiner, A.3
  • 36
    • 84899081947 scopus 로고    scopus 로고
    • Development and characterization of niosomal gel for topical delivery of benzoyl peroxide
    • G. Goyal, T. Garg, B. Malik, G. Chauhan, G. Rath, and A. K. Goyal, Development and characterization of niosomal gel for topical delivery of benzoyl peroxide. Drug Deliv. (2013), in press.
    • (2013) Drug Deliv
    • Goyal, G.1    Garg, T.2    Malik, B.3    Chauhan, G.4    Rath, G.5    Goyal, A.K.6
  • 37
    • 34547092170 scopus 로고    scopus 로고
    • Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol
    • C. P. Barnes, C. W. Pemble, D. D. Brand, D. G. Simpson, and G. L. Bowlin, Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol. Tissue Eng. 13, 1593 (2007).
    • (2007) Tissue Eng , vol.13 , pp. 1593
    • Barnes, C.P.1    Pemble, C.W.2    Brand, D.D.3    Simpson, D.G.4    Bowlin, G.L.5
  • 38
    • 9344220476 scopus 로고    scopus 로고
    • Mechanical properties and cellular proliferation of electrospun collagen type II
    • K. J. Shields, M. J. Beckman, G. L. Bowlin, and J. S. Wayne, Mechanical properties and cellular proliferation of electrospun collagen type II. Tissue Eng. 10, 1510 (2004).
    • (2004) Tissue Eng , vol.10 , pp. 1510
    • Shields, K.J.1    Beckman, M.J.2    Bowlin, G.L.3    Wayne, J.S.4
  • 39
    • 42249097419 scopus 로고    scopus 로고
    • The influence of electrospun aligned poly(Epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes
    • J. S. Choi, S. J. Lee, G. J. Christ, A. Atala, and J. J. Yoo, The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29, 2899 (2008).
    • (2008) Biomaterials , vol.29 , pp. 2899
    • Choi, J.S.1    Lee, S.J.2    Christ, G.J.3    Atala, A.4    Yoo, J.J.5
  • 40
    • 68749098302 scopus 로고    scopus 로고
    • Engineered human skin fabricated using electrospun collagen-PCL blends: Morphogenesis and mechanical properties
    • H. M. Powell and S. T. Boyce, Engineered human skin fabricated using electrospun collagen-PCL blends: Morphogenesis and mechanical properties. Tissue Eng. Part A 15, 2177 (2009).
    • (2009) Tissue Eng. Part A , vol.15 , pp. 2177
    • Powell, H.M.1    Boyce, S.T.2
  • 41
    • 33745119468 scopus 로고    scopus 로고
    • Alginate-based nanofibrous scaffolds: Structural, mechanical, and biological properties
    • N. Bhattarai, Z. Li, D. Edmondson, and M. Zhang, Alginate-based nanofibrous scaffolds: Structural, mechanical, and biological properties. Adv. Mater. 18, 1463 (2006).
    • (2006) Adv. Mater , vol.18 , pp. 1463
    • Bhattarai, N.1    Li, Z.2    Edmondson, D.3    Zhang, M.4
  • 42
    • 33646483947 scopus 로고    scopus 로고
    • Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts
    • H. K. Noh, S. W. Lee, J.-M. Kim, J.-E. Oh, K.-H. Kim, C.-P. Chung, S.-C. Choi, W. H. Park, and B.-M. Min, Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 27, 3934 (2006).
    • (2006) Biomaterials , vol.27 , pp. 3934
    • Noh, H.K.1    Lee, S.W.2    Kim, J.-M.3    Oh, J.-E.4    Kim, K.-H.5    Chung, C.-P.6    Choi, S.-C.7    Park, W.H.8    Min, B.-M.9
  • 43
    • 20444432818 scopus 로고    scopus 로고
    • Electrospun chitosan-based nanofibers and their cellular compatibility
    • N. Bhattarai, D. Edmondson, O. Veiseh, F. A. Matsen, and M. Zhang, Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26, 6176 (2005).
    • (2005) Biomaterials , vol.26 , pp. 6176
    • Bhattarai, N.1    Edmondson, D.2    Veiseh, O.3    Matsen, F.A.4    Zhang, M.5
  • 45
    • 1642484969 scopus 로고    scopus 로고
    • Optimization and characterization of dextran membranes prepared by electrospinning
    • H. Jiang, D. Fang, B. S. Hsiao, B. Chu, and W. Chen, Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules 5, 326 (2004).
    • (2004) Biomacromolecules , vol.5 , pp. 326
    • Jiang, H.1    Fang, D.2    Hsiao, B.S.3    Chu, B.4    Chen, W.5
  • 46
    • 22944457571 scopus 로고    scopus 로고
    • Co-electrospun nanofiber fabrics of poly (L-lactide-co-_-caprolactone) with type I collagen or heparin
    • I. K. Kwon and T. Matsuda, Co-electrospun nanofiber fabrics of poly (L-lactide-co-_-caprolactone) with type I collagen or heparin. Biomacromolecules 6, 2096 (2005).
    • (2005) Biomacromolecules , vol.6 , pp. 2096
    • Kwon, I.K.1    Matsuda, T.2
  • 47
    • 32644479707 scopus 로고    scopus 로고
    • Electrospun silk-BMP-2 scaffolds for bone tissue engineering
    • C. Li, C. Vepari, H.-J. Jin, H. J. Kim, and D. L. Kaplan, Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27, 3115 (2006).
    • (2006) Biomaterials , vol.27 , pp. 3115
    • Li, C.1    Vepari, C.2    Jin, H.-J.3    Kim, H.J.4    Kaplan, D.L.5
  • 49
    • 34250680444 scopus 로고    scopus 로고
    • Tensile mechanics of electrospun multiwalled nanotube/poly(Methyl methacrylate) nanofibers
    • L. Q. Liu, D. Tasis, M. Prato, and H. D. Wagner, Tensile mechanics of electrospun multiwalled nanotube/poly(methyl methacrylate) nanofibers. Adv. Mater. 19, 1228 (2007).
    • (2007) Adv. Mater , vol.19 , pp. 1228
    • Liu, L.Q.1    Tasis, D.2    Prato, M.3    Wagner, H.D.4
  • 51
    • 78649442373 scopus 로고    scopus 로고
    • Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surf
    • C. Huang, R. Chen, Q. Ke, Y. Morsi, K. Zhang, and X. Mo, Electrospun collagen-chitosan-TPU nanofibrous scaffolds for tissue engineered tubular grafts. Colloids Surf. B Biointerfaces 82, 307 (2011).
    • (2011) B Biointerfaces , vol.82 , pp. 307
    • Huang, C.1    Chen, R.2    Ke, Q.3    Morsi, Y.4    Zhang, K.5    Mo, X.6
  • 52
    • 84887140921 scopus 로고    scopus 로고
    • Primordium of an artificial Bruch’s membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers
    • P. H. Warnke, M. Alamein, S. Skabo, S. Stephens, R. Bourke, P. Heiner, and Q. Liu, Primordium of an artificial Bruch’s membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers. Acta Biomater. 9, 9414 (2013).
    • (2013) Acta Biomater , vol.9 , pp. 9414
    • Warnke, P.H.1    Alamein, M.2    Skabo, S.3    Stephens, S.4    Bourke, R.5    Heiner, P.6    Liu, Q.7
  • 54
    • 71749097388 scopus 로고    scopus 로고
    • Electrospinning thermoplastic polyurethane-contained collagen nanofibers for tissueengineering applications
    • R. Chen, L. Qiu, Q. Ke, C. He, and X. Mo, Electrospinning thermoplastic polyurethane-contained collagen nanofibers for tissueengineering applications. J. Biomater. Sci. Polym. Ed. 20, 1513 (2009).
    • (2009) J. Biomater. Sci. Polym. Ed , vol.20 , pp. 1513
    • Chen, R.1    Qiu, L.2    Ke, Q.3    He, C.4    Mo, X.5
  • 55
    • 84855454430 scopus 로고    scopus 로고
    • Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering
    • Y. Su, Q. Su, W. Liu, M. Lim, J. R. Venugopal, X. Mo, S. Ramakrishna, S. S. Al-Deyab, and M. El-Newehy, Controlled release of bone morphogenetic protein 2 and dexamethasone loaded in core-shell PLLACL-collagen fibers for use in bone tissue engineering. Acta Biomater. 8, 763 (2012).
    • (2012) Acta Biomater , vol.8 , pp. 763
    • Su, Y.1    Su, Q.2    Liu, W.3    Lim, M.4    Venugopal, J.R.5    Mo, X.6    Ramakrishna, S.7    Al-Deyab, S.S.8    El-Newehy, M.9
  • 56
    • 84862813623 scopus 로고    scopus 로고
    • Calcium ion release and osteoblastic behaviour of gelatin/beta-tricalcium phosphate composite nanofibers fabricated by electrospinning
    • X. Zhang, Q. Cai, H. Liu, S. Zhang, Y. Wei, X. Yang, Y. Lin, Z. Yang, and X. Deng, Calcium ion release and osteoblastic behaviour of gelatin/beta-tricalcium phosphate composite nanofibers fabricated by electrospinning. Mater. Lett. 73, 172 (2012).
    • (2012) Mater. Lett , vol.73 , pp. 172
    • Zhang, X.1    Cai, Q.2    Liu, H.3    Zhang, S.4    Wei, Y.5    Yang, X.6    Lin, Y.7    Yang, Z.8    Deng, X.9
  • 57
    • 79952184231 scopus 로고    scopus 로고
    • Functional composite nanofibers of poly (Lactideco-caprolactone) containing gelatin–apatite bone mimetic precipitate for bone regeneration
    • S.-H. Jegal, J.-H. Park, J.-H. Kim, T.-H. Kim, U. S. Shin, T.-I. Kim, and H.-W. Kim, Functional composite nanofibers of poly (lactideco-caprolactone) containing gelatin–apatite bone mimetic precipitate for bone regeneration. Acta Biomaterialia 7, 1609 (2011).
