-
1
-
-
78951478823
-
Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration
-
Jopling C., et al. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat. Rev. Mol. Cell Biol. 2011, 12:79-89.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 79-89
-
-
Jopling, C.1
-
2
-
-
84872412916
-
Dedifferentiation, transdifferentiation, and reprogramming: future directions in regenerative medicine
-
Eguizabal C., et al. Dedifferentiation, transdifferentiation, and reprogramming: future directions in regenerative medicine. Semin. Reprod. Med. 2013, 31:82-94.
-
(2013)
Semin. Reprod. Med.
, vol.31
, pp. 82-94
-
-
Eguizabal, C.1
-
3
-
-
84897125705
-
Rethinking differentiation: stem cells, regeneration, and plasticity
-
Sánchez Alvarado A., Yamanaka S. Rethinking differentiation: stem cells, regeneration, and plasticity. Cell 2014, 157:110-119.
-
(2014)
Cell
, vol.157
, pp. 110-119
-
-
Sánchez Alvarado, A.1
Yamanaka, S.2
-
4
-
-
84880436692
-
The plastic pancreas
-
Ziv O., et al. The plastic pancreas. Dev. Cell 2013, 26:3-7.
-
(2013)
Dev. Cell
, vol.26
, pp. 3-7
-
-
Ziv, O.1
-
5
-
-
84903279458
-
Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury
-
Tarlow B.D., et al. Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury. Hepatology 2014, 60:278-289.
-
(2014)
Hepatology
, vol.60
, pp. 278-289
-
-
Tarlow, B.D.1
-
6
-
-
84908355955
-
Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury
-
Schaub J.R., et al. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 2014, 8:933-939. 10.1016/j.celrep.2014.07.003.
-
(2014)
Cell Rep.
, vol.8
, pp. 933-939
-
-
Schaub, J.R.1
-
7
-
-
84925092021
-
Adult hepatocytes are generated by self-duplication rather than stem cell differentiation
-
Yanger K., et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 2014, 10.1016/j.stem.2014.06.003.
-
(2014)
Cell Stem Cell
-
-
Yanger, K.1
-
8
-
-
0016358918
-
Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine I. Columnar cell
-
Cheng H., et al. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine I. Columnar cell. Am. J. Anat. 1974, 141:461-479.
-
(1974)
Am. J. Anat.
, vol.141
, pp. 461-479
-
-
Cheng, H.1
-
9
-
-
0016348040
-
Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine III. Entero-endocrine cells
-
Cheng H., Leblond C.P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine III. Entero-endocrine cells. Am. J. Anat. 1974, 141:503-519.
-
(1974)
Am. J. Anat.
, vol.141
, pp. 503-519
-
-
Cheng, H.1
Leblond, C.P.2
-
10
-
-
0016325705
-
Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine V. Unitarian theory of the origin of the four epithelial cell types
-
Cheng H., Leblond C.P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine V. Unitarian theory of the origin of the four epithelial cell types. Am. J. Anat. 1974, 141:537-561.
-
(1974)
Am. J. Anat.
, vol.141
, pp. 537-561
-
-
Cheng, H.1
Leblond, C.P.2
-
11
-
-
0019486527
-
The stem-cell zone of the small intestinal epithelium. I. Evidence from Paneth cells in the adult mouse
-
Bjerknes M., Cheng H. The stem-cell zone of the small intestinal epithelium. I. Evidence from Paneth cells in the adult mouse. Am. J. Anat. 1981, 160:51-63.
-
(1981)
Am. J. Anat.
, vol.160
, pp. 51-63
-
-
Bjerknes, M.1
Cheng, H.2
-
12
-
-
0019436364
-
The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse
-
Bjerknes M., Cheng H. The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. Am. J. Anat. 1981, 160:77-91.
-
(1981)
Am. J. Anat.
, vol.160
, pp. 77-91
-
-
Bjerknes, M.1
Cheng, H.2
-
13
-
-
35548974423
-
Identification of stem cells in small intestine and colon by marker gene Lgr5
-
Barker N., et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007, 449:1003-1007.
-
(2007)
Nature
, vol.449
, pp. 1003-1007
-
-
Barker, N.1
-
14
-
-
0023887029
-
Demonstration of somatic mutation and colonic crypt clonality by X-linked enzyme histochemistry
-
Griffiths D.F.R., et al. Demonstration of somatic mutation and colonic crypt clonality by X-linked enzyme histochemistry. Nature 1988, 333:461-463.
