메뉴 건너뛰기




Volumn 25, Issue 2, 2015, Pages 100-108

Plasticity within stem cell hierarchies in mammalian epithelia

Author keywords

Plasticity; Quiescence; Regeneration; Stem cell; Transdifferentiation

Indexed keywords

ACINAR CELL; ADRENAL CORTEX; CELL DAMAGE; CELL DEDIFFERENTIATION; CELL DIFFERENTIATION; CELL MATURATION; CELL POPULATION; CELL RENEWAL; CELL TRANSDIFFERENTIATION; CELLULAR PARAMETERS; EPIGENETICS; EPITHELIUM; HOMEOSTASIS; HUMAN; INTESTINAL STEM CELL; INTESTINE; KIDNEY PROXIMAL TUBULE; LIVER CELL; MAMMAL CELL; PRIORITY JOURNAL; REVIEW; STEM CELL; STEM CELL NICHE; STEM CELL PLASTICITY; STOMACH; TISSUE REGENERATION; ANIMAL; CELL LINEAGE; CYTOLOGY; EPITHELIUM CELL; GENETIC EPIGENESIS; MOUSE; REGENERATION;

EID: 84921629064     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2014.09.003     Document Type: Review
Times cited : (130)

References (87)
  • 1
    • 78951478823 scopus 로고    scopus 로고
    • Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration
    • Jopling C., et al. Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat. Rev. Mol. Cell Biol. 2011, 12:79-89.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 79-89
    • Jopling, C.1
  • 2
    • 84872412916 scopus 로고    scopus 로고
    • Dedifferentiation, transdifferentiation, and reprogramming: future directions in regenerative medicine
    • Eguizabal C., et al. Dedifferentiation, transdifferentiation, and reprogramming: future directions in regenerative medicine. Semin. Reprod. Med. 2013, 31:82-94.
    • (2013) Semin. Reprod. Med. , vol.31 , pp. 82-94
    • Eguizabal, C.1
  • 3
    • 84897125705 scopus 로고    scopus 로고
    • Rethinking differentiation: stem cells, regeneration, and plasticity
    • Sánchez Alvarado A., Yamanaka S. Rethinking differentiation: stem cells, regeneration, and plasticity. Cell 2014, 157:110-119.
    • (2014) Cell , vol.157 , pp. 110-119
    • Sánchez Alvarado, A.1    Yamanaka, S.2
  • 4
    • 84880436692 scopus 로고    scopus 로고
    • The plastic pancreas
    • Ziv O., et al. The plastic pancreas. Dev. Cell 2013, 26:3-7.
    • (2013) Dev. Cell , vol.26 , pp. 3-7
    • Ziv, O.1
  • 5
    • 84903279458 scopus 로고    scopus 로고
    • Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury
    • Tarlow B.D., et al. Clonal tracing of Sox9+ liver progenitors in mouse oval cell injury. Hepatology 2014, 60:278-289.
    • (2014) Hepatology , vol.60 , pp. 278-289
    • Tarlow, B.D.1
  • 6
    • 84908355955 scopus 로고    scopus 로고
    • Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury
    • Schaub J.R., et al. Evidence against a stem cell origin of new hepatocytes in a common mouse model of chronic liver injury. Cell Rep. 2014, 8:933-939. 10.1016/j.celrep.2014.07.003.
    • (2014) Cell Rep. , vol.8 , pp. 933-939
    • Schaub, J.R.1
  • 7
    • 84925092021 scopus 로고    scopus 로고
    • Adult hepatocytes are generated by self-duplication rather than stem cell differentiation
    • Yanger K., et al. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 2014, 10.1016/j.stem.2014.06.003.
    • (2014) Cell Stem Cell
    • Yanger, K.1
  • 8
    • 0016358918 scopus 로고
    • Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine I. Columnar cell
    • Cheng H., et al. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine I. Columnar cell. Am. J. Anat. 1974, 141:461-479.