    • (2011) Acta Biomaterialia , vol.7 , pp. 1609
    • Jegal, S.-H.1    Park, J.-H.2    Kim, J.-H.3    Kim, T.-H.4    Shin, U.S.5    Kim, T.-I.6    Kim, H.-W.7
  • 58
    • 31044434427 scopus 로고    scopus 로고
    • Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications
    • M. Li, Y. Guo, Y. Wei, A. G. MacDiarmid, and P. I. Lelkes, Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27, 2705 (2006).
    • (2006) Biomaterials , vol.27 , pp. 2705
    • Li, M.1    Guo, Y.2    Wei, Y.3    Macdiarmid, A.G.4    Lelkes, P.I.5
  • 59
    • 84885024052 scopus 로고    scopus 로고
    • Glycosaminoglycan mimetic peptide nanofibers promote mineralization by osteogenic cells
    • S. Kocabey, H. Ceylan, A. B. Tekinay, and M. O. Guler, Glycosaminoglycan mimetic peptide nanofibers promote mineralization by osteogenic cells. Acta Biomater. 9, 9075 (2013).
    • (2013) Acta Biomater , vol.9 , pp. 9075
    • Kocabey, S.1    Ceylan, H.2    Tekinay, A.B.3    Guler, M.O.4
  • 60
    • 24944487172 scopus 로고    scopus 로고
    • Grafting of gelatine on electrospun poly(Caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell Orientation
    • Z. Ma, W. He, T. Yong, and S. Ramakrishna, Grafting of gelatine on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell Orientation. Tissue Eng. 11, 1149 (2005).
    • (2005) Tissue Eng , vol.11 , pp. 1149
    • Ma, Z.1    He, W.2    Yong, T.3    Ramakrishna, S.4
  • 61
    • 77956493523 scopus 로고    scopus 로고
    • Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering
    • Z. Meng, Y. Wang, C. Ma, W. Zheng, L. Li, and Y. Zheng, Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater. Sci. Eng., C 30, 1204 (2010).
    • (2010) Mater. Sci. Eng., C , vol.30 , pp. 1204
    • Meng, Z.1    Wang, Y.2    Ma, C.3    Zheng, W.4    Li, L.5    Zheng, Y.6
  • 63
    • 33646483947 scopus 로고    scopus 로고
    • Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts
    • H. K. Noh, S. W. Lee, J. M. Kim, J. E. Oh, K. H. Kim, C. P. Chung, S. C. Choi, W. H. Park, and B. M. Min, Electrospinning of chitin nanofibers: Degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 27, 3934 (2006).
    • (2006) Biomaterials , vol.27 , pp. 3934
    • Noh, H.K.1    Lee, S.W.2    Kim, J.M.3    Oh, J.E.4    Kim, K.H.5    Chung, C.P.6    Choi, S.C.7    Park, W.H.8    Min, B.M.9
  • 65
    • 50349091938 scopus 로고    scopus 로고
    • Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering
    • Y. Zhang, J. R. Venugopal, A. El-Turki, S. Ramakrishna, B. Su, and C. T. Lim, Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials 29, 4314 (2008).
    • (2008) Biomaterials , vol.29 , pp. 4314
    • Zhang, Y.1    Venugopal, J.R.2    El-Turki, A.3    Ramakrishna, S.4    Su, B.5    Lim, C.T.6
  • 67
    • 34247892161 scopus 로고    scopus 로고
    • Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering
    • W.-J. Li, R. L. Mauck, J. A. Cooper, X. Yuan, and R. S. Tuan, Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech. 40, 1686 (2007).
    • (2007) J. Biomech , vol.40 , pp. 1686
    • Li, W.-J.1    Mauck, R.L.2    Cooper, J.A.3    Yuan, X.4    Tuan, R.S.5
  • 68
    • 79953679537 scopus 로고    scopus 로고
    • Immobilization of anti-CD31 antibody on electrospun poly(Varepsilon-caprolactone) scaffolds through hydrophobins for specific adhesion of endothelial cells
    • M. Zhang, Z. Wang, S. Feng, H. Xu, Q. Zhao, S. Wang, J. Fang, M. Qiao, and D. Kong, Immobilization of anti-CD31 antibody on electrospun poly(varepsilon-caprolactone) scaffolds through hydrophobins for specific adhesion of endothelial cells. Colloids Surf B Biointerfaces 85, 32 (2011).
    • (2011) Colloids Surf B Biointerfaces , vol.85 , pp. 32
    • Zhang, M.1    Wang, Z.2    Feng, S.3    Xu, H.4    Zhao, Q.5    Wang, S.6    Fang, J.7    Qiao, M.8    Kong, D.9
  • 69
    • 36549084632 scopus 로고    scopus 로고
    • The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation
    • S. Y. Chew, R. Mi, A. Hoke, and K. W. Leong, The effect of the alignment of electrospun fibrous scaffolds on Schwann cell maturation. Biomaterials 29, 653 (2008).
    • (2008) Biomaterials , vol.29 , pp. 653
    • Chew, S.Y.1    Mi, R.2    Hoke, A.3    Leong, K.W.4
  • 70
    • 77957291993 scopus 로고    scopus 로고
    • Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications
    • J. Xie, M. R. Macewan, W. Z. Ray, W. Liu, D. Y. Siewe, and Y. Xia, Radially aligned, electrospun nanofibers as dural substitutes for wound closure and tissue regeneration applications. ACS Nano 4, 5027 (2010).
    • (2010) ACS Nano , vol.4 , pp. 5027
    • Xie, J.1    Macewan, M.R.2    Ray, W.Z.3    Liu, W.4    Siewe, D.Y.5    Xia, Y.6
  • 71
    • 84888358224 scopus 로고    scopus 로고
    • Controlled release of multiple epidermal induction factors through core-shell nanofibers for skin regeneration
    • G. Jin, M. P. Prabhakaran, D. Kai, and S. Ramakrishna, Controlled release of multiple epidermal induction factors through core-shell nanofibers for skin regeneration. Eur. J. Pharm. Biopharm. 85, 689 (2013).
    • (2013) Eur. J. Pharm. Biopharm , vol.85 , pp. 689
    • Jin, G.1    Prabhakaran, M.P.2    Kai, D.3    Ramakrishna, S.4
  • 72
    • 67650438901 scopus 로고    scopus 로고
    • Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications
    • J. Y. Lee, C. A. Bashur, A. S. Goldstein, and C. E. Schmidt, Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30, 4325 (2009).
    • (2009) Biomaterials , vol.30 , pp. 4325
    • Lee, J.Y.1    Bashur, C.A.2    Goldstein, A.S.3    Schmidt, C.E.4
  • 73
    • 33644908463 scopus 로고    scopus 로고
    • Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering
    • S. Sahoo, H. Ouyang, J. C.-H. Goh, T. Tay, and S. Toh, Characterization of a novel polymeric scaffold for potential application in tendon/ligament tissue engineering. Tissue Eng. 12, 91 (2006).
    • (2006) Tissue Eng , vol.12 , pp. 91
    • Sahoo, S.1    Ouyang, H.2    Goh, J.C.3    Tay, T.4    Toh, S.5
  • 75
    • 67650382294 scopus 로고    scopus 로고
    • Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site
    • X. Li, J. Xie, J. Lipner, X. Yuan, S. Thomopoulos, and Y. Xia, Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett. 9, 2763 (2009).
    • (2009) Nano Lett , vol.9 , pp. 2763
    • Li, X.1    Xie, J.2    Lipner, J.3    Yuan, X.4    Thomopoulos, S.5    Xia, Y.6
  • 77
    • 84873152435 scopus 로고    scopus 로고
    • Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering
    • M. C. Chen, Y. C. Sun, and Y. H. Chen, Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Acta Biomater. 9, 5562 (2013).
    • (2013) Acta Biomater , vol.9 , pp. 5562
    • Chen, M.C.1    Sun, Y.C.2    Chen, Y.H.3
  • 80
    • 84889081655 scopus 로고    scopus 로고
    • Hydroxyapatite nanofibers fabricated through electrospinning and sol–gel process
    • J.-H. Lee and Y.-J. Kim, Hydroxyapatite nanofibers fabricated through electrospinning and sol–gel process. Ceram. Int. 40, 3361 (2014).
    • (2014) Ceram. Int , vol.40 , pp. 3361
    • Lee, J.-H.1    Kim, Y.-J.2
  • 82
    • 77956087558 scopus 로고    scopus 로고
    • Vitro regulation of neural differentiation and axon growth by growth factors and bioactive nanofibers
    • H. J. Lam, S. Patel, A. Wang, J. Chu, and S. Li, In vitro regulation of neural differentiation and axon growth by growth factors and bioactive nanofibers. Tissue Engineering Part A 16, 2641 (2010).
    • (2010) Tissue Engineering Part A , vol.16 , pp. 2641
    • Lam, H.J.1    Patel, S.2    Wang, A.3    Chu, J.4    Li, S.5
  • 83
    • 79957918510 scopus 로고    scopus 로고
    • Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue
    • Y. Orlova, N. Magome, L. Liu, Y. Chen, and K. Agladze, Electrospun nanofibers as a tool for architecture control in engineered cardiac tissue. Biomaterials 32, 5615 (2011).
