메뉴 건너뛰기




Volumn 520, Issue , 2015, Pages 224-243

Daily water level forecasting using wavelet decomposition and artificial intelligence techniques

Author keywords

Adaptive neuro fuzzy inference system; Artificial neural network; Water level forecasting; Wavelet decomposition

Indexed keywords

DISCRETE WAVELET TRANSFORMS; EFFICIENCY; FORECASTING; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; NEURAL NETWORKS; RESERVOIRS (WATER); TIME SERIES; TRACKING (POSITION); WATER LEVELS; WAVELET ANALYSIS;

EID: 84916205087     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2014.11.050     Document Type: Article
Times cited : (271)

References (100)
  • 2
    • 79951767552 scopus 로고    scopus 로고
    • Fuzzy wavelet neural network based on fuzzy clustering and gradient techniques for time series prediction
    • Abiyev R.H. Fuzzy wavelet neural network based on fuzzy clustering and gradient techniques for time series prediction. Neural Comput. Appl. 2011, 20(2):249-259.
    • (2011) Neural Comput. Appl. , vol.20 , Issue.2 , pp. 249-259
    • Abiyev, R.H.1
  • 3
    • 80052027629 scopus 로고    scopus 로고
    • A wavelet neural network conjunction model for groundwater level forecasting
    • Adamowski J., Chan H.F. A wavelet neural network conjunction model for groundwater level forecasting. J. Hydrol. 2011, 407(1):28-40.
    • (2011) J. Hydrol. , vol.407 , Issue.1 , pp. 28-40
    • Adamowski, J.1    Chan, H.F.2
  • 4
    • 84878346183 scopus 로고    scopus 로고
    • Comparison of machine learning methods for runoff forecasting in mountainous watersheds with limited data
    • Adamowski J., Prasher S.O. Comparison of machine learning methods for runoff forecasting in mountainous watersheds with limited data. J. Water Land Dev. 2012, 17:89-97.
    • (2012) J. Water Land Dev. , vol.17 , pp. 89-97
    • Adamowski, J.1    Prasher, S.O.2
  • 5
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski J., Sun K. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J. Hydrol. 2010, 390(1):85-91.
    • (2010) J. Hydrol. , vol.390 , Issue.1 , pp. 85-91
    • Adamowski, J.1    Sun, K.2
  • 6
    • 85016594792 scopus 로고    scopus 로고
    • Combination of neuro fuzzy and wavelet model usage in river engineering
    • Alikhani A. Combination of neuro fuzzy and wavelet model usage in river engineering. Int. J. Energy Environ. 2009, 3(3):122-134.
    • (2009) Int. J. Energy Environ. , vol.3 , Issue.3 , pp. 122-134
    • Alikhani, A.1
  • 7
    • 11144345954 scopus 로고    scopus 로고
    • An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition
    • Anctil F., Tape D.G. An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. J. Environ. Eng. Sci. 2004, 3:121-128.
    • (2004) J. Environ. Eng. Sci. , vol.3 , pp. 121-128
    • Anctil, F.1    Tape, D.G.2
  • 8
    • 33846847847 scopus 로고    scopus 로고
    • Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique
    • Bae D.H., Jeong D.M., Kim G. Monthly dam inflow forecasts using weather forecasting information and neuro-fuzzy technique. Hydrol. Sci. J. 2007, 52(1):99-113.
    • (2007) Hydrol. Sci. J. , vol.52 , Issue.1 , pp. 99-113
    • Bae, D.H.1    Jeong, D.M.2    Kim, G.3
  • 9
    • 84888875654 scopus 로고    scopus 로고
    • Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression
    • Belayneh A., Adamowski J. Standard precipitation index drought forecasting using neural networks, wavelet neural networks, and support vector regression. Appl. Comput. Intell. Soft. Comput. 2012, 2012(6). 10.1155/2012/794061.
    • (2012) Appl. Comput. Intell. Soft. Comput. , vol.2012 , Issue.6
    • Belayneh, A.1    Adamowski, J.2
  • 10
    • 84857383259 scopus 로고    scopus 로고