    • (1974) Am. J. Anat. , vol.141 , pp. 461-479
    • Cheng, H.1
  • 9
    • 0016348040 scopus 로고
    • Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine III. Entero-endocrine cells
    • Cheng H., Leblond C.P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine III. Entero-endocrine cells. Am. J. Anat. 1974, 141:503-519.
    • (1974) Am. J. Anat. , vol.141 , pp. 503-519
    • Cheng, H.1    Leblond, C.P.2
  • 10
    • 0016325705 scopus 로고
    • Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine V. Unitarian theory of the origin of the four epithelial cell types
    • Cheng H., Leblond C.P. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine V. Unitarian theory of the origin of the four epithelial cell types. Am. J. Anat. 1974, 141:537-561.
    • (1974) Am. J. Anat. , vol.141 , pp. 537-561
    • Cheng, H.1    Leblond, C.P.2
  • 11
    • 0019486527 scopus 로고
    • The stem-cell zone of the small intestinal epithelium. I. Evidence from Paneth cells in the adult mouse
    • Bjerknes M., Cheng H. The stem-cell zone of the small intestinal epithelium. I. Evidence from Paneth cells in the adult mouse. Am. J. Anat. 1981, 160:51-63.
    • (1981) Am. J. Anat. , vol.160 , pp. 51-63
    • Bjerknes, M.1    Cheng, H.2
  • 12
    • 0019436364 scopus 로고
    • The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse
    • Bjerknes M., Cheng H. The stem-cell zone of the small intestinal epithelium. III. Evidence from columnar, enteroendocrine, and mucous cells in the adult mouse. Am. J. Anat. 1981, 160:77-91.
    • (1981) Am. J. Anat. , vol.160 , pp. 77-91
    • Bjerknes, M.1    Cheng, H.2
  • 13
    • 35548974423 scopus 로고    scopus 로고
    • Identification of stem cells in small intestine and colon by marker gene Lgr5
    • Barker N., et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007, 449:1003-1007.
    • (2007) Nature , vol.449 , pp. 1003-1007
    • Barker, N.1
  • 14
    • 0023887029 scopus 로고
    • Demonstration of somatic mutation and colonic crypt clonality by X-linked enzyme histochemistry
    • Griffiths D.F.R., et al. Demonstration of somatic mutation and colonic crypt clonality by X-linked enzyme histochemistry. Nature 1988, 333:461-463.
    • (1988) Nature , vol.333 , pp. 461-463
    • Griffiths, D.F.R.1
  • 15
    • 0025163541 scopus 로고
    • Stem-cell organization in mouse small intestine
    • Winton D.J., Ponder B.A.J. Stem-cell organization in mouse small intestine. Proc. Biol. Sci. 1990, 241:13-18.
    • (1990) Proc. Biol. Sci. , vol.241 , pp. 13-18
    • Winton, D.J.1    Ponder, B.A.J.2
  • 16
    • 77957223906 scopus 로고    scopus 로고
    • Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells
    • Snippert H.J., et al. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 2010, 143:134-144.
    • (2010) Cell , vol.143 , pp. 134-144
    • Snippert, H.J.1
  • 17
    • 77958485383 scopus 로고    scopus 로고
    • Intestinal stem cell replacement follows a pattern of neutral drift
    • Lopez-Garcia C., et al. Intestinal stem cell replacement follows a pattern of neutral drift. Science 2010, 330:822-825.
    • (2010) Science , vol.330 , pp. 822-825
    • Lopez-Garcia, C.1
  • 18
    • 84897022044 scopus 로고    scopus 로고
    • Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging
    • (Epub)
    • Ritsma L., et al. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 2014, 507:362-365. (Epub). 10.1038/nature12972.
    • (2014) Nature , vol.507 , pp. 362-365
    • Ritsma, L.1
  • 19
    • 67349123408 scopus 로고    scopus 로고
    • Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche
    • Sato T., et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 2009, 459:262-265.