-
(1988)
Nature
, vol.333
, pp. 461-463
-
-
Griffiths, D.F.R.1
-
15
-
-
0025163541
-
Stem-cell organization in mouse small intestine
-
Winton D.J., Ponder B.A.J. Stem-cell organization in mouse small intestine. Proc. Biol. Sci. 1990, 241:13-18.
-
(1990)
Proc. Biol. Sci.
, vol.241
, pp. 13-18
-
-
Winton, D.J.1
Ponder, B.A.J.2
-
16
-
-
77957223906
-
Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells
-
Snippert H.J., et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 2010, 143:134-144.
-
(2010)
Cell
, vol.143
, pp. 134-144
-
-
Snippert, H.J.1
-
17
-
-
77958485383
-
Intestinal stem cell replacement follows a pattern of neutral drift
-
Lopez-Garcia C., et al. Intestinal stem cell replacement follows a pattern of neutral drift. Science 2010, 330:822-825.
-
(2010)
Science
, vol.330
, pp. 822-825
-
-
Lopez-Garcia, C.1
-
18
-
-
84897022044
-
Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging
-
(Epub)
-
Ritsma L., et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 2014, 507:362-365. (Epub). 10.1038/nature12972.
-
(2014)
Nature
, vol.507
, pp. 362-365
-
-
Ritsma, L.1
-
19
-
-
67349123408
-
Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
-
Sato T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459:262-265.
-
(2009)
Nature
, vol.459
, pp. 262-265
-
-
Sato, T.1
-
20
-
-
0036007425
-
The intestinal epithelial stem cell
-
Marshman E., et al. The intestinal epithelial stem cell. Bioessays 2002, 24:91-98.
-
(2002)
Bioessays
, vol.24
, pp. 91-98
-
-
Marshman, E.1
-
21
-
-
46249128798
-
Bmi1 is expressed in vivo in intestinal stem cells
-
Sangiorgi E., Capecchi M.R. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 2008, 40:915-920.
-
(2008)
Nat. Genet.
, vol.40
, pp. 915-920
-
-
Sangiorgi, E.1
Capecchi, M.R.2
-
22
-
-
83255193921
-
Interconversion between intestinal stem cell populations in distinct niches
-
Takeda N., et al. Interconversion between intestinal stem cell populations in distinct niches. Science 2011, 334:1420-1424.
-
(2011)
Science
, vol.334
, pp. 1420-1424
-
-
Takeda, N.1
-
23
-
-
84859196824
-
The Pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor
-
Powell A.E., et al. The Pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 2012, 149:146-158.
-
(2012)
Cell
, vol.149
, pp. 146-158
-
-
Powell, A.E.1
-
24
-
-
78651067425
-
Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells
-
Montgomery R.K., et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc. Natl. Acad. Sci. U.S.A. 2010, 108:179-184.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 179-184
-
-
Montgomery, R.K.1
-
25
-
-
69749121859
-
Regeneration of intestinal stem/progenitor cells following doxorubicin treatment of mice
-
Dekaney C.M., et al. Regeneration of intestinal stem/progenitor cells following doxorubicin treatment of mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 297:G461-G470.
-
(2009)
Am. J. Physiol. Gastrointest. Liver Physiol.
, vol.297
, pp. G461-G470
-
-
Dekaney, C.M.1
-
26
-
-
80054041585
-
A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable
-
Tian H., et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 2011, 478:255-259.
-
(2011)
Nature
, vol.478
, pp. 255-259
-
-
Tian, H.1
-
27
-
-
84862946094
-
The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations
-
Yan K.S., et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:466-471.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 466-471
-
-
Yan, K.S.1
-
28
-
-
84859430024
-
Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling
-
Wong V.W.Y., et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat. Cell Biol. 2012, 14:401-408.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 401-408
-
-
Wong, V.W.Y.1
-
29
-
-
84864131103
-
The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers
-
Muñoz J., et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers. EMBO J. 2012, 31:3079-3091.
-
(2012)
EMBO J.
, vol.31
, pp. 3079-3091
-
-
Muñoz, J.1
-
30
-
-
84880558928
-
Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay
-
383-395.e1-21
-
Wang F., et al. Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay. Gastroenterology 2013, 145. 383-395.e1-21.