    • (2011) Biomaterials , vol.32 , pp. 5615
    • Orlova, Y.1    Magome, N.2    Liu, L.3    Chen, Y.4    Agladze, K.5
  • 85
    • 84881123508 scopus 로고    scopus 로고
    • Development and characterization of coaxially electrospun gelatin coated poly (3-hydroxybutyric acid) thin films as potential scaffolds for skin regeneration
    • N. Nagiah, L. Madhavi, R. Anitha, C. Anandan, N. T. Srinivasan, and U. T. Sivagnanam, Development and characterization of coaxially electrospun gelatin coated poly (3-hydroxybutyric acid) thin films as potential scaffolds for skin regeneration. Mater. Sci. Eng. C Mater. Biol. Appl. 33, 4444 (2013).
    • (2013) Mater. Sci. Eng. C Mater. Biol. Appl , vol.33 , pp. 4444
    • Nagiah, N.1    Madhavi, L.2    Anitha, R.3    Anandan, C.4    Srinivasan, N.T.5    Sivagnanam, U.T.6
  • 86
    • 56449118229 scopus 로고    scopus 로고
    • The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation
    • G. T. Christopherson, H. Song, and H. Q. Mao, The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30, 556 (2009).
    • (2009) Biomaterials , vol.30 , pp. 556
    • Christopherson, G.T.1    Song, H.2    Mao, H.Q.3
  • 87
    • 84874739348 scopus 로고    scopus 로고
    • Core–shell structured electrospun biomimetic composite nanofibers of calcium lactate/nylon-6 for tissue engineering
    • H. R. Pant, P. Risal, C. H. Park, L. D. Tijing, Y. J. Jeong, and C. S. Kim, Core–shell structured electrospun biomimetic composite nanofibers of calcium lactate/nylon-6 for tissue engineering. Chem. Eng. J. 221, 90 (2013).
    • (2013) Chem. Eng. J , vol.221 , pp. 90
    • Pant, H.R.1    Risal, P.2    Park, C.H.3    Tijing, L.D.4    Jeong, Y.J.5    Kim, C.S.6
  • 88
    • 33746714341 scopus 로고    scopus 로고
    • Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size
    • W.-J. Li, Y. J. Jiang, and R. S. Tuan, Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng. 12, 1775 (2006).
    • (2006) Tissue Eng , vol.12 , pp. 1775
    • Li, W.-J.1    Jiang, Y.J.2    Tuan, R.S.3
  • 89
    • 84878258022 scopus 로고    scopus 로고
    • Electrospun magnetic poly (L-lactide)(PLLA) nanofibers by incorporating PLLA-stabilized Fe3 O 4 nanoparticles
    • D. Shan, Y. Shi, S. Duan, Y. Wei, Q. Cai, and X. Yang, Electrospun magnetic poly (l-lactide)(PLLA) nanofibers by incorporating PLLA-stabilized Fe3 O 4 nanoparticles. Mater. Sci. Eng., C 33, 3498 (2013).
    • (2013) Mater. Sci. Eng., C , vol.33 , pp. 3498
    • Shan, D.1    Shi, Y.2    Duan, S.3    Wei, Y.4    Cai, Q.5    Yang, X.6
  • 90
    • 81255158011 scopus 로고    scopus 로고
    • Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells
    • M. P. Prabhakaran, L. Ghasemi-Mobarakeh, G. Jin, and S. Ramakrishna, Electrospun conducting polymer nanofibers and electrical stimulation of nerve stem cells. J. Biosci. Bioeng. 112, 501 (2011).
    • (2011) J. Biosci. Bioeng , vol.112 , pp. 501
    • Prabhakaran, M.P.1    Ghasemi-Mobarakeh, L.2    Jin, G.3    Ramakrishna, S.4
  • 91
    • 77949652722 scopus 로고    scopus 로고
    • Electrospinning: A fascinating fiber fabrication technique
    • N. Bhardwaj and S. C. Kundu, Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325 (2010).
    • (2010) Biotechnol. Adv , vol.28 , pp. 325
    • Bhardwaj, N.1    Kundu, S.C.2
  • 95
    • 36248962668 scopus 로고    scopus 로고
    • Nanofiber technology: Designing the next generation of tissue engineering scaffolds
    • C. P. Barnes, S. A. Sell, E. D. Boland, D. G. Simpson, and G. L. Bowlin, Nanofiber technology: Designing the next generation of tissue engineering scaffolds. Adv. Drug Deliv. Rev. 59, 1413 (2007).
    • (2007) Adv. Drug Deliv. Rev , vol.59 , pp. 1413
    • Barnes, C.P.1    Sell, S.A.2    Boland, E.D.3    Simpson, D.G.4    Bowlin, G.L.5
  • 98
    • 33749494708 scopus 로고    scopus 로고
    • Filtration properties of electrospinning nanofibers
    • X. H. Qin and S. Y. Wang, Filtration properties of electrospinning nanofibers. J. Appl. Polym. Sci. 102, 1285 (2006).
    • (2006) J. Appl. Polym. Sci , vol.102 , pp. 1285
    • Qin, X.H.1    Wang, S.Y.2
  • 100
    • 56449109264 scopus 로고    scopus 로고
    • Processing of polymer nanofibers through electrospinning as drug delivery systems
    • E.-R. Kenawy, F. I. Abdel-Hay, M. H. El-Newehy, and G. E. Wnek, Processing of polymer nanofibers through electrospinning as drug delivery systems. Mater. Chem. Phys. 113, 296 (2009).
    • (2009) Mater. Chem. Phys , vol.113 , pp. 296
    • Kenawy, E.-R.1    Abdel-Hay, F.I.2    El-Newehy, M.H.3    Wnek, G.E.4
  • 104
    • 26244455872 scopus 로고    scopus 로고
    • Electrospun cellulose nanofiber as affinity membrane
    • Z. Ma, M. Kotaki, and S. Ramakrishna, Electrospun cellulose nanofiber as affinity membrane. J. Membr. Sci. 265, 115 (2005).
    • (2005) J. Membr. Sci , vol.265 , pp. 115
    • Ma, Z.1    Kotaki, M.2    Ramakrishna, S.3
  • 105
    • 44249120279 scopus 로고    scopus 로고
    • Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification
    • Z. Ma and S. Ramakrishna, Electrospun regenerated cellulose nanofiber affinity membrane functionalized with protein A/G for IgG purification. J. Membr. Sci. 319, 23 (2008).
    • (2008) J. Membr. Sci , vol.319 , pp. 23
    • Ma, Z.1    Ramakrishna, S.2
  • 106
    • 36348975075 scopus 로고    scopus 로고
    • Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration
    • S. Lee and S. K. Obendorf, Use of electrospun nanofiber web for protective textile materials as barriers to liquid penetration. Textile Research Journal 77, 696 (2007).
    • (2007) Textile Research Journal , vol.77 , pp. 696
    • Lee, S.1    Obendorf, S.K.2
  • 107
    • 84861823534 scopus 로고    scopus 로고
    • Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications
    • M. Gorji, A. Jeddi, and A. Gharehaghaji, Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. J. Appl. Polym. Sci. 125, 4135 (2012).
    • (2012) J. Appl. Polym. Sci , vol.125 , pp. 4135
    • Gorji, M.1    Jeddi, A.2    Gharehaghaji, A.3
  • 109
    • 33748525836 scopus 로고    scopus 로고
    • Electrospun nanofibers modified with phospholipid moieties for enzyme immobilization. Macromol
    • X. J. Huang, Z. K. Xu, L. S. Wan, C. Innocent, and P. Seta, Electrospun nanofibers modified with phospholipid moieties for enzyme immobilization. Macromol. Rapid Commun. 27, 1341 (2006).
    • (2006) Rapid Commun , vol.27 , pp. 1341
    • Huang, X.J.1    Xu, Z.K.2    Wan, L.S.3    Innocent, C.4    Seta, P.5
  • 111
    • 77955885763 scopus 로고    scopus 로고
    • Modulation of osteogenic properties of biodegradable polymer/extracellular matrix scaffolds generated with a flow perfusion bioreactor
    • J. Liao, X. Guo, D. Nelson, F. Kurtis Kasper, and A. G. Mikos, Modulation of osteogenic properties of biodegradable polymer/extracellular matrix scaffolds generated with a flow perfusion bioreactor. Acta Biomaterialia 6, 2386 (2010).
    • (2010) Acta Biomaterialia , vol.6 , pp. 2386
    • Liao, J.1    Guo, X.2    Nelson, D.3    Kurtis Kasper, F.4    Mikos, A.G.5
  • 114
    • 33646354615 scopus 로고    scopus 로고
    • Coaxial electrospinning of (Fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release
    • Y. Z. Zhang, X. Wang, Y. Feng, J. Li, C. T. Lim, and S. Ramakrishna, Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release. Biomacromolecules 7, 1049 (2006).
    • (2006) Biomacromolecules , vol.7 , pp. 1049
    • Zhang, Y.Z.1    Wang, X.2    Feng, Y.3    Li, J.4    Lim, C.T.5    Ramakrishna, S.6
  • 115
    • 79955031201 scopus 로고    scopus 로고
    • Poly(Glycerol sebacate)/gelatin core/shell fibrous structure for regeneration of myocardial infarction
    • R. Ravichandran, J. R. Venugopal, S. Sundarrajan, S. Mukherjee, and S. Ramakrishna, Poly(Glycerol sebacate)/gelatin core/shell fibrous structure for regeneration of myocardial infarction. Tissue Eng. Part A 17, 1363 (2011).