    • (2009) Nature , vol.459 , pp. 262-265
    • Sato, T.1
  • 20
    • 0036007425 scopus 로고    scopus 로고
    • The intestinal epithelial stem cell
    • Marshman E., et al. The intestinal epithelial stem cell. Bioessays 2002, 24:91-98.
    • (2002) Bioessays , vol.24 , pp. 91-98
    • Marshman, E.1
  • 21
    • 46249128798 scopus 로고    scopus 로고
    • Bmi1 is expressed in vivo in intestinal stem cells
    • Sangiorgi E., Capecchi M.R. Bmi1 is expressed in vivo in intestinal stem cells. Nat. Genet. 2008, 40:915-920.
    • (2008) Nat. Genet. , vol.40 , pp. 915-920
    • Sangiorgi, E.1    Capecchi, M.R.2
  • 22
    • 83255193921 scopus 로고    scopus 로고
    • Interconversion between intestinal stem cell populations in distinct niches
    • Takeda N., et al. Interconversion between intestinal stem cell populations in distinct niches. Science 2011, 334:1420-1424.
    • (2011) Science , vol.334 , pp. 1420-1424
    • Takeda, N.1
  • 23
    • 84859196824 scopus 로고    scopus 로고
    • The Pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor
    • Powell A.E., et al. The Pan-ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 2012, 149:146-158.
    • (2012) Cell , vol.149 , pp. 146-158
    • Powell, A.E.1
  • 24
    • 78651067425 scopus 로고    scopus 로고
    • Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells
    • Montgomery R.K., et al. Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc. Natl. Acad. Sci. U.S.A. 2010, 108:179-184.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 179-184
    • Montgomery, R.K.1
  • 25
    • 69749121859 scopus 로고    scopus 로고
    • Regeneration of intestinal stem/progenitor cells following doxorubicin treatment of mice
    • Dekaney C.M., et al. Regeneration of intestinal stem/progenitor cells following doxorubicin treatment of mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2009, 297:G461-G470.
    • (2009) Am. J. Physiol. Gastrointest. Liver Physiol. , vol.297 , pp. G461-G470
    • Dekaney, C.M.1
  • 26
    • 80054041585 scopus 로고    scopus 로고
    • A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable
    • Tian H., et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature 2011, 478:255-259.
    • (2011) Nature , vol.478 , pp. 255-259
    • Tian, H.1
  • 27
    • 84862946094 scopus 로고    scopus 로고
    • The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations
    • Yan K.S., et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:466-471.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 466-471
    • Yan, K.S.1
  • 28
    • 84859430024 scopus 로고    scopus 로고
    • Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling
    • Wong V.W.Y., et al. Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat. Cell Biol. 2012, 14:401-408.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 401-408
    • Wong, V.W.Y.1
  • 29
    • 84864131103 scopus 로고    scopus 로고
    • The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers
    • Muñoz J., et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent '+4' cell markers. EMBO J. 2012, 31:3079-3091.
    • (2012) EMBO J. , vol.31 , pp. 3079-3091
    • Muñoz, J.1
  • 30
    • 84880558928 scopus 로고    scopus 로고
    • Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay
    • 383-395.e1-21
    • Wang F., et al. Isolation and characterization of intestinal stem cells based on surface marker combinations and colony-formation assay. Gastroenterology 2013, 145. 383-395.e1-21.
    • (2013) Gastroenterology , vol.145
    • Wang, F.1
  • 31
    • 84893768750 scopus 로고    scopus 로고
    • Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration
    • Metcalfe C., et al. Lgr5+ stem cells are indispensable for radiation-induced intestinal regeneration. Cell Stem Cell 2013, 14:149-159. 10.1016/j.stem.2013.11.008.
    • (2013) Cell Stem Cell , vol.14 , pp. 149-159
    • Metcalfe, C.1
  • 32
    • 79953204955 scopus 로고    scopus 로고
    • Dll1- and Dll4-mediated notch signaling are required for homeostasis of intestinal stem cells
    • 1230-1240.e1-7
    • Pellegrinet L., et al. Dll1- and Dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 2011, 140. 1230-1240.e1-7.