-
(2013)
Gastroenterology
, vol.145
-
-
Wang, F.1
-
31
-
-
84893768750
-
Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration
-
Metcalfe C., et al. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 2013, 14:149-159. 10.1016/j.stem.2013.11.008.
-
(2013)
Cell Stem Cell
, vol.14
, pp. 149-159
-
-
Metcalfe, C.1
-
32
-
-
79953204955
-
Dll1- and Dll4-mediated notch signaling are required for homeostasis of intestinal stem cells
-
1230-1240.e1-7
-
Pellegrinet L., et al. Dll1- and Dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 2011, 140. 1230-1240.e1-7.
-
(2011)
Gastroenterology
, vol.140
-
-
Pellegrinet, L.1
-
33
-
-
80052526022
-
Delta1 expression, cell cycle exit, and commitment to a specific secretory fate coincide within a few hours in the mouse intestinal stem cell system
-
Stamataki D., et al. Delta1 expression, cell cycle exit, and commitment to a specific secretory fate coincide within a few hours in the mouse intestinal stem cell system. PLoS ONE 2011, 6:e24484.
-
(2011)
PLoS ONE
, vol.6
, pp. e24484
-
-
Stamataki, D.1
-
34
-
-
84867097416
-
Dll1+ secretory progenitor cells revert to stem cells upon crypt damage
-
Van Es J.H., et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 2012, 14:1099-1104.
-
(2012)
Nat. Cell Biol.
, vol.14
, pp. 1099-1104
-
-
Van Es, J.H.1
-
35
-
-
78751644734
-
Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts
-
Sato T., et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2011, 469:415-418.
-
(2011)
Nature
, vol.469
, pp. 415-418
-
-
Sato, T.1
-
36
-
-
84875799390
-
Evidence for a crucial role of Paneth cells in mediating the intestinal response to injury
-
Parry L., et al. Evidence for a crucial role of Paneth cells in mediating the intestinal response to injury. Stem Cells 2013, 31:776-785.
-
(2013)
Stem Cells
, vol.31
, pp. 776-785
-
-
Parry, L.1
-
37
-
-
84874730918
-
Intestinal label-retaining cells are secretory precursors expressing Lgr5
-
Buczacki S.J.A., et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 2013, 495:65-69.
-
(2013)
Nature
, vol.495
, pp. 65-69
-
-
Buczacki, S.J.A.1
-
38
-
-
84862643433
-
Paneth cells in intestinal homeostasis and tissue injury
-
Roth S., et al. Paneth cells in intestinal homeostasis and tissue injury. PLoS ONE 2012, 7:e38965.
-
(2012)
PLoS ONE
, vol.7
, pp. e38965
-
-
Roth, S.1
-
39
-
-
84908191732
-
Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele
-
Basak O., et al. Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele. EMBO J. 2014, 10.15252/embj.201488017.
-
(2014)
EMBO J.
-
-
Basak, O.1
-
40
-
-
0017739418
-
Extreme sensitivity of some intestinal crypt cells to X and γ irradiation
-
Potten C.S. Extreme sensitivity of some intestinal crypt cells to X and γ irradiation. Nature 1977, 269:518-521.
-
(1977)
Nature
, vol.269
, pp. 518-521
-
-
Potten, C.S.1
-
41
-
-
84877929908
-
Control of the epithelial stem cell epigenome: the shaping of epithelial stem cell identity
-
Iglesias-Bartolome R., et al. Control of the epithelial stem cell epigenome: the shaping of epithelial stem cell identity. Curr. Opin. Cell Biol. 2013, 25:162-169.
-
(2013)
Curr. Opin. Cell Biol.
, vol.25
, pp. 162-169
-
-
Iglesias-Bartolome, R.1
-
42
-
-
84883493995
-
HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation
-
Turgeon N., et al. HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation. PLoS ONE 2013, 8:e73785.
-
(2013)
PLoS ONE
, vol.8
, pp. e73785
-
-
Turgeon, N.1
-
43
-
-
84896691636
-
Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity
-
Kim T-H., et al. Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity. Nature 2014, 506:511-515. 10.1038/nature12903.