    • (2011) Tissue Eng. Part A , vol.17 , pp. 1363
    • Ravichandran, R.1    Venugopal, J.R.2    Sundarrajan, S.3    Mukherjee, S.4    Ramakrishna, S.5
  • 116
    • 79952193164 scopus 로고    scopus 로고
    • Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers
    • J. Nam, J. Johnson, J. J. Lannutti, and S. Agarwal, Modulation of embryonic mesenchymal progenitor cell differentiation via control over pure mechanical modulus in electrospun nanofibers. Acta Biomaterialia 7, 1516 (2011).
    • (2011) Acta Biomaterialia , vol.7 , pp. 1516
    • Nam, J.1    Johnson, J.2    Lannutti, J.J.3    Agarwal, S.4
  • 117
    • 33747416154 scopus 로고    scopus 로고
    • Electrospun nanofibrous scaffolds: Production, characterization, and applications for tissue engineering and drug delivery
    • W.-J. Li, R. L. Mauck, and R. S. Tuan, Electrospun nanofibrous scaffolds: Production, characterization, and applications for tissue engineering and drug delivery. J. Biomed. Nanotechnol. 1, 259 (2005).
    • (2005) J. Biomed. Nanotechnol , vol.1 , pp. 259
    • Li, W.-J.1    Mauck, R.L.2    Tuan, R.S.3
  • 118
    • 0030596634 scopus 로고    scopus 로고
    • Phase separation processes in polymer solutions in relation to membrane formation
    • P. Van de Witte, P. Dijkstra, J. Van den Berg, and J. Feijen, Phase separation processes in polymer solutions in relation to membrane formation. J. Membr. Sci. 117, 1 (1996).
    • (1996) J. Membr. Sci , vol.117 , pp. 1
    • Van De Witte, P.1    Dijkstra, P.2    Van Den Berg, J.3    Feijen, J.4
  • 119
    • 2042542831 scopus 로고    scopus 로고
    • Formation of highly porous biodegradable scaffolds for tissue engineering
    • A. G. Mikos and J. S. Temenoff, Formation of highly porous biodegradable scaffolds for tissue engineering. Electronic Journal of Biotechnology 3, 23 (2000).
    • (2000) Electronic Journal of Biotechnology , vol.3 , pp. 23
    • Mikos, A.G.1    Temenoff, J.S.2
  • 120
    • 78650518809 scopus 로고    scopus 로고
    • Preparation, structure and crystallinity of chitosan nanofibers by a solid–liquid phase separation technique
    • J. Zhao, W. Han, H. Chen, M. Tu, R. Zeng, Y. Shi, Z. Cha, and C. Zhou, Preparation, structure and crystallinity of chitosan nanofibers by a solid–liquid phase separation technique. Carbohydr. Polym. 83, 1541 (2011).
    • (2011) Carbohydr. Polym , vol.83 , pp. 1541
    • Zhao, J.1    Han, W.2    Chen, H.3    Tu, M.4    Zeng, R.5    Shi, Y.6    Cha, Z.7    Zhou, C.8
  • 121
    • 0034333628 scopus 로고    scopus 로고
    • Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures
    • R. Zhang and P. X. Ma, Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures. J. Biomed. Mater. Res. 52, 430 (2000).
    • (2000) J. Biomed. Mater. Res , vol.52 , pp. 430
    • Zhang, R.1    Ma, P.X.2
  • 122
    • 46749108358 scopus 로고    scopus 로고
    • Nanofibrous polyhydroxyalkanoate matrices as cell growth supporting materials
    • X.-T. Li, Y. Zhang, and G.-Q. Chen, Nanofibrous polyhydroxyalkanoate matrices as cell growth supporting materials. Biomaterials 29, 3720 (2008).
    • (2008) Biomaterials , vol.29 , pp. 3720
    • Li, X.-T.1    Zhang, Y.2    Chen, G.-Q.3
  • 123
    • 67649884738 scopus 로고    scopus 로고
    • Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds
    • X. Liu and P. X. Ma, Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials 30, 4094 (2009).
    • (2009) Biomaterials , vol.30 , pp. 4094
    • Liu, X.1    Ma, P.X.2
  • 124
    • 60549101494 scopus 로고    scopus 로고
    • Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering
    • X. Liu, L. A. Smith, J. Hu, and P. X. Ma, Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30, 2252 (2009).
    • (2009) Biomaterials , vol.30 , pp. 2252
    • Liu, X.1    Smith, L.A.2    Hu, J.3    Ma, P.X.4
  • 125
    • 0035941074 scopus 로고    scopus 로고
    • Self-assembly and mineralization of peptide-amphiphile nanofibers
    • J. D. Hartgerink, E. Beniash, and S. I. Stupp, Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684 (2001).
    • (2001) Science , vol.294 , pp. 1684
    • Hartgerink, J.D.1    Beniash, E.2    Stupp, S.I.3
  • 128
    • 13444283515 scopus 로고    scopus 로고
    • Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells
    • M. E. Davis, J. P. Motion, D. A. Narmoneva, T. Takahashi, D. Hakuno, R. D. Kamm, S. Zhang, and R. T. Lee, Injectable self-assembling peptide nanofibers create intramyocardial microenvironments for endothelial cells. Circulation 111, 442 (2005).
    • (2005) Circulation , vol.111 , pp. 442
    • Davis, M.E.1    Motion, J.P.2    Narmoneva, D.A.3    Takahashi, T.4    Hakuno, D.5    Kamm, R.D.6    Zhang, S.7    Lee, R.T.8
  • 130
    • 77950342360 scopus 로고    scopus 로고
    • Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials
    • H. Cui, M. J. Webber, and S. I. Stupp, Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Peptide Science 94, 1 (2010).
    • (2010) Peptide Science , vol.94 , pp. 1
    • Cui, H.1    Webber, M.J.2    Stupp, S.I.3
  • 131
    • 33744946043 scopus 로고    scopus 로고
    • Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing
    • S. E. Paramonov, H.-W. Jun, and J. D. Hartgerink, Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing. J. Am. Chem. Soc. 128, 7291 (2006).
    • (2006) J. Am. Chem. Soc , vol.128 , pp. 7291
    • Paramonov, S.E.1    Jun, H.-W.2    Hartgerink, J.D.3
  • 133
    • 39649104614 scopus 로고    scopus 로고
    • Intermolecular interactions in electrospun collagen–chitosan complex nanofibers. Carbohydr
    • Z. Chen, X. Mo, C. He, and H. Wang, Intermolecular interactions in electrospun collagen–chitosan complex nanofibers. Carbohydr. Polym. 72, 410 (2008).
    • (2008) Polym , vol.72 , pp. 410
    • Chen, Z.1    Mo, X.2    He, C.3    Wang, H.4
  • 134
    • 33751519062 scopus 로고    scopus 로고
    • The role of electrospinning in the emerging field of nanomedicine
    • S. Chew, Y. Wen, Y. Dzenis, and K. Leong, The role of electrospinning in the emerging field of nanomedicine. Current Pharmaceutical Design 12, 4751 (2006).
    • (2006) Current Pharmaceutical Design , vol.12 , pp. 4751
    • Chew, S.1    Wen, Y.2    Dzenis, Y.3    Leong, K.4
  • 135
    • 3042677215 scopus 로고    scopus 로고
    • Electrospinning and mechanical characterization of gelatin nanofibers
    • Z.-M. Huang, Y. Zhang, S. Ramakrishna, and C. Lim, Electrospinning and mechanical characterization of gelatin nanofibers. Polymer 45, 5361 (2004).
    • (2004) Polymer , vol.45 , pp. 5361
    • Huang, Z.-M.1    Zhang, Y.2    Ramakrishna, S.3    Lim, C.4
  • 136
    • 77951592441 scopus 로고    scopus 로고
    • Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications
    • S. Sahoo, L. T. Ang, J. C. H. Goh, and S. L. Toh, Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. Journal of Biomedical Materials Research Part A 93, 1539 (2010).
    • (2010) Journal of Biomedical Materials Research Part A , vol.93 , pp. 1539
    • Sahoo, S.1    Ang, L.T.2    Goh, J.C.3    Toh, S.L.4
  • 137
    • 70349959776 scopus 로고    scopus 로고
    • Engineering on the straight and narrow: The mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration
    • R. L. Mauck, B. M. Baker, N. L. Nerurkar, J. A. Burdick, W. J. Li, R. S. Tuan, and D. M. Elliott, Engineering on the straight and narrow: The mechanics of nanofibrous assemblies for fiber-reinforced tissue regeneration. Tissue Eng. Part B Rev. 15, 171 (2009).
    • (2009) Tissue Eng. Part B Rev , vol.15 , pp. 171
    • Mauck, R.L.1    Baker, B.M.2    Nerurkar, N.L.3    Burdick, J.A.4    Li, W.J.5    Tuan, R.S.6    Elliott, D.M.7
  • 138
    • 33744942905 scopus 로고    scopus 로고
    • Fabrication and characterization of six electrospun poly(Alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications
    • W. J. Li, J. A. Cooper, R. L. Jr Mauck, and R. S. Tuan, Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater. 2, 377 (2006).
    • (2006) Acta Biomater , vol.2 , pp. 377
    • Li, W.J.1    Cooper, J.A.2    Mauck, R.L.3    Tuan, R.S.4
  • 139
    • 14044250076 scopus 로고    scopus 로고
    • Structure and properties of electrospun PLLA single nanofibres
    • R. Inai, M. Kotaki, and S. Ramakrishna, Structure and properties of electrospun PLLA single nanofibres. Nanotechnology 16, 208 (2005).