    • (2011) Gastroenterology , vol.140
    • Pellegrinet, L.1
  • 33
    • 80052526022 scopus 로고    scopus 로고
    • Delta1 expression, cell cycle exit, and commitment to a specific secretory fate coincide within a few hours in the mouse intestinal stem cell system
    • Stamataki D., et al. Delta1 expression, cell cycle exit, and commitment to a specific secretory fate coincide within a few hours in the mouse intestinal stem cell system. PLoS ONE 2011, 6:e24484.
    • (2011) PLoS ONE , vol.6 , pp. e24484
    • Stamataki, D.1
  • 34
    • 84867097416 scopus 로고    scopus 로고
    • Dll1+ secretory progenitor cells revert to stem cells upon crypt damage
    • Van Es J.H., et al. Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat. Cell Biol. 2012, 14:1099-1104.
    • (2012) Nat. Cell Biol. , vol.14 , pp. 1099-1104
    • Van Es, J.H.1
  • 35
    • 78751644734 scopus 로고    scopus 로고
    • Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts
    • Sato T., et al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 2011, 469:415-418.
    • (2011) Nature , vol.469 , pp. 415-418
    • Sato, T.1
  • 36
    • 84875799390 scopus 로고    scopus 로고
    • Evidence for a crucial role of Paneth cells in mediating the intestinal response to injury
    • Parry L., et al. Evidence for a crucial role of Paneth cells in mediating the intestinal response to injury. Stem Cells 2013, 31:776-785.
    • (2013) Stem Cells , vol.31 , pp. 776-785
    • Parry, L.1
  • 37
    • 84874730918 scopus 로고    scopus 로고
    • Intestinal label-retaining cells are secretory precursors expressing Lgr5
    • Buczacki S.J.A., et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature 2013, 495:65-69.
    • (2013) Nature , vol.495 , pp. 65-69
    • Buczacki, S.J.A.1
  • 38
    • 84862643433 scopus 로고    scopus 로고
    • Paneth cells in intestinal homeostasis and tissue injury
    • Roth S., et al. Paneth cells in intestinal homeostasis and tissue injury. PLoS ONE 2012, 7:e38965.
    • (2012) PLoS ONE , vol.7 , pp. e38965
    • Roth, S.1
  • 39
    • 84908191732 scopus 로고    scopus 로고
    • Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele
    • Basak O., et al. Mapping early fate determination in Lgr5+ crypt stem cells using a novel Ki67-RFP allele. EMBO J. 2014, 10.15252/embj.201488017.
    • (2014) EMBO J.
    • Basak, O.1
  • 40
    • 0017739418 scopus 로고
    • Extreme sensitivity of some intestinal crypt cells to X and γ irradiation
    • Potten C.S. Extreme sensitivity of some intestinal crypt cells to X and γ irradiation. Nature 1977, 269:518-521.
    • (1977) Nature , vol.269 , pp. 518-521
    • Potten, C.S.1
  • 41
    • 84877929908 scopus 로고    scopus 로고
    • Control of the epithelial stem cell epigenome: the shaping of epithelial stem cell identity
    • Iglesias-Bartolome R., et al. Control of the epithelial stem cell epigenome: the shaping of epithelial stem cell identity. Curr. Opin. Cell Biol. 2013, 25:162-169.
    • (2013) Curr. Opin. Cell Biol. , vol.25 , pp. 162-169
    • Iglesias-Bartolome, R.1
  • 42
    • 84883493995 scopus 로고    scopus 로고
    • HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation
    • Turgeon N., et al. HDAC1 and HDAC2 restrain the intestinal inflammatory response by regulating intestinal epithelial cell differentiation. PLoS ONE 2013, 8:e73785.
