메뉴 건너뛰기




Volumn 3, Issue 1, 2009, Pages 37-42

Hierarchical starch-based fibrous scaffold for bone tissue engineering applications

Author keywords

Bioreactor; Electrospinning; Human osteoblastic cells; Micro nano multilayer scaffolds; Rapid prototyping; Starch based fibres

Indexed keywords

BONE; CELL PROLIFERATION; ELECTROSPINNING; MULTILAYERS; NANOFIBERS; PHOSPHATASES; RAPID PROTOTYPING; SCAFFOLDS (BIOLOGY);

EID: 64349104489     PISSN: 19326254     EISSN: 19327005     Source Type: Journal    
DOI: 10.1002/term.132     Document Type: Article
Times cited : (191)

References (33)
  • 1
    • 0035089551 scopus 로고    scopus 로고
    • Biodegradable polymeric scaffolds for musculoskeletal tissue engineering
    • Agrawal CM, Ray RB. 2001; Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res 55: 141-150.
    • (2001) J Biomed Mater Res , vol.55 , pp. 141-150
    • Agrawal, C.M.1    Ray, R.B.2
  • 2
    • 61849158807 scopus 로고    scopus 로고
    • Surface controlled biomimetic coating of polycaprolactone nanofibre meshes to be used as bone extracellular matrix analogues
    • Araújo JV, Martins A, Leonor IB, et al. 2008; Surface controlled biomimetic coating of polycaprolactone nanofibre meshes to be used as bone extracellular matrix analogues. J Biomater Sci Polym Ed 19: 1239-1256.
    • (2008) J Biomater Sci Polym Ed , vol.19 , pp. 1239-1256
    • Araújo, J.V.1    Martins, A.2    Leonor, I.B.3
  • 3
    • 29144486995 scopus 로고    scopus 로고
    • Fabrication of polymeric scaffolds with a controlled distribution of pores
    • Capes JS, Ando HY, Cameron RE. 2005; Fabrication of polymeric scaffolds with a controlled distribution of pores. J Mater Sci Mater Med 16: 1069-1075.
    • (2005) J Mater Sci Mater Med , vol.16 , pp. 1069-1075
    • Capes, J.S.1    Ando, H.Y.2    Cameron, R.E.3
  • 4
    • 50349091092 scopus 로고    scopus 로고
    • Starch-poly(ε-caprolactone) and starch-poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: Structure, mechanical properties and degradation behaviour
    • Gomes ME, Azevedo HS, Moreira AR, et al. 2008; Starch-poly(ε-caprolactone) and starch-poly(lactic acid) fibre-mesh scaffolds for bone tissue engineering applications: structure, mechanical properties and degradation behaviour. J Tissue Eng Regen Med 2: 243-252.
    • (2008) J Tissue Eng Regen Med , vol.2 , pp. 243-252
    • Gomes, M.E.1    Azevedo, H.S.2    Moreira, A.R.3
  • 5
    • 33646558911 scopus 로고    scopus 로고
    • Influence of the porosity of starch-based fibre mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor
    • Gomes ME, Holtorf HL, Reis RL, et al. 2006; Influence of the porosity of starch-based fibre mesh scaffolds on the proliferation and osteogenic differentiation of bone marrow stromal cells cultured in a flow perfusion bioreactor. Tissue Eng 12: 801-809.
    • (2006) Tissue Eng , vol.12 , pp. 801-809
    • Gomes, M.E.1    Holtorf, H.L.2    Reis, R.L.3
  • 6
    • 0034980198 scopus 로고    scopus 로고
    • Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: Effect of several additives and processing conditions
    • Gomes ME, Reis RL, Cunha AM, et al. 2001; Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing conditions. Biomaterials 22: 1911-1917.
    • (2001) Biomaterials , vol.22 , pp. 1911-1917
    • Gomes, M.E.1    Reis, R.L.2    Cunha, A.M.3
  • 7
    • 0344306513 scopus 로고    scopus 로고
    • Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds
    • Gomes ME, Sikavitsas VI, Behravesh E, et al. 2003; Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J Biomed Mater Res A 67: 87-95.