    • (2005) Nanotechnology , vol.16 , pp. 208
    • Inai, R.1    Kotaki, M.2    Ramakrishna, S.3
  • 140
    • 84891656130 scopus 로고    scopus 로고
    • Natural scaffold materials used in regenerative endodontic: A review
    • F. Fatehi, Natural scaffold materials used in regenerative endodontic: A review. J. Biomater. Tissue Eng. 3, 597 (2013).
    • (2013) J. Biomater. Tissue Eng , vol.3 , pp. 597
    • Fatehi, F.1
  • 141
    • 33747881813 scopus 로고    scopus 로고
    • Mechanical characterization of nanofibers—A review
    • E. Tan and C. Lim, Mechanical characterization of nanofibers—A review. Compos. Sci. Technol. 66, 1102 (2006).
    • (2006) Compos. Sci. Technol , vol.66 , pp. 1102
    • Tan, E.1    Lim, C.2
  • 142
    • 17044397779 scopus 로고    scopus 로고
    • Tensile test of a single nanofiber using an atomic force microscope tip. Appl. Phys
    • E. P. S. Tan, C. N. Goh, C. H. Sow, and C. T. Lim, Tensile test of a single nanofiber using an atomic force microscope tip. Appl. Phys. Lett. 86 (2005).
    • (2005) Lett , pp. 86
    • Tan, E.1    Goh, C.N.2    Sow, C.H.3    Lim, C.T.4
  • 143
    • 38049113230 scopus 로고    scopus 로고
    • Electrospun nanostructured scaffolds for tissue engineering applications
    • A. Martins, J. V. Araujo, R. L. Reis, and N. M. Neves, Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine (Lond) 2, 929 (2007).
    • (2007) Nanomedicine (Lond) , vol.2 , pp. 929
    • Martins, A.1    Araujo, J.V.2    Reis, R.L.3    Neves, N.M.4
  • 144
    • 33747090012 scopus 로고    scopus 로고
    • Statistical geometry of pores and statistics of porous nanofibrous assemblies
    • S. J. Eichhorn and W. W. Sampson, Statistical geometry of pores and statistics of porous nanofibrous assemblies. J. R. Soc. Interface 2, 309 (2005).
    • (2005) J. R. Soc. Interface , vol.2 , pp. 309
    • Eichhorn, S.J.1    Sampson, W.W.2
  • 145
    • 34548618320 scopus 로고    scopus 로고
    • Improved cellular infiltration in electrospun fiber via engineered porosity
    • J. Nam, Y. Huang, S. Agarwal, and J. Lannutti, Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 13, 2249 (2007).
    • (2007) Tissue Eng , vol.13 , pp. 2249
    • Nam, J.1    Huang, Y.2    Agarwal, S.3    Lannutti, J.4
  • 147
    • 78650294679 scopus 로고    scopus 로고
    • Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold
    • B. A. Blakeney, A. Tambralli, J. M. Anderson, A. Andukuri, D. J. Lim, D. R. Dean, and H. W. Jun, Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials 32, 1583 (2011).
    • (2011) Biomaterials , vol.32 , pp. 1583
    • Blakeney, B.A.1    Tambralli, A.2    Anderson, J.M.3    Andukuri, A.4    Lim, D.J.5    Dean, D.R.6    Jun, H.W.7
  • 148
    • 65349149487 scopus 로고    scopus 로고
    • Tailoring fiber diameter in electrospun poly(ε- caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering
    • A. Balguid, A. Mol, M. H. van Marion, R. A. Bank, C. V. Bouten, and F. P. Baaijens, Tailoring fiber diameter in electrospun poly(ε- caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Engineering Part A 15, 437 (2008).
    • (2008) Tissue Engineering Part A , vol.15 , pp. 437
    • Balguid, A.1    Mol, A.2    Van Marion, M.H.3    Bank, R.A.4    Bouten, C.V.5    Baaijens, F.P.6
  • 150
    • 74449088993 scopus 로고    scopus 로고
    • The regulation of tendon stem cell differentiation by the alignment of nanofibers
    • Z. Yin, X. Chen, J. L. Chen, W. L. Shen, T. M. H. Nguyen, L. Gao, and H. W. Ouyang, The regulation of tendon stem cell differentiation by the alignment of nanofibers. Biomaterials 31, 2163 (2010).
    • (2010) Biomaterials , vol.31 , pp. 2163
    • Yin, Z.1    Chen, X.2    Chen, J.L.3    Shen, W.L.4    Nguyen, T.M.5    Gao, L.6    Ouyang, H.W.7
  • 152
    • 10044289544 scopus 로고    scopus 로고
    • Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering
    • F. Yang, R. Murugan, S. Wang, and S. Ramakrishna, Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26, 2603 (2005).
    • (2005) Biomaterials , vol.26 , pp. 2603
    • Yang, F.1    Murugan, R.2    Wang, S.3    Ramakrishna, S.4
  • 153
    • 67650128152 scopus 로고    scopus 로고
    • Review paper: A review of the cellular response on electrospun nanofibers for tissue engineering
    • D. R. Nisbet, J. S. Forsythe, W. Shen, D. I. Finkelstein, and M. K. Horne, Review paper: A review of the cellular response on electrospun nanofibers for tissue engineering. J. Biomater. Appl. 24, 7 (2009).
    • (2009) J. Biomater. Appl , vol.24 , pp. 7
    • Nisbet, D.R.1    Forsythe, J.S.2    Shen, W.3    Finkelstein, D.I.4    Horne, M.K.5
  • 154
    • 33745685312 scopus 로고    scopus 로고
    • A review on electrospinning design and nanofibre assemblies
    • W. Teo and S. Ramakrishna, A review on electrospinning design and nanofibre assemblies. Nanotechnology 17, R89 (2006).
    • (2006) Nanotechnology , vol.17
    • Teo, W.1    Ramakrishna, S.2
  • 155
    • 0035444059 scopus 로고    scopus 로고
    • Electrostatic field-assisted alignment of electrospun nanofibres
    • A. Theron, E. Zussman, and A. Yarin, Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12, 384 (2001).
    • (2001) Nanotechnology , vol.12 , pp. 384
    • Theron, A.1    Zussman, E.2    Yarin, A.3
  • 156
    • 1642392121 scopus 로고    scopus 로고
    • Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv
    • D. Li, Y. Wang, and Y. Xia, Electrospinning nanofibers as uniaxially aligned arrays and layer-by-layer stacked films. Adv. Mater. 16, 361 (2004).
    • (2004) Mater , vol.16 , pp. 361
    • Li, D.1    Wang, Y.2    Xia, Y.3
  • 157
    • 4043075572 scopus 로고    scopus 로고
    • Electrospinning of nanofibers: Reinventing the wheel?
    • D. Li and Y. Xia, Electrospinning of nanofibers: Reinventing the wheel? Adv. Mater. 16, 1151 (2004).
    • (2004) Adv. Mater , vol.16 , pp. 1151
    • Li, D.1    Xia, Y.2
  • 158
    • 36249009059 scopus 로고    scopus 로고
    • Fabrication of aligned fibrous arrays by magnetic electrospinning
    • D. Yang, B. Lu, Y. Zhao, and X. Jiang, Fabrication of aligned fibrous arrays by magnetic electrospinning. Adv. Mater. 19, 3702 (2007).
    • (2007) Adv. Mater , vol.19 , pp. 3702
    • Yang, D.1    Lu, B.2    Zhao, Y.3    Jiang, X.4
  • 159
    • 77953534074 scopus 로고    scopus 로고
    • Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers
    • Y. Liu, X. Zhang, Y. Xia, and H. Yang, Magnetic-field-assisted electrospinning of aligned straight and wavy polymeric nanofibers. Adv. Mater. 22, 2454 (2010).
    • (2010) Adv. Mater , vol.22 , pp. 2454
    • Liu, Y.1    Zhang, X.2    Xia, Y.3    Yang, H.4
  • 160
    • 84897643892 scopus 로고    scopus 로고
    • Current nanotechnological strategies for effective delivery of bioactive drug molecules in the treatment of tuberculosis
    • M. Kaur, T. Garg, G. Rath, and A. K. Goyal, Current nanotechnological strategies for effective delivery of bioactive drug molecules in the treatment of tuberculosis. Crit. Rev. Ther. Drug Carrier Syst. 31, 49 (2014).
    • (2014) Crit. Rev. Ther. Drug Carrier Syst , vol.31 , pp. 49
    • Kaur, M.1    Garg, T.2    Rath, G.3    Goyal, A.K.4
  • 161
    • 84907297321 scopus 로고    scopus 로고
    • Development and characterization of guar gum nanoparticles for oral immunization against tuberculosis
    • M. Kaur, B. Malik, T. Garg, G. Rath, and A. K. Goyal, Development and characterization of guar gum nanoparticles for oral immunization against tuberculosis. Drug Deliv. (2014), in press.
    • (2014) Drug Deliv
    • Kaur, M.1    Malik, B.2    Garg, T.3    Rath, G.4    Goyal, A.K.5
  • 162
    • 20144373106 scopus 로고    scopus 로고
    • Poly(Vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings
    • J. Zeng, A. Aigner, F. Czubayko, T. Kissel, J. H. Wendorff, and A. Greiner, Poly(vinyl alcohol) nanofibers by electrospinning as a protein delivery system and the retardation of enzyme release by additional polymer coatings. Biomacromolecules 6, 1484 (2005).
    • (2005) Biomacromolecules , vol.6 , pp. 1484
    • Zeng, J.1    Aigner, A.2    Czubayko, F.3    Kissel, T.4    Wendorff, J.H.5    Greiner, A.6
  • 163
    • 0344519690 scopus 로고    scopus 로고
    • Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers
    • Y. Luu, K. Kim, B. Hsiao, B. Chu, and M. Hadjiargyrou, Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. J. Controlled Release 89, 341 (2003).