    • (2013) PLoS ONE , vol.8 , pp. e73785
    • Turgeon, N.1
  • 43
    • 84896691636 scopus 로고    scopus 로고
    • Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity
    • Kim T-H., et al. Broadly permissive intestinal chromatin underlies lateral inhibition and cell plasticity. Nature 2014, 506:511-515. 10.1038/nature12903.
    • (2014) Nature , vol.506 , pp. 511-515
    • Kim, T.-H.1
  • 44
    • 84885001955 scopus 로고    scopus 로고
    • DNA methylation and differentiation: silencing, upregulation and modulation of gene expression
    • Ehrlich M., Lacey M. DNA methylation and differentiation: silencing, upregulation and modulation of gene expression. Epigenomics 2013, 5:553-568.
    • (2013) Epigenomics , vol.5 , pp. 553-568
    • Ehrlich, M.1    Lacey, M.2
  • 45
    • 84878248139 scopus 로고    scopus 로고
    • DNA methylation dynamics during intestinal stem cell differentiation reveals enhancers driving gene expression in the villus
    • Kaaij L.T., et al. DNA methylation dynamics during intestinal stem cell differentiation reveals enhancers driving gene expression in the villus. Genome Biol. 2013, 14:R50.
    • (2013) Genome Biol. , vol.14 , pp. R50
    • Kaaij, L.T.1
  • 46
    • 84896378030 scopus 로고    scopus 로고
    • DNA methylation is required for the control of stem cell differentiation in the small intestine
    • Sheaffer K.L., et al. DNA methylation is required for the control of stem cell differentiation in the small intestine. Genes Dev. 2014, 28:652-664.
    • (2014) Genes Dev. , vol.28 , pp. 652-664
    • Sheaffer, K.L.1
  • 47
    • 33645825196 scopus 로고    scopus 로고
    • Suppression of intestinal neoplasia by deletion of Dnmt3b
    • Lin H., et al. Suppression of intestinal neoplasia by deletion of Dnmt3b. Mol. Cell. Biol. 2006, 26:2976-2983.
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 2976-2983
    • Lin, H.1
  • 48
    • 84891007206 scopus 로고    scopus 로고
    • Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration
    • Barker N. Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 2014, 15:19-33.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 19-33
    • Barker, N.1
  • 49
    • 84883742415 scopus 로고    scopus 로고
    • Induction of intestinal stem cells by R-spondin 1 and Slit2 augments chemoradioprotection
    • Zhou W-J., et al. Induction of intestinal stem cells by R-spondin 1 and Slit2 augments chemoradioprotection. Nature 2013, 501:107-111.
    • (2013) Nature , vol.501 , pp. 107-111
    • Zhou, W.-J.1
  • 50
    • 80455173895 scopus 로고    scopus 로고
    • Intestinal stem cells in the adult Drosophila midgut
    • Jiang H., Edgar B.A. Intestinal stem cells in the adult Drosophila midgut. Exp. Cell Res. 2011, 317:2780-2788.
    • (2011) Exp. Cell Res. , vol.317 , pp. 2780-2788
    • Jiang, H.1    Edgar, B.A.2
  • 51
    • 84893634418 scopus 로고    scopus 로고
    • Chapter five -- cell death: a program to regenerate
    • Academic Press
    • Vriz S., et al. Chapter five -- cell death: a program to regenerate. Current Topics in Developmental Biology 2014, Vol. 108:121-151. Academic Press.
    • (2014) Current Topics in Developmental Biology , vol.108 , pp. 121-151
    • Vriz, S.1
  • 52
    • 84862994618 scopus 로고    scopus 로고
    • MTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake
    • Yilmaz Ö.H., et al. mTORC1 in the Paneth cell niche couples intestinal stem-cell function to calorie intake. Nature 2012, 486:490-495.
    • (2012) Nature , vol.486 , pp. 490-495
    • Yilmaz, Ö.H.1
  • 53
    • 84896851032 scopus 로고    scopus 로고
    • Intestinal epithelial cells: regulators of barrier function and immune homeostasis
    • Peterson L.W., Artis D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 2014, 14:141-153.