-
(2014)
Nature
, vol.506
, pp. 511-515
-
-
Kim, T.-H.1
-
44
-
-
84885001955
-
DNA methylation and differentiation: silencing, upregulation and modulation of gene expression
-
Ehrlich M., Lacey M. DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. Epigenomics 2013, 5:553-568.
-
(2013)
Epigenomics
, vol.5
, pp. 553-568
-
-
Ehrlich, M.1
Lacey, M.2
-
45
-
-
84878248139
-
DNA methylation dynamics during intestinal stem cell differentiation reveals enhancers driving gene expression in the villus
-
Kaaij L.T., et al. DNA methylation dynamics during intestinal stem cell differentiation reveals enhancers driving gene expression in the villus. Genome Biol. 2013, 14:R50.
-
(2013)
Genome Biol.
, vol.14
, pp. R50
-
-
Kaaij, L.T.1
-
46
-
-
84896378030
-
DNA methylation is required for the control of stem cell differentiation in the small intestine
-
Sheaffer K.L., et al. DNA methylation is required for the control of stem cell differentiation in the small intestine. Genes Dev. 2014, 28:652-664.
-
(2014)
Genes Dev.
, vol.28
, pp. 652-664
-
-
Sheaffer, K.L.1
-
47
-
-
33645825196
-
Suppression of intestinal neoplasia by deletion of Dnmt3b
-
Lin H., et al. Suppression of intestinal neoplasia by deletion of Dnmt3b. Mol. Cell. Biol. 2006, 26:2976-2983.
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 2976-2983
-
-
Lin, H.1
-
48
-
-
84891007206
-
Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration
-
Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 2014, 15:19-33.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 19-33
-
-
Barker, N.1
-
49
-
-
84883742415
-
Induction of intestinal stem cells by R-spondin 1 and Slit2 augments chemoradioprotection
-
Zhou W-J., et al. Induction of intestinal stem cells by R-spondin 1 and Slit2 augments chemoradioprotection. Nature 2013, 501:107-111.
-
(2013)
Nature
, vol.501
, pp. 107-111
-
-
Zhou, W.-J.1
-
50
-
-
80455173895
-
Intestinal stem cells in the adult Drosophila midgut
-
Jiang H., Edgar B.A. Intestinal stem cells in the adult Drosophila midgut. Exp. Cell Res. 2011, 317:2780-2788.
-
(2011)
Exp. Cell Res.
, vol.317
, pp. 2780-2788
-
-
Jiang, H.1
Edgar, B.A.2
-
51
-
-
84893634418
-
Chapter five -- cell death: a program to regenerate
-
Academic Press
-
Vriz S., et al. Chapter five -- cell death: a program to regenerate. Current Topics in Developmental Biology 2014, Vol. 108:121-151. Academic Press.
-
(2014)
Current Topics in Developmental Biology
, vol.108
, pp. 121-151
-
-
Vriz, S.1
-
52
-
-
84862994618
-
MTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake
-
Yilmaz Ö.H., et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 2012, 486:490-495.
-
(2012)
Nature
, vol.486
, pp. 490-495
-
-
Yilmaz, Ö.H.1
-
53
-
-
84896851032
-
Intestinal epithelial cells: regulators of barrier function and immune homeostasis
-
Peterson L.W., Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 2014, 14:141-153.
-
(2014)
Nat. Rev. Immunol.
, vol.14
, pp. 141-153
-
-
Peterson, L.W.1
Artis, D.2
-
54
-
-
79955030498
-
Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22
-
Sonnenberg G.F., et al. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 2011, 12:383-390.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 383-390
-
-
Sonnenberg, G.F.1
-
55
-
-
84879571464
-
Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model
-
Kirchberger S., et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 2013, 210:917-931.
-
(2013)
J. Exp. Med.
, vol.210
, pp. 917-931
-
-
Kirchberger, S.1
-
56
-
-
84868615556
-
IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine
-
Huber S., et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 2012, 491:259-263.
-
(2012)
Nature
, vol.491
, pp. 259-263
-
-
Huber, S.1
-
57
-
-
77950346282
-
Immunity, inflammation, and cancer
-
Grivennikov S.I., et al. Immunity, inflammation, and cancer. Cell 2010, 140:883-899.
-
(2010)
Cell
, vol.140
, pp. 883-899
-
-
Grivennikov, S.I.1
-
58
-
-
69149106207
-
Basal cells as stem cells of the mouse trachea and human airway epithelium
-
Rock J.R., et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:12771-12775.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 12771-12775
-
-
Rock, J.R.1
-
59
-
-
1642269178
-
In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations
-
Hong K.U., et al. In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 286:L643-L649.