    • (2003) J Biomed Mater Res A , vol.67 , pp. 87-95
    • Gomes, M.E.1    Sikavitsas, V.I.2    Behravesh, E.3
  • 8
    • 0141683910 scopus 로고    scopus 로고
    • A review on polymer nanofibres by electrospinning and their applications in nanocomposites
    • Huang ZM, Zhang YZ, Kotaki M, et al. 2003; A review on polymer nanofibres by electrospinning and their applications in nanocomposites. Compos Sci Technol 63: 2223-2253.
    • (2003) Compos Sci Technol , vol.63 , pp. 2223-2253
    • Huang, Z.M.1    Zhang, Y.Z.2    Kotaki, M.3
  • 9
    • 39149124477 scopus 로고    scopus 로고
    • State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective
    • Hutmacher DW, Schantz JT, Lam CX, et al. 2007; State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1: 245-260.
    • (2007) J Tissue Eng Regen Med , vol.1 , pp. 245-260
    • Hutmacher, D.W.1    Schantz, J.T.2    Lam, C.X.3
  • 10
    • 3042782581 scopus 로고    scopus 로고
    • Scaffold-based tissue engineering: Rationale for computer-aided design and solid freeform fabrication systems
    • Hutmacher DW, Sittinger M, Risbud MV. 2004; Scaffold-based tissue engineering: rationale for computer-aided design and solid freeform fabrication systems. Trends Biotechnol 22: 354-362.
    • (2004) Trends Biotechnol , vol.22 , pp. 354-362
    • Hutmacher, D.W.1    Sittinger, M.2    Risbud, M.V.3
  • 11
    • 11144281219 scopus 로고    scopus 로고
    • Electrospun nano- to microfibre fabrics made of biodegradable copolyesters: Structural characteristics, mechanical properties and cell adhesion potential
    • Kwon IK, Kidoaki S, Matsuda T. 2005; Electrospun nano- to microfibre fabrics made of biodegradable copolyesters: structural characteristics, mechanical properties and cell adhesion potential. Biomaterials 26: 3929-3939.
    • (2005) Biomaterials , vol.26 , pp. 3929-3939
    • Kwon, I.K.1    Kidoaki, S.2    Matsuda, T.3
  • 12
    • 0037205335 scopus 로고    scopus 로고
    • Scaffold development using 3D printing with a starch-based polymer
    • Lam CXF, Mo XM, Teoh SH, et al. 2002; Scaffold development using 3D printing with a starch-based polymer. Mater Sci Eng C 20: 49-56.
    • (2002) Mater Sci Eng C , vol.20 , pp. 49-56
    • Lam, C.X.F.1    Mo, X.M.2    Teoh, S.H.3
  • 13
    • 0037409864 scopus 로고    scopus 로고
    • Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs
    • Leong KF, Cheah CM, Chua CK. 2003; Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24: 2363-2378.
    • (2003) Biomaterials , vol.24 , pp. 2363-2378
    • Leong, K.F.1    Cheah, C.M.2    Chua, C.K.3
  • 14
    • 19644367664 scopus 로고    scopus 로고
    • Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering
    • Lutolf MP, Hubbell JA. 2005; Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nature Biotechnol 23: 47-55.
    • (2005) Nature Biotechnol , vol.23 , pp. 47-55
    • Lutolf, M.P.1    Hubbell, J.A.2
  • 15
    • 38049113230 scopus 로고    scopus 로고
    • Electrospun nanostructured scaffolds for tissue engineering applications
    • Martins A, Araújo JV, Reis RL, et al. 2007; Electrospun nanostructured scaffolds for tissue engineering applications. Nanomedicine 2: 929-942.
    • (2007) Nanomedicine , vol.2 , pp. 929-942
    • Martins, A.1    Araújo, J.V.2    Reis, R.L.3
  • 16
    • 0242668870 scopus 로고    scopus 로고
    • Organ printing: Computeraided jet-based 3D tissue engineering
    • Mironov V, Boland T, Trusk T, et al. 2003; Organ printing: computeraided jet-based 3D tissue engineering. Trends Biotechnol 21: 157-161.
    • (2003) Trends Biotechnol , vol.21 , pp. 157-161
    • Mironov, V.1    Boland, T.2    Trusk, T.3