    • (2003) J. Controlled Release , vol.89 , pp. 341
    • Luu, Y.1    Kim, K.2    Hsiao, B.3    Chu, B.4    Hadjiargyrou, M.5
  • 164
    • 77952672525 scopus 로고    scopus 로고
    • RNA interference by nanofiber-based siRNA delivery system
    • H. Cao, X. Jiang, C. Chai, and S. Y. Chew, RNA interference by nanofiber-based siRNA delivery system. J. Controlled Release 144, 203 (2010).
    • (2010) J. Controlled Release , vol.144 , pp. 203
    • Cao, H.1    Jiang, X.2    Chai, C.3    Chew, S.Y.4
  • 165
    • 3042856519 scopus 로고    scopus 로고
    • Incorporation and controlled release of a hydrophilic antibiotic using poly (Lactide-co-glycolide)-based electrospun nanofibrous scaffolds
    • K. Kim, Y. K. Luu, C. Chang, D. Fang, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, Incorporation and controlled release of a hydrophilic antibiotic using poly (lactide-co-glycolide)-based electrospun nanofibrous scaffolds. J. Controlled Release 98, 47 (2004).
    • (2004) J. Controlled Release , vol.98 , pp. 47
    • Kim, K.1    Luu, Y.K.2    Chang, C.3    Fang, D.4    Hsiao, B.S.5    Chu, B.6    Hadjiargyrou, M.7
  • 166
    • 22944443610 scopus 로고    scopus 로고
    • Sustained release of proteins from electrospun biodegradable fibers
    • S. Y. Chew, J. Wen, E. K. Yim, and K. W. Leong, Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 6, 2017 (2005).
    • (2005) Biomacromolecules , vol.6 , pp. 2017
    • Chew, S.Y.1    Wen, J.2    Yim, E.K.3    Leong, K.W.4
  • 167
    • 70349792411 scopus 로고    scopus 로고
    • Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery
    • H. S. Yoo, T. G. Kim, and T. G. Park, Surface-functionalized electrospun nanofibers for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 61, 1033 (2009).
    • (2009) Adv. Drug Deliv. Rev , vol.61 , pp. 1033
    • Yoo, H.S.1    Kim, T.G.2    Park, T.G.3
  • 168
    • 79954997855 scopus 로고    scopus 로고
    • Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and Beta-glycerophosphate concentrations
    • C. Erisken, D. M. Kalyon, H. Wang, C. Ornek-Ballanco, and J. Xu, Osteochondral tissue formation through adipose-derived stromal cell differentiation on biomimetic polycaprolactone nanofibrous scaffolds with graded insulin and Beta-glycerophosphate concentrations. Tissue Eng. Part A 17, 1239 (2011).
    • (2011) Tissue Eng. Part A , vol.17 , pp. 1239
    • Erisken, C.1    Kalyon, D.M.2    Wang, H.3    Ornek-Ballanco, C.4    Xu, J.5
  • 169
  • 170
    • 77952480485 scopus 로고    scopus 로고
    • Nano-inspired fibrous matrix with bi-phasic release of proteins
    • J. S. Choi and H. S. Yoo, Nano-inspired fibrous matrix with bi-phasic release of proteins. J. Nanosci. Nanotechnol. 10, 3038 (2010).
    • (2010) J. Nanosci. Nanotechnol , vol.10 , pp. 3038
    • Choi, J.S.1    Yoo, H.S.2
  • 171
    • 84910067874 scopus 로고    scopus 로고
    • Development and characterization of spray-dried porous nanoaggregates for pulmonary delivery of anti-tubercular drugs
    • R. Kaur, T. Garg, B. Malik, U. D. Gupta, P. Gupta, G. Rath, and A. K. Goyal, Development and characterization of spray-dried porous nanoaggregates for pulmonary delivery of anti-tubercular drugs. Drug Deliv. 1 (2014), in press.
    • (2014) Drug Deliv , vol.1
    • Kaur, R.1    Garg, T.2    Malik, B.3    Gupta, U.D.4    Gupta, P.5    Rath, G.6    Goyal, A.K.7
  • 172
    • 70249124606 scopus 로고    scopus 로고
    • Controlled growth factor delivery for tissue engineering
    • P. Tayalia and D. J. Mooney, Controlled growth factor delivery for tissue engineering. Adv. Mater. 21, 3269 (2009).
    • (2009) Adv. Mater , vol.21 , pp. 3269
    • Tayalia, P.1    Mooney, D.J.2
  • 173
    • 84891622755 scopus 로고    scopus 로고
    • Development and characterization of nanocarriers for topical treatment of psoriasis by using combination therapy
    • in press
    • N. Parnami, T. Garg, G. Rath, and A. K. Goyal, Development and characterization of nanocarriers for topical treatment of psoriasis by using combination therapy. Artif. Cells Nanomed. Biotechnol. (2013), in press.
    • (2013) Artif. Cells Nanomed. Biotechnol
    • Parnami, N.1    Garg, T.2    Rath, G.3    Goyal, A.K.4
  • 175
    • 84880521035 scopus 로고    scopus 로고
    • Development of nanofiber biomaterials and stem cells in tissue engineering
    • S. Liao, S. Ramakrishna, and M. Ramalingam, Development of nanofiber biomaterials and stem cells in tissue engineering. J. Biomater. Tissue Eng. 1, 111 (2011).
    • (2011) J. Biomater. Tissue Eng , vol.1 , pp. 111
    • Liao, S.1    Ramakrishna, S.2    Ramalingam, M.3
  • 176
    • 84924736066 scopus 로고    scopus 로고
    • Transmucosal delivery of Docetaxel by mucoadhesive polymeric nanofibers. Artif. Cells Nanomed
    • H. Singh, R. Sharma, M. Joshi, T. Garg, A. K. Goyal, and G. Rath, Transmucosal delivery of Docetaxel by mucoadhesive polymeric nanofibers. Artif. Cells Nanomed. Biotechnol. (2014), in press.
    • (2014) Biotechnol
    • Singh, H.1    Sharma, R.2    Joshi, M.3    Garg, T.4    Goyal, A.K.5    Rath, G.6
  • 177
    • 84903387049 scopus 로고    scopus 로고
    • Comprehensive review on additives of topical dosage forms for drug delivery
    • in press
    • T. Garg, G. Rath, and A. K. Goyal, Comprehensive review on additives of topical dosage forms for drug delivery. Drug Deliv. (2014), in press.
    • (2014) Drug Deliv
    • Garg, T.1    Rath, G.2    Goyal, A.K.3
  • 178
    • 77049098178 scopus 로고    scopus 로고
    • Distinctive degradation behaviors of electrospun polyglycolide, poly(DL-lactide-co-glycolide), and poly(L-lactideco-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells
    • Y. Dong, T. Yong, S. Liao, C. K. Chan, M. M. Stevens, and S. Ramakrishna, Distinctive degradation behaviors of electrospun polyglycolide, poly(DL-lactide-co-glycolide), and poly(L-lactideco-epsilon-caprolactone) nanofibers cultured with/without porcine smooth muscle cells. Tissue Eng. Part A 16, 283 (2010).
    • (2010) Tissue Eng. Part A , vol.16 , pp. 283
    • Dong, Y.1    Yong, T.2    Liao, S.3    Chan, C.K.4    Stevens, M.M.5    Ramakrishna, S.6
  • 179
    • 84891614478 scopus 로고    scopus 로고
    • Engineering of gradient biomaterials as biomimetic systems for tissue engineering
    • A. Seidi and M. Ramalingam, Engineering of gradient biomaterials as biomimetic systems for tissue engineering. J. Biomater. Tissue Eng. 1, 139 (2011).
    • (2011) J. Biomater. Tissue Eng , vol.1 , pp. 139
    • Seidi, A.1    Ramalingam, M.2
  • 180
    • 0038748339 scopus 로고    scopus 로고
    • Structure and morphology changes during in vitro degradation of electrospun poly (Glycolide-co-lactide) nanofiber membrane
    • X. Zong, S. Ran, K.-S. Kim, D. Fang, B. S. Hsiao, and B. Chu, Structure and morphology changes during in vitro degradation of electrospun poly (glycolide-co-lactide) nanofiber membrane. Biomacromolecules 4, 416 (2003).
    • (2003) Biomacromolecules , vol.4 , pp. 416
    • Zong, X.1    Ran, S.2    Kim, K.-S.3    Fang, D.4    Hsiao, B.S.5    Chu, B.6
  • 181
    • 0141996404 scopus 로고    scopus 로고
    • Control of degradation rate and hydrophilicity in electrospun non-woven poly(D, Llactide) nanofiber scaffolds for biomedical applications
    • K. Kim, M. Yu, X. Zong, J. Chiu, D. Fang, Y. S. Seo, B. S. Hsiao, B. Chu, and M. Hadjiargyrou, Control of degradation rate and hydrophilicity in electrospun non-woven poly(D, Llactide) nanofiber scaffolds for biomedical applications. Biomaterials 24, 4977 (2003).
    • (2003) Biomaterials , vol.24 , pp. 4977
    • Kim, K.1    Yu, M.2    Zong, X.3    Chiu, J.4    Fang, D.5    Seo, Y.S.6    Hsiao, B.S.7    Chu, B.8    Hadjiargyrou, M.9
  • 182
    • 84899123590 scopus 로고    scopus 로고
    • Biomaterial-based scaffolds–current status and future directions. Expert Opin
    • T. Garg and A. K. Goyal, Biomaterial-based scaffolds–current status and future directions. Expert Opin. Drug Deliv. 11, 767 (2014).