    • (2014) Nat. Rev. Immunol. , vol.14 , pp. 141-153
    • Peterson, L.W.1    Artis, D.2
  • 54
    • 79955030498 scopus 로고    scopus 로고
    • Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22
    • Sonnenberg G.F., et al. Border patrol: regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 2011, 12:383-390.
    • (2011) Nat. Immunol. , vol.12 , pp. 383-390
    • Sonnenberg, G.F.1
  • 55
    • 84879571464 scopus 로고    scopus 로고
    • Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model
    • Kirchberger S., et al. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 2013, 210:917-931.
    • (2013) J. Exp. Med. , vol.210 , pp. 917-931
    • Kirchberger, S.1
  • 56
    • 84868615556 scopus 로고    scopus 로고
    • IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine
    • Huber S., et al. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 2012, 491:259-263.
    • (2012) Nature , vol.491 , pp. 259-263
    • Huber, S.1
  • 57
    • 77950346282 scopus 로고    scopus 로고
    • Immunity, inflammation, and cancer
    • Grivennikov S.I., et al. Immunity, inflammation, and cancer. Cell 2010, 140:883-899.
    • (2010) Cell , vol.140 , pp. 883-899
    • Grivennikov, S.I.1
  • 58
    • 69149106207 scopus 로고    scopus 로고
    • Basal cells as stem cells of the mouse trachea and human airway epithelium
    • Rock J.R., et al. Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:12771-12775.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 12771-12775
    • Rock, J.R.1
  • 59
    • 1642269178 scopus 로고    scopus 로고
    • In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations
    • Hong K.U., et al. In vivo differentiation potential of tracheal basal cells: evidence for multipotent and unipotent subpopulations. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004, 286:L643-L649.
    • (2004) Am. J. Physiol. Lung Cell. Mol. Physiol. , vol.286 , pp. L643-L649
    • Hong, K.U.1
  • 60
    • 84887619426 scopus 로고    scopus 로고
    • Dedifferentiation of committed epithelial cells into stem cells in vivo
    • Tata P.R., et al. Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature 2013, 503:218-223. 10.1038/nature12777.
    • (2013) Nature , vol.503 , pp. 218-223
    • Tata, P.R.1
  • 61
    • 0345530117 scopus 로고    scopus 로고
    • Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney
    • Maeshima A., et al. Identification of renal progenitor-like tubular cells that participate in the regeneration processes of the kidney. J. Am. Soc. Nephrol. 2003, 14:3138-3146.
    • (2003) J. Am. Soc. Nephrol. , vol.14 , pp. 3138-3146
    • Maeshima, A.1
  • 62
    • 0028273536 scopus 로고
    • Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells
    • Witzgall R., et al. Localization of proliferating cell nuclear antigen, vimentin, c-Fos, and clusterin in the postischemic kidney. Evidence for a heterogenous genetic response among nephron segments, and a large pool of mitotically active and dedifferentiated cells. J. Clin. Invest. 1994, 93:2175-2188.
    • (1994) J. Clin. Invest. , vol.93 , pp. 2175-2188
    • Witzgall, R.1
  • 63
    • 33847056230 scopus 로고    scopus 로고
    • Proximal tubular epithelial cells are generated by division of differentiated cells in the healthy kidney
    • Vogetseder A., et al. Proximal tubular epithelial cells are generated by division of differentiated cells in the healthy kidney. Am. J. Physiol. Cell Physiol. 2007, 292:C807-C813.
    • (2007) Am. J. Physiol. Cell Physiol. , vol.292 , pp. C807-C813
    • Vogetseder, A.1
  • 64
    • 64549093430 scopus 로고    scopus 로고
    • Regulation of phosphate transport in proximal tubules
    • Biber J., et al. Regulation of phosphate transport in proximal tubules. Pflugers Arch. 2009, 458:39-52.
    • (2009) Pflugers Arch. , vol.458 , pp. 39-52
    • Biber, J.1
  • 65
    • 84893369728 scopus 로고    scopus 로고
    • Differentiated kidney epithelial cells repair injured proximal tubule
    • Kusaba T., et al. Differentiated kidney epithelial cells repair injured proximal tubule. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:1527-1532.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111 , pp. 1527-1532
    • Kusaba, T.1
  • 66
    • 79959336759 scopus 로고    scopus 로고
    • Repair of injured proximal tubule does not involve specialized progenitors
    • Humphreys B.D., et al. Repair of injured proximal tubule does not involve specialized progenitors. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:9226-9231.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 9226-9231
    • Humphreys, B.D.1
  • 67
    • 84961054225 scopus 로고
    • A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3
    • Grisham J.W. A morphologic study of deoxyribonucleic acid synthesis and cell proliferation in regenerating rat liver; autoradiography with thymidine-H3. Cancer Res. 1962, 22:842-849.
    • (1962) Cancer Res. , vol.22 , pp. 842-849
    • Grisham, J.W.1
  • 68
    • 84876278823 scopus 로고    scopus 로고
    • Robust cellular reprogramming occurs spontaneously during liver regeneration
    • Yanger K., et al. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev. 2013, 27:719-724.
    • (2013) Genes Dev. , vol.27 , pp. 719-724
    • Yanger, K.1
  • 69
    • 73049116186 scopus 로고    scopus 로고
    • Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro
    • Barker N., et al. Lgr5+ve stem cells drive self-renewal in the stomach and build long-lived gastric units in vitro. Cell Stem Cell 2010, 6:25-36.
    • (2010) Cell Stem Cell , vol.6 , pp. 25-36
    • Barker, N.1
  • 70
    • 36549009168 scopus 로고    scopus 로고
    • Prospective identification of a multilineage progenitor in murine stomach epithelium
    • Qiao X.T., et al. Prospective identification of a multilineage progenitor in murine stomach epithelium. Gastroenterology 2007, 133:1989-1998.
    • (2007) Gastroenterology , vol.133 , pp. 1989-1998
    • Qiao, X.T.1
  • 71
    • 80053914464 scopus 로고    scopus 로고
    • Sox2+ adult stem and progenitor cells are important for tissue regeneration and survival of mice
    • Arnold K., et al. Sox2+ adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 2011, 9:317-329.
    • (2011) Cell Stem Cell , vol.9 , pp. 317-329
    • Arnold, K.1
  • 72
    • 78649709713 scopus 로고    scopus 로고
    • TFF2 mRNA transcript expression marks a gland progenitor cell of the gastric oxyntic mucosa
    • 2018-2027.e2
    • Quante M., et al. TFF2 mRNA transcript expression marks a gland progenitor cell of the gastric oxyntic mucosa. Gastroenterology 2010, 139. 2018-2027.e2.
    • (2010) Gastroenterology , vol.139
    • Quante, M.1
  • 73
    • 84885672388 scopus 로고    scopus 로고
    • Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium
    • Stange D.E., et al. Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 2013, 155:357-368.
    • (2013) Cell , vol.155 , pp. 357-368
    • Stange, D.E.1
  • 74
    • 84881524604 scopus 로고    scopus 로고
    • Troy, a tumor necrosis factor receptor family member, interacts with Lgr5 to inhibit Wnt signaling in intestinal stem cells
    • Fafilek B., et al. Troy, a tumor necrosis factor receptor family member, interacts with Lgr5 to inhibit Wnt signaling in intestinal stem cells. Gastroenterology 2013, 144:381-391.
    • (2013) Gastroenterology , vol.144 , pp. 381-391
    • Fafilek, B.1
  • 75
    • 78651447817 scopus 로고    scopus 로고
    • Liver regeneration: alternative epithelial pathways
    • Michalopoulos G.K. Liver regeneration: alternative epithelial pathways. Int. J. Biochem. Cell Biol. 2011, 43:173-179.
    • (2011) Int. J. Biochem. Cell Biol. , vol.43 , pp. 173-179
    • Michalopoulos, G.K.1
  • 76
    • 84899729602 scopus 로고    scopus 로고
    • Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming
    • Miyajima A., et al. Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 2014, 14:561-574.
    • (2014) Cell Stem Cell , vol.14 , pp. 561-574
    • Miyajima, A.1
  • 77
    • 84907540712 scopus 로고    scopus 로고
    • Re-evaluation of liver stem/progenitor cells
    • Tanimizu N., Mitaka T. Re-evaluation of liver stem/progenitor cells. Organogenesis 2014, 10:6-13.
    • (2014) Organogenesis , vol.10 , pp. 6-13
    • Tanimizu, N.1    Mitaka, T.2
  • 78
    • 14244252656 scopus 로고    scopus 로고
    • Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury
    • Michalopoulos G.K., et al. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 2005, 41:535-544.
    • (2005) Hepatology , vol.41 , pp. 535-544
    • Michalopoulos, G.K.1
  • 79
    • 0034121735 scopus 로고    scopus 로고
    • Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages
    • Herrera P.L. Adult insulin- and glucagon-producing cells differentiate from two independent cell lineages. Development 2000, 127:2317-2322.
    • (2000) Development , vol.127 , pp. 2317-2322
    • Herrera, P.L.1
  • 80
    • 2342510386 scopus 로고    scopus 로고
    • Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation
    • Dor Y., et al. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004, 429:41-46.
    • (2004) Nature , vol.429 , pp. 41-46
    • Dor, Y.1
  • 81
    • 71649092364 scopus 로고    scopus 로고
    • Pancreatic exocrine duct cells give rise to insulin-producing β cells during embryogenesis but not after birth
    • Solar M., et al. Pancreatic exocrine duct cells give rise to insulin-producing β cells during embryogenesis but not after birth. Dev. Cell 2009, 17:849-860.
    • (2009) Dev. Cell , vol.17 , pp. 849-860
    • Solar, M.1
  • 82
    • 34147190365 scopus 로고    scopus 로고
    • Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration
    • Desai B.M., et al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration. J. Clin. Invest. 2007, 117:971-977.
    • (2007) J. Clin. Invest. , vol.117 , pp. 971-977
    • Desai, B.M.1
  • 83
    • 77951611220 scopus 로고    scopus 로고
    • Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss
    • Thorel F., et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010, 464:1149-1154.
    • (2010) Nature , vol.464 , pp. 1149-1154
    • Thorel, F.1
  • 84
    • 84873111871 scopus 로고    scopus 로고
    • Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration
    • Pan F.C., et al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration. Development 2013, 140:751-764.
    • (2013) Development , vol.140 , pp. 751-764
    • Pan, F.C.1
  • 85
    • 75849118873 scopus 로고    scopus 로고
    • Shh signaling regulates adrenocortical development and identifies progenitors of steroidogenic lineages
    • King P., et al. Shh signaling regulates adrenocortical development and identifies progenitors of steroidogenic lineages. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:21185-21190.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 21185-21190
    • King, P.1
  • 86
    • 57349088231 scopus 로고    scopus 로고
    • Developmental links between the fetal and adult zones of the adrenal cortex revealed by lineage tracing
    • Zubair M., et al. Developmental links between the fetal and adult zones of the adrenal cortex revealed by lineage tracing. Mol. Cell. Biol. 2008, 28:7030-7040.
    • (2008) Mol. Cell. Biol. , vol.28 , pp. 7030-7040
    • Zubair, M.1
  • 87
    • 84884722129 scopus 로고    scopus 로고
    • Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells
    • Freedman B.D., et al. Adrenocortical zonation results from lineage conversion of differentiated zona glomerulosa cells. Dev. Cell 2013, 26:666-673.
    • (2013) Dev. Cell , vol.26 , pp. 666-673
    • Freedman, B.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.