  • 17
    • 28844455544 scopus 로고    scopus 로고
    • Three-dimensional fibre-deposited PEOT/PBT copolymer scaffolds for tissue engineering: Influence of porosity, molecular network mesh size, and swelling in aqueous media on dynamic mechanical properties
    • Moroni L, de Wijn JR, van Blitterswijk CA. 2005; Three-dimensional fibre-deposited PEOT/PBT copolymer scaffolds for tissue engineering: influence of porosity, molecular network mesh size, and swelling in aqueous media on dynamic mechanical properties. J Biomed Mater Res A 75: 957-965.
    • (2005) J Biomed Mater Res A , vol.75 , pp. 957-965
    • Moroni, L.1    de Wijn, J.R.2    van Blitterswijk, C.A.3
  • 18
    • 27644568924 scopus 로고    scopus 로고
    • 3D fibre-deposited scaffolds for tissue engineering: Influence of pores geometry and architecture on dynamic mechanical properties
    • Moroni L, de Wijn JR, van Blitterswijk CA. 2006; 3D fibre-deposited scaffolds for tissue engineering: influence of pores geometry and architecture on dynamic mechanical properties. Biomaterials 27: 974-985.
    • (2006) Biomaterials , vol.27 , pp. 974-985
    • Moroni, L.1    de Wijn, J.R.2    van Blitterswijk, C.A.3
  • 19
    • 38449087800 scopus 로고    scopus 로고
    • 3D fibre-deposited electrospun integrated scaffolds enhance cartilage tissue formation
    • Moroni L, Schotel R, Hamann D, et al. 2008; 3D fibre-deposited electrospun integrated scaffolds enhance cartilage tissue formation. Adv Func Mater 18: 53-60.
    • (2008) Adv Func Mater , vol.18 , pp. 53-60
    • Moroni, L.1    Schotel, R.2    Hamann, D.3
  • 20
    • 33645132489 scopus 로고    scopus 로고
    • Methods for fabrication of nanoscale topography for tissue engineering scaffolds
    • Norman JJ, Desai TA. 2006; Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann Biomed Eng 34: 89-101.
    • (2006) Ann Biomed Eng , vol.34 , pp. 89-101
    • Norman, J.J.1    Desai, T.A.2
  • 21
    • 33847416554 scopus 로고    scopus 로고
    • A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes
    • Oliveira JT, Crawford A, Mundy JM, et al. 2007; A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes. J Mater Sci Mater Med 18: 295-302.
    • (2007) J Mater Sci Mater Med , vol.18 , pp. 295-302
    • Oliveira, J.T.1    Crawford, A.2    Mundy, J.M.3
  • 22
    • 42449159656 scopus 로고    scopus 로고
    • A review of rapid prototyping techniques for tissue engineering purposes
    • Peltola SM, Melchels FP, Grijpma DW, et al. 2008; A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40: 268-280.
    • (2008) Ann Med , vol.40 , pp. 268-280
    • Peltola, S.M.1    Melchels, F.P.2    Grijpma, D.W.3
  • 23
    • 0742272583 scopus 로고    scopus 로고
    • Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing
    • Pfister A, Landers R, Laib A, et al. 2004; Biofunctional rapid prototyping for tissue-engineering applications: 3D bioplotting versus 3D printing. J Polym Sci Part A Polym Chem 42: 624-638.
    • (2004) J Polym Sci Part A Polym Chem , vol.42 , pp. 624-638
    • Pfister, A.1    Landers, R.2    Laib, A.3
  • 24
    • 2342505788 scopus 로고    scopus 로고
    • Novel starch-based scaffolds for bone tissue engineering: Cytotoxicity, cell culture, and protein expression
    • Salgado AJ, Coutinho OP, Reis RL. 2004; Novel starch-based scaffolds for bone tissue engineering: cytotoxicity, cell culture, and protein expression. Tissue Eng 10: 465-474.
    • (2004) Tissue Eng , vol.10 , pp. 465-474
    • Salgado, A.J.1    Coutinho, O.P.2    Reis, R.L.3
  • 25
    • 33847187012 scopus 로고    scopus 로고