    • (2014) Drug Deliv , vol.11 , pp. 767
    • Garg, T.1    Goyal, A.K.2
  • 183
    • 84903396126 scopus 로고    scopus 로고
    • Development, Optimization and evaluation of porous chitosan scaffold formulation of gliclazide for the treatment of type-2 diabetes mellitus
    • T. Garg, A. K. Goyal, S. Arora, and R. Murthy, Development, Optimization and evaluation of porous chitosan scaffold formulation of gliclazide for the treatment of type-2 diabetes mellitus. Drug Delivery Letters 2, 251 (2012).
    • (2012) Drug Delivery Letters , vol.2 , pp. 251
    • Garg, T.1    Goyal, A.K.2    Arora, S.3    Murthy, R.4
  • 185
    • 84920883824 scopus 로고    scopus 로고
    • Current nanotechnological approaches for an effective delivery of bio-active drug molecules in the treatment of acne
    • T. Garg, Current nanotechnological approaches for an effective delivery of bio-active drug molecules in the treatment of acne. Artif, Cells Nanomed. Biotechnol. 1 (2014), in press.
    • (2014) Artif, Cells Nanomed. Biotechnol , vol.1
    • Garg, T.1
  • 186
    • 84891595696 scopus 로고    scopus 로고
    • Development and characterization of nano-fiber patch for the treatment of glaucoma
    • G. Goyal, T. Garg, B. Malik, G. Rath, and A. K. Goyal, Development and characterization of nano-fiber patch for the treatment of glaucoma. Eur. J. Pharm. Sci. 53, 10 (2014).
    • (2014) Eur. J. Pharm. Sci , vol.53 , pp. 10
    • Goyal, G.1    Garg, T.2    Malik, B.3    Rath, G.4    Goyal, A.K.5
  • 187
    • 84891614070 scopus 로고    scopus 로고
    • Biomimetic Fabrication of Collagen-Apatite Scaffolds for Bone Tissue Regeneration
    • Z. Xia and M. Wei, Biomimetic Fabrication of Collagen-Apatite Scaffolds for Bone Tissue Regeneration. J. Biomater. Tissue Eng. 3, 369 (2013).
    • (2013) J. Biomater. Tissue Eng , vol.3 , pp. 369
    • Xia, Z.1    Wei, M.2
  • 188
    • 33846817447 scopus 로고    scopus 로고
    • Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold
    • H. Hosseinkhani, M. Hosseinkhani, A. Khademhosseini, and H. Kobayashi, Bone regeneration through controlled release of bone morphogenetic protein-2 from 3-D tissue engineered nano-scaffold. J. Controlled Release 117, 380 (2007).
    • (2007) J. Controlled Release , vol.117 , pp. 380
    • Hosseinkhani, H.1    Hosseinkhani, M.2    Khademhosseini, A.3    Kobayashi, H.4
  • 189
    • 33750315715 scopus 로고    scopus 로고
    • Electrospun poly(Epsiloncaprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration
    • Q. P. Pham, U. Sharma, and A. G. Mikos, Electrospun poly(epsiloncaprolactone) microfiber and multilayer nanofiber/microfiber scaffolds: Characterization of scaffolds and measurement of cellular infiltration. Biomacromolecules 7, 2796 (2006).
    • (2006) Biomacromolecules , vol.7 , pp. 2796
    • Pham, Q.P.1    Sharma, U.2    Mikos, A.G.3
  • 191
    • 77956641579 scopus 로고    scopus 로고
    • Osteogenic differentiation of bone marrow stromal cells on poly(ε-caprolactone) nanofiber scaffolds
    • T. T. Ruckh, K. Kumar, M. J. Kipper, and K. C. Popat, Osteogenic differentiation of bone marrow stromal cells on poly(ε-caprolactone) nanofiber scaffolds. Acta Biomaterialia 6, 2949 (2010).
    • (2010) Acta Biomaterialia , vol.6 , pp. 2949
    • Ruckh, T.T.1    Kumar, K.2    Kipper, M.J.3    Popat, K.C.4
  • 192
    • 84868210528 scopus 로고    scopus 로고
    • Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds
    • S. S. Lee, B. J. Huang, S. R. Kaltz, S. Sur, C. J. Newcomb, S. R. Stock, R. N. Shah, and S. I. Stupp, Bone regeneration with low dose BMP-2 amplified by biomimetic supramolecular nanofibers within collagen scaffolds. Biomaterials 34, 452 (2013).
    • (2013) Biomaterials , vol.34 , pp. 452
    • Lee, S.S.1    Huang, B.J.2    Kaltz, S.R.3    Sur, S.4    Newcomb, C.J.5    Stock, S.R.6    Shah, R.N.7    Stupp, S.I.8
  • 193
    • 77953344951 scopus 로고    scopus 로고
    • Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan
    • Y. Zhang, V. J. Reddy, S. Y. Wong, X. Li, B. Su, S. Ramakrishna, and C. T. Lim, Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan. Tissue Engineering Part A 16, 1949 (2010).
    • (2010) Tissue Engineering Part A , vol.16 , pp. 1949
    • Zhang, Y.1    Reddy, V.J.2    Wong, S.Y.3    Li, X.4    Su, B.5    Ramakrishna, S.6    Lim, C.T.7
  • 194
    • 1042301245 scopus 로고    scopus 로고
    • In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold
    • M. Shin, H. Yoshimoto, and J. P. Vacanti, In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng. 10, 33 (2004).
    • (2004) Tissue Eng , vol.10 , pp. 33
    • Shin, M.1    Yoshimoto, H.2    Vacanti, J.P.3
  • 195
    • 0037400540 scopus 로고    scopus 로고
    • A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering
    • H. Yoshimoto, Y. Shin, H. Terai, and J. Vacanti, A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 24, 2077 (2003).
    • (2003) Biomaterials , vol.24 , pp. 2077
    • Yoshimoto, H.1    Shin, Y.2    Terai, H.3    Vacanti, J.4
  • 196
    • 80051675854 scopus 로고    scopus 로고
    • Poly(Lactide-coglycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering
    • L. Lao, Y. Wang, Y. Zhu, Y. Zhang, and C. Gao, Poly(lactide-coglycolide)/hydroxyapatite nanofibrous scaffolds fabricated by electrospinning for bone tissue engineering. J. Mater. Sci.-Mater. Med. 22, 1873 (2011).
    • (2011) J. Mater. Sci.-Mater. Med , vol.22 , pp. 1873
    • Lao, L.1    Wang, Y.2    Zhu, Y.3    Zhang, Y.4    Gao, C.5
  • 197
    • 84867401900 scopus 로고    scopus 로고
    • Electrospun hydroxyapatitecontaining chitosan nanofibers crosslinked with genipin for bone tissue engineering
    • M. E. Frohbergh, A. Katsman, G. P. Botta, P. Lazarovici, C. L. Schauer, U. G. Wegst, and P. I. Lelkes, Electrospun hydroxyapatitecontaining chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials 33, 9167 (2012).
    • (2012) Biomaterials , vol.33 , pp. 9167
    • Frohbergh, M.E.1    Katsman, A.2    Botta, G.P.3    Lazarovici, P.4    Schauer, C.L.5    Wegst, U.G.6    Lelkes, P.I.7
  • 198
    • 84885024052 scopus 로고    scopus 로고
    • Glycosaminoglycan mimetic peptide nanofibers promote mineralization by osteogenic cells
    • S. Kocabey, H. Ceylan, A. B. Tekinay, and M. O. Guler, Glycosaminoglycan mimetic peptide nanofibers promote mineralization by osteogenic cells. Acta Biomaterialia 9, 9075 (2013).
    • (2013) Acta Biomaterialia , vol.9 , pp. 9075
    • Kocabey, S.1    Ceylan, H.2    Tekinay, A.B.3    Guler, M.O.4
  • 200
    • 78650183426 scopus 로고    scopus 로고
    • Preparation and mineralization of three-dimensional carbon nanofibers from bacterial cellulose as potential scaffolds for bone tissue engineering. Surf. Coat
    • Y. Wan, G. Zuo, F. Yu, Y. Huang, K. Ren, and H. Luo, Preparation and mineralization of three-dimensional carbon nanofibers from bacterial cellulose as potential scaffolds for bone tissue engineering. Surf. Coat. Technol. 205, 2938 (2011).
    • (2011) Technol , vol.205 , pp. 2938
    • Wan, Y.1    Zuo, G.2    Yu, F.3    Huang, Y.4    Ren, K.5    Luo, H.6
  • 201
    • 61849152866 scopus 로고    scopus 로고
    • Coating electrospun poly(ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering
    • X. Li, J. Xie, X. Yuan, and Y. Xia, Coating electrospun poly(ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir 24, 14145 (2008).
    • (2008) Langmuir , vol.24 , pp. 14145
    • Li, X.1    Xie, J.2    Yuan, X.3    Xia, Y.4
  • 202
    • 84866521820 scopus 로고    scopus 로고
    • Synthesis, characterization, and mineralization of polyamide-6/calcium lactate composite nanofibers for bone tissue engineering
    • H. R. Pant, P. Risal, C. H. Park, L. D. Tijing, Y. J. Jeong, and C. S. Kim, Synthesis, characterization, and mineralization of polyamide-6/calcium lactate composite nanofibers for bone tissue engineering. Colloids and Surfaces B: Biointerfaces 102, 152 (2013).
    • (2013) Colloids and Surfaces B: Biointerfaces , vol.102 , pp. 152
    • Pant, H.R.1    Risal, P.2    Park, C.H.3    Tijing, L.D.4    Jeong, Y.J.5    Kim, C.S.6
  • 204
    • 34247892161 scopus 로고    scopus 로고
    • Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering
    • W. J. Li, R. L. Mauck, J. A. Cooper, X. Yuan, and R. S. Tuan, Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering. J. Biomech. 40, 1686 (2007).
    • (2007) J. Biomech , vol.40 , pp. 1686
    • Li, W.J.1    Mauck, R.L.2    Cooper, J.A.3    Yuan, X.4    Tuan, R.S.5
  • 205
    • 27744469532 scopus 로고    scopus 로고
    • Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: Potential vascular graft for blood vessel tissue engineering
    • W. He, T. Yong, W. E. Teo, Z. Ma, and S. Ramakrishna, Fabrication and endothelialization of collagen-blended biodegradable polymer nanofibers: Potential vascular graft for blood vessel tissue engineering. Tissue Eng. 11, 1574 (2005).
    • (2005) Tissue Eng , vol.11 , pp. 1574
    • He, W.1    Yong, T.2    Teo, W.E.3    Ma, Z.4    Ramakrishna, S.5
  • 207
    • 0037162463 scopus 로고    scopus 로고
    • Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair
    • J. Kisiday, M. Jin, B. Kurz, H. Hung, C. Semino, S. Zhang, and A. Grodzinsky, Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair. Proceedings of the National Academy of Sciences 99, 9996 (2002).
    • (2002) Proceedings of the National Academy of Sciences , vol.99 , pp. 9996
    • Kisiday, J.1    Jin, M.2    Kurz, B.3    Hung, H.4    Semino, C.5    Zhang, S.6    Grodzinsky, A.7
  • 208
    • 65349175174 scopus 로고    scopus 로고
    • Evaluation of extracellular matrix formation in polycaprolactone and starch-compounded polycaprolactone nanofiber meshes when seeded with bovine articular chondrocytes
    • M. A. da Silva, A. Crawford, J. Mundy, A. Martins, J. V. Araújo, P. V. Hatton, R. L. Reis, and N. M. Neves, Evaluation of extracellular matrix formation in polycaprolactone and starch-compounded polycaprolactone nanofiber meshes when seeded with bovine articular chondrocytes. Tissue Engineering Part A 15, 377 (2008).
    • (2008) Tissue Engineering Part A , vol.15 , pp. 377
    • Da Silva, M.A.1    Crawford, A.2    Mundy, J.3    Martins, A.4    Araújo, J.V.5    Hatton, P.V.6    Reis, R.L.7    Neves, N.M.8
  • 209
    • 79952123622 scopus 로고    scopus 로고
    • Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis
    • S. Shanmugasundaram, H. Chaudhry, and T. L. Arinzeh, Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Engineering Part A 17, 831 (2010).
    • (2010) Tissue Engineering Part A , vol.17 , pp. 831
    • Shanmugasundaram, S.1    Chaudhry, H.2    Arinzeh, T.L.3
  • 210
    • 67049167743 scopus 로고    scopus 로고
    • Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: Engineering the superficial zone of articular cartilage
    • J. K. Wise, A. L. Yarin, C. M. Megaridis, and M. Cho, Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: Engineering the superficial zone of articular cartilage. Tissue Eng. Part A 15, 913 (2009).
    • (2009) Tissue Eng. Part A , vol.15 , pp. 913
    • Wise, J.K.1    Yarin, A.L.2    Megaridis, C.M.3    Cho, M.4
  • 211
    • 0346123065 scopus 로고    scopus 로고
    • Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(Epsilon-caprolactone) scaffolds
    • W. J. Li, K. G. Danielson, P. G. Alexander, and R. S. Tuan, Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J. Biomed. Mater. Res. A 67, 1105 (2003).
    • (2003) J. Biomed. Mater. Res. A , vol.67 , pp. 1105
    • Li, W.J.1    Danielson, K.G.2    Alexander, P.G.3    Tuan, R.S.4
  • 212
    • 15244353095 scopus 로고    scopus 로고
    • Multilineage differentiation of human mesenchymal stem cells in a threedimensional nanofibrous scaffold
    • W. J. Li, R. Tuli, X. Huang, P. Laquerriere, and R. S. Tuan, Multilineage differentiation of human mesenchymal stem cells in a threedimensional nanofibrous scaffold. Biomaterials 26, 5158 (2005).
    • (2005) Biomaterials , vol.26 , pp. 5158
    • Li, W.J.1    Tuli, R.2    Huang, X.3    Laquerriere, P.4    Tuan, R.S.5
  • 214
    • 3342981338 scopus 로고    scopus 로고
    • A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells
    • W. J. Li, R. Tuli, C. Okafor, A. Derfoul, K. G. Danielson, D. J. Hall, and R. S. Tuan, A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials 26, 599 (2005).
    • (2005) Biomaterials , vol.26 , pp. 599
    • Li, W.J.1    Tuli, R.2    Okafor, C.3    Derfoul, A.4    Danielson, K.G.5    Hall, D.J.6    Tuan, R.S.7
  • 215
    • 84897376135 scopus 로고    scopus 로고
    • In vitrochondrocyte interactions with TiO2 nanofibers grown on Ti–6Al–4V substrate by oxidation
    • A. W. Tan, A. Dalilottojari, B. Pingguan-Murphy, R. Ahmad, and S. Akbar, In vitro chondrocyte interactions with TiO2 nanofibers grown on Ti–6Al–4V substrate by oxidation. Ceram. Int. 40, 8301 (2014).
    • (2014) Ceram. Int , vol.40 , pp. 8301
    • Tan, A.W.1    Dalilottojari, A.2    Pingguan-Murphy, B.3    Ahmad, R.4    Akbar, S.5
  • 216
    • 84877309882 scopus 로고    scopus 로고
    • Fabrication of silk fibroin/P(LLA-CL) aligned nanofibrous scaffolds for nerve tissue engineering
    • K. Zhang, W. Jinglei, C. Huang, and X. Mo, Fabrication of silk fibroin/P(LLA-CL) aligned nanofibrous scaffolds for nerve tissue engineering. Macromolecular Materials and Engineering 298, 565 (2013).
    • (2013) Macromolecular Materials and Engineering , vol.298 , pp. 565
    • Zhang, K.1    Jinglei, W.2    Huang, C.3    Mo, X.4
  • 217
    • 46149122259 scopus 로고    scopus 로고
    • Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin
    • H. S. Koh, T. Yong, C. K. Chan, and S. Ramakrishna, Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin. Biomaterials 29, 3574 (2008).
    • (2008) Biomaterials , vol.29 , pp. 3574
    • Koh, H.S.1    Yong, T.2    Chan, C.K.3    Ramakrishna, S.4
  • 220
    • 34547588637 scopus 로고    scopus 로고
    • Bioactive nanofibers: Synergistic effects of nanotopography and chemical signaling on cell guidance
    • S. Patel, K. Kurpinski, R. Quigley, H. Gao, B. S. Hsiao, M. M. Poo, and S. Li, Bioactive nanofibers: Synergistic effects of nanotopography and chemical signaling on cell guidance. Nano Lett. 7, 2122 (2007).
    • (2007) Nano Lett , vol.7 , pp. 2122
    • Patel, S.1    Kurpinski, K.2    Quigley, R.3    Gao, H.4    Hsiao, B.S.5    Poo, M.M.6    Li, S.7
  • 221
    • 42949118705 scopus 로고    scopus 로고
    • Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections
    • C. C. Silvia Panseri, J. Lowery, and U. D. Carro, Electrospun micro- and nanofiber tubes for functional nervous regeneration in sciatic nerve transections. BMC Biotechnol. 8, 39 (2008).
    • (2008) BMC Biotechnol , vol.8 , pp. 39
    • Silvia Panseri, C.C.1    Lowery, J.2    Carro, U.D.3
  • 222
    • 0346500607 scopus 로고    scopus 로고
    • Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering
    • F. Yang, R. Murugan, S. Ramakrishna, X. Wang, Y. X. Ma, and S. Wang, Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25, 1891 (2004).
    • (2004) Biomaterials , vol.25 , pp. 1891
    • Yang, F.1    Murugan, R.2    Ramakrishna, S.3    Wang, X.4    Ma, Y.X.5    Wang, S.6
  • 225
    • 56449118229 scopus 로고    scopus 로고
    • The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation
    • G. T. Christopherson, H. Song, and H. Q. Mao, The influence of fiber diameter of electrospun substrates on neural stem cell differentiation and proliferation. Biomaterials 30, 556 (2009).
    • (2009) Biomaterials , vol.30 , pp. 556
    • Christopherson, G.T.1    Song, H.2    Mao, H.Q.3
  • 226
  • 229
    • 84886750129 scopus 로고    scopus 로고
    • Sandwich-type fiber scaffolds with square arrayed microwells and nanostructured cues as microskin grafts for skin regeneration
    • B. Ma, J. Xie, J. Jiang, and J. Wu, Sandwich-type fiber scaffolds with square arrayed microwells and nanostructured cues as microskin grafts for skin regeneration. Biomaterials 35, 630 (2014).
    • (2014) Biomaterials , vol.35 , pp. 630
    • Ma, B.1    Xie, J.2    Jiang, J.3    Wu, J.4
  • 230
    • 84873152435 scopus 로고    scopus 로고
    • Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering
    • M. C. Chen, Y. C. Sun, and Y. H. Chen, Electrically conductive nanofibers with highly oriented structures and their potential application in skeletal muscle tissue engineering. Acta Biomaterialia 9, 5562 (2013).
    • (2013) Acta Biomaterialia , vol.9 , pp. 5562
    • Chen, M.C.1    Sun, Y.C.2    Chen, Y.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.