-
(2004)
Am. J. Physiol. Lung Cell. Mol. Physiol.
, vol.286
, pp. L643-L649
-
-
Hong, K.U.1
-
60
-
-
84887619426
-
Dedifferentiation of committed epithelial cells into stem cells in vivo
-
Tata P.R., et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 2013, 503:218-223. 10.1038/nature12777.
-
(2013)
Nature
, vol.503
, pp. 218-223
-
-
Tata, P.R.1
-
61
-
-
0345530117
-
Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney
-
Maeshima A., et al. Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J. Am. Soc. Nephrol. 2003, 14:3138-3146.
-
(2003)
J. Am. Soc. Nephrol.
, vol.14
, pp. 3138-3146
-
-
Maeshima, A.1
-
62
-
-
0028273536
-
Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells
-
Witzgall R., et al. Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J. Clin. Invest. 1994, 93:2175-2188.
-
(1994)
J. Clin. Invest.
, vol.93
, pp. 2175-2188
-
-
Witzgall, R.1
-
63
-
-
33847056230
-
Proximal tubular epithelial cells are generated by division of differentiated cells in the healthy kidney
-
Vogetseder A., et al. Proximal tubular epithelial cells are generated by division of differentiated cells in the healthy kidney. Am. J. Physiol. Cell Physiol. 2007, 292:C807-C813.
-
(2007)
Am. J. Physiol. Cell Physiol.
, vol.292
, pp. C807-C813
-
-
Vogetseder, A.1
-
64
-
-
64549093430
-
Regulation of phosphate transport in proximal tubules
-
Biber J., et al. Regulation of phosphate transport in proximal tubules. Pflugers Arch. 2009, 458:39-52.
-
(2009)
Pflugers Arch.
, vol.458
, pp. 39-52
-
-
Biber, J.1
-
65
-
-
84893369728
-
Differentiated kidney epithelial cells repair injured proximal tubule
-
Kusaba T., et al. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:1527-1532.
-
(2014)
Proc. Natl. Acad. Sci. U.S.A.
, vol.111
, pp. 1527-1532
-
-
Kusaba, T.1
-
66
-
-
79959336759
-
Repair of injured proximal tubule does not involve specialized progenitors
-
Humphreys B.D., et al. Repair of injured proximal tubule does not involve specialized progenitors. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:9226-9231.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 9226-9231
-
-
Humphreys, B.D.1
-
67
-
-
84961054225
-
A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3
-
Grisham J.W. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res. 1962, 22:842-849.
-
(1962)
Cancer Res.
, vol.22
, pp. 842-849
-
-
Grisham, J.W.1
-
68
-
-
84876278823
-
Robust cellular reprogramming occurs spontaneously during liver regeneration
-
Yanger K., et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 2013, 27:719-724.
-
(2013)
Genes Dev.
, vol.27
, pp. 719-724
-
-
Yanger, K.1
-
69
-
-
73049116186
-
Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro
-
Barker N., et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 2010, 6:25-36.
-
(2010)
Cell Stem Cell
, vol.6
, pp. 25-36
-
-
Barker, N.1
-
70
-
-
36549009168
-
Prospective identification of a multilineage progenitor in murine stomach epithelium
-
Qiao X.T., et al. Prospective identification of a multilineage progenitor in murine stomach epithelium. Gastroenterology 2007, 133:1989-1998.
-
(2007)
Gastroenterology
, vol.133
, pp. 1989-1998
-
-
Qiao, X.T.1
-
71
-
-
80053914464
-
Sox2+ adult stem and progenitor cells are important for tissue regeneration and survival of mice
-
Arnold K., et al. Sox2+ adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 2011, 9:317-329.
-
(2011)
Cell Stem Cell
, vol.9
, pp. 317-329
-
-
Arnold, K.1
-
72
-
-
78649709713
-
TFF2 mRNA transcript expression marks a gland progenitor cell of the gastric oxyntic mucosa
-
2018-2027.e2
-
Quante M., et al. TFF2 mRNA transcript expression marks a gland progenitor cell of the gastric oxyntic mucosa. Gastroenterology 2010, 139. 2018-2027.e2.