    • In vivo response to starch-based scaffolds designed for bone tissue engineering applications
    • Salgado AJ, Coutinho OP, Reis RL, et al. 2007; In vivo response to starch-based scaffolds designed for bone tissue engineering applications. J Biomed Mater Res A 80: 983-989.
    • (2007) J Biomed Mater Res A , vol.80 , pp. 983-989
    • Salgado, A.J.1    Coutinho, O.P.2    Reis, R.L.3
  • 26
    • 15244342714 scopus 로고    scopus 로고
    • Biological response to pre-mineralized starch based scaffolds for bone tissue engineering
    • Salgado AJ, Figueiredo JE, Coutinho OP, et al. 2005; Biological response to pre-mineralized starch based scaffolds for bone tissue engineering. J Mater Sci Mater Med 16: 267-275.
    • (2005) J Mater Sci Mater Med , vol.16 , pp. 267-275
    • Salgado, A.J.1    Figueiredo, J.E.2    Coutinho, O.P.3
  • 27
    • 33749556185 scopus 로고    scopus 로고
    • Response of micro- and macrovascular endothelial cells to starch-based fibre meshes for bone tissue engineering
    • Santos MI, Fuchs S, Gomes ME, et al. 2007; Response of micro- and macrovascular endothelial cells to starch-based fibre meshes for bone tissue engineering. Biomaterials 28: 240-248.
    • (2007) Biomaterials , vol.28 , pp. 240-248
    • Santos, M.I.1    Fuchs, S.2    Gomes, M.E.3
  • 28
    • 0042326662 scopus 로고    scopus 로고
    • Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system
    • Schantz JT, Teoh SH, Lim TC, et al. 2003; Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system. Tissue Eng 9: S113-126.
    • (2003) Tissue Eng , vol.9
    • Schantz, J.T.1    Teoh, S.H.2    Lim, T.C.3
  • 29
    • 29144536122 scopus 로고    scopus 로고
    • Nano- and micro-fibre combined scaffolds: A new architecture for bone tissue engineering
    • Tuzlakoglu K, Bolgen N, Salgado AJ, et al. 2005; Nano- and micro-fibre combined scaffolds: a new architecture for bone tissue engineering. J Mater Sci Mater Med 16: 1099-1104.
    • (2005) J Mater Sci Mater Med , vol.16 , pp. 1099-1104
    • Tuzlakoglu, K.1    Bolgen, N.2    Salgado, A.J.3
  • 30
    • 10044289544 scopus 로고    scopus 로고
    • Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibres and their potential in neural tissue engineering
    • Yang F, Murugan R, Wang S, et al. 2005; Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibres and their potential in neural tissue engineering. Biomaterials 26: 2603-2610.
    • (2005) Biomaterials , vol.26 , pp. 2603-2610
    • Yang, F.1    Murugan, R.2    Wang, S.3
  • 31
    • 0036191695 scopus 로고    scopus 로고
    • Yang S, Leong KF, Du Z, et al. 2002; The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8: 1-11.
    • Yang S, Leong KF, Du Z, et al. 2002; The design of scaffolds for use in tissue engineering. Part II. Rapid prototyping techniques. Tissue Eng 8: 1-11.
  • 32
    • 8144227180 scopus 로고    scopus 로고
    • Rapid prototyping in tissue engineering: Challenges and potential
    • Yeong WY, Chua CK, Leong KF, et al. 2004; Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22: 643-652.
    • (2004) Trends Biotechnol , vol.22 , pp. 643-652
    • Yeong, W.Y.1    Chua, C.K.2    Leong, K.F.3
  • 33
    • 25144512995 scopus 로고    scopus 로고
    • Recent development of polymer nanofibres for biomedical and biotechnological applications
    • Zhang YZ, Lim CT, Ramakrishna S, et al. 2005; Recent development of polymer nanofibres for biomedical and biotechnological applications. J Mater Sci Mater Med 16: 933-946.
    • (2005) J Mater Sci Mater Med , vol.16 , pp. 933-946
    • Zhang, Y.Z.1    Lim, C.T.2    Ramakrishna, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.