    • Neural networks in R using the Stuttgart neural network simulator: RSNNS
    • Bergmeir C., Benítez J.M. Neural networks in R using the Stuttgart neural network simulator: RSNNS. J. Stat. Softw. 2012, 46(7):1-26.
    • (2012) J. Stat. Softw. , vol.46 , Issue.7 , pp. 1-26
    • Bergmeir, C.1    Benítez, J.M.2
  • 11
    • 0001044176 scopus 로고
    • Neural networks and their applications
    • Bishop C.M. Neural networks and their applications. Rev. Sci. Instrum. 1994, 65(6):1803-1832.
    • (1994) Rev. Sci. Instrum. , vol.65 , Issue.6 , pp. 1803-1832
    • Bishop, C.M.1
  • 12
    • 84874237884 scopus 로고    scopus 로고
    • River flow forecasting using neural networks and wavelet analysis
    • In: Proceedings of the European Geosciences Union, Vienna, Austria
    • Cannas, B., Fanni, A., Sias, G., Tronci, S., Zedda, M.K., 2005. River flow forecasting using neural networks and wavelet analysis. In: Proceedings of the European Geosciences Union, Vienna, Austria, vol. 7, pp. 24-29.
    • (2005) , vol.7 , pp. 24-29
    • Cannas, B.1    Fanni, A.2    Sias, G.3    Tronci, S.4    Zedda, M.K.5
  • 13
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
    • Cannas B., Fanni A., See L., Sias G. Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Phys. Chem. Earth 2006, 31(18):1164-1171.
    • (2006) Phys. Chem. Earth , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 14
    • 79151479782 scopus 로고    scopus 로고
    • Hybrid wavelet-PSO-ANFIS approach for short-term electricity prices forecasting
    • Catalão J.P.S., Pousinho H.M.I., Mendes V.M.F. Hybrid wavelet-PSO-ANFIS approach for short-term electricity prices forecasting. IEEE Trans. Power Syst. 2011, 26(1):137-144.
    • (2011) IEEE Trans. Power Syst. , vol.26 , Issue.1 , pp. 137-144
    • Catalão, J.P.S.1    Pousinho, H.M.I.2    Mendes, V.M.F.3
  • 15
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze River
    • Chau K., Wu C., Li Y. Comparison of several flood forecasting models in Yangtze River. J. Hydrol. Eng. 2005, 10(6):485-491.
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.6 , pp. 485-491
    • Chau, K.1    Wu, C.2    Li, Y.3
  • 16
    • 24944573867 scopus 로고    scopus 로고
    • Long-term prediction of discharges in Manwan Reservoir using artificial neural network models
    • Cheng C., Chau K., Sun Y., Lin J. Long-term prediction of discharges in Manwan Reservoir using artificial neural network models. Lect. Notes Comput. Sci. 2005, 3498:1040-1045.
    • (2005) Lect. Notes Comput. Sci. , vol.3498 , pp. 1040-1045
    • Cheng, C.1    Chau, K.2    Sun, Y.3    Lin, J.4
  • 17
    • 26844569500 scopus 로고    scopus 로고
    • Long-term prediction of discharges in Manwan hydropower using adaptive-network-based fuzzy inference systems models
    • Cheng C.T., Lin J.Y., Sun Y.G., Chau K. Long-term prediction of discharges in Manwan hydropower using adaptive-network-based fuzzy inference systems models. Lect. Notes Comput. Sci. 2005, 3612:1152-1161.
    • (2005) Lect. Notes Comput. Sci. , vol.3612 , pp. 1152-1161
    • Cheng, C.T.1    Lin, J.Y.2    Sun, Y.G.3    Chau, K.4
  • 18
    • 16544365469 scopus 로고    scopus 로고
    • Application of wavelet based multi-model Kalman filters to real-time flood forecasting
    • Chou C.M., Wang R.Y. Application of wavelet based multi-model Kalman filters to real-time flood forecasting. Hydrol. Process. 2004, 18(5):987-1008.
    • (2004) Hydrol. Process. , vol.18 , Issue.5 , pp. 987-1008
    • Chou, C.M.1    Wang, R.Y.2
  • 19
    • 12544253180 scopus 로고    scopus 로고
    • Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data
    • Cigizoglu H.K., Kisi O. Flow prediction by three back propagation techniques using k-fold partitioning of neural network training data. Nord. Hydrol. 2005, 36(1):49-64.
    • (2005) Nord. Hydrol. , vol.36 , Issue.1 , pp. 49-64
    • Cigizoglu, H.K.1    Kisi, O.2
  • 20
    • 84883769476 scopus 로고    scopus 로고
    • Wmtsa: Wavelet Methods for Time Series Analysis. R Package Version 2.0-0.
    • (accessed 06.07.14).
    • Constantine, W., Percival, D., 2013. wmtsa: Wavelet Methods for Time Series Analysis. R Package Version 2.0-0. (accessed 06.07.14). http://CRAN.R-project.org/package=wmtsa.
    • (2013)
    • Constantine, W.1    Percival, D.2
  • 21
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P., Anctil F., Bobee B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 2000, 230(3-4):244-257.
    • (2000) J. Hydrol. , vol.230 , Issue.3-4 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 22
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson C.W., Wilby R.L. Hydrological modelling using artificial neural networks. Prog. Phys. Geogr. 2001, 25(1):80-108.
    • (2001) Prog. Phys. Geogr. , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 23
    • 33646407315 scopus 로고    scopus 로고
    • Discrete wavelet analysis to assess long-term trends in geomagnetic activity
    • de Artigas M.Z., Elias A.G., de Campra P.F. Discrete wavelet analysis to assess long-term trends in geomagnetic activity. Phys. Chem. Earth 2006, 31(1-3):77-80.
    • (2006) Phys. Chem. Earth , vol.31 , Issue.1-3 , pp. 77-80
    • de Artigas, M.Z.1    Elias, A.G.2    de Campra, P.F.3
  • 24
    • 84865624407 scopus 로고    scopus 로고
    • Discrete wavelet-ANN approach in time series flow forecasting - a case study of Brahmaputra River
    • Deka P.C., Haque L., Banhatti A.G. Discrete wavelet-ANN approach in time series flow forecasting - a case study of Brahmaputra River. Int. J. Earth Sci. Eng. 2012, 5(4):673-685.
    • (2012) Int. J. Earth Sci. Eng. , vol.5 , Issue.4 , pp. 673-685
    • Deka, P.C.1    Haque, L.2    Banhatti, A.G.3
  • 25
    • 33947693294 scopus 로고    scopus 로고
    • A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam
    • El-Shafie A., Taha M.R., Noureldin A. A neuro-fuzzy model for inflow forecasting of the Nile river at Aswan high dam. Water Resour. Manage 2007, 21(3):533-556.
    • (2007) Water Resour. Manage , vol.21 , Issue.3 , pp. 533-556
    • El-Shafie, A.1    Taha, M.R.2    Noureldin, A.3
  • 26
    • 84892887743 scopus 로고    scopus 로고
    • Assessing neural networks with wavelet denoising and regression models in predicting diel dynamics of eddy covariance-measured latent and sensible heat fluxes and evapotranspiration
    • Evrendilek F. Assessing neural networks with wavelet denoising and regression models in predicting diel dynamics of eddy covariance-measured latent and sensible heat fluxes and evapotranspiration. Neural Comput. Appl. 2014, 24(2):327-337.
    • (2014) Neural Comput. Appl. , vol.24 , Issue.2 , pp. 327-337
    • Evrendilek, F.1
  • 29
    • 13844305890 scopus 로고    scopus 로고
    • Comparison between Mallat's and the 'à trous' discrete wavelet transform based algorithms for the fusion of multispectral and panchromatic images
    • González-Audícana M., Otazu X., Fors O., Seco A. Comparison between Mallat's and the 'à trous' discrete wavelet transform based algorithms for the fusion of multispectral and panchromatic images. Int. J. Remote Sens. 2005, 26(3):595-614.
    • (2005) Int. J. Remote Sens. , vol.26 , Issue.3 , pp. 595-614
    • González-Audícana, M.1    Otazu, X.2    Fors, O.3    Seco, A.4
  • 30
    • 84871390883 scopus 로고    scopus 로고
    • Neuralnet: training of neural networks
    • Günther F., Fritsch S. Neuralnet: training of neural networks. R J. 2010, 2(1):30-38.
    • (2010) R J. , vol.