-
(2010)
Gastroenterology
, vol.139
-
-
Quante, M.1
-
73
-
-
84885672388
-
Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium
-
Stange D.E., et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 2013, 155:357-368.
-
(2013)
Cell
, vol.155
, pp. 357-368
-
-
Stange, D.E.1
-
74
-
-
84881524604
-
Troy, a tumor necrosis factor receptor family member, interacts with Lgr5 to inhibit Wnt signaling in intestinal stem cells
-
Fafilek B., et al. Troy, a tumor necrosis factor receptor family member, interacts with Lgr5 to inhibit Wnt signaling in intestinal stem cells. Gastroenterology 2013, 144:381-391.
-
(2013)
Gastroenterology
, vol.144
, pp. 381-391
-
-
Fafilek, B.1
-
75
-
-
78651447817
-
Liver regeneration: alternative epithelial pathways
-
Michalopoulos G.K. Liver regeneration: alternative epithelial pathways. Int. J. Biochem. Cell Biol. 2011, 43:173-179.
-
(2011)
Int. J. Biochem. Cell Biol.
, vol.43
, pp. 173-179
-
-
Michalopoulos, G.K.1
-
76
-
-
84899729602
-
Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming
-
Miyajima A., et al. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 2014, 14:561-574.
-
(2014)
Cell Stem Cell
, vol.14
, pp. 561-574
-
-
Miyajima, A.1
-
77
-
-
84907540712
-
Re-evaluation of liver stem/progenitor cells
-
Tanimizu N., Mitaka T. Re-evaluation of liver stem/progenitor cells. Organogenesis 2014, 10:6-13.
-
(2014)
Organogenesis
, vol.10
, pp. 6-13
-
-
Tanimizu, N.1
Mitaka, T.2
-
78
-
-
14244252656
-
Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury
-
Michalopoulos G.K., et al. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 2005, 41:535-544.
-
(2005)
Hepatology
, vol.41
, pp. 535-544
-
-
Michalopoulos, G.K.1
-
79
-
-
0034121735
-
Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages
-
Herrera P.L. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 2000, 127:2317-2322.
-
(2000)
Development
, vol.127
, pp. 2317-2322
-
-
Herrera, P.L.1
-
80
-
-
2342510386
-
Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation
-
Dor Y., et al. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004, 429:41-46.
-
(2004)
Nature
, vol.429
, pp. 41-46
-
-
Dor, Y.1
-
81
-
-
71649092364
-
Pancreatic exocrine duct cells give rise to insulin-producing β cells during embryogenesis but not after birth
-
Solar M., et al. Pancreatic exocrine duct cells give rise to insulin-producing β cells during embryogenesis but not after birth. Dev. Cell 2009, 17:849-860.
-
(2009)
Dev. Cell
, vol.17
, pp. 849-860
-
-
Solar, M.1
-
82
-
-
34147190365
-
Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration
-
Desai B.M., et al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J. Clin. Invest. 2007, 117:971-977.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 971-977
-
-
Desai, B.M.1
-
83
-
-
77951611220
-
Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss
-
Thorel F., et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010, 464:1149-1154.
-
(2010)
Nature
, vol.464
, pp. 1149-1154
-
-
Thorel, F.1
-
84
-
-
84873111871
-
Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration
-
Pan F.C., et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development 2013, 140:751-764.
-
(2013)
Development
, vol.140
, pp. 751-764
-
-
Pan, F.C.1
-
85
-
-
75849118873
-
Shh signaling regulates adrenocortical development and identifies progenitors of steroidogenic lineages
-
King P., et al. Shh signaling regulates adrenocortical development and identifies progenitors of steroidogenic lineages. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:21185-21190.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 21185-21190
-
-
King, P.1
-
86
-
-
57349088231
-
Developmental links between the fetal and adult zones of the adrenal cortex revealed by lineage tracing
-
Zubair M., et al. Developmental links between the fetal and adult zones of the adrenal cortex revealed by lineage tracing. Mol. Cell. Biol. 2008, 28:7030-7040.
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 7030-7040
-
-
Zubair, M.1
-
87
-
-
84884722129
-
Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells
-
Freedman B.D., et al. Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells. Dev. Cell 2013, 26:666-673.
-
(2013)
Dev. Cell
, vol.26
, pp. 666-673
-
-
Freedman, B.D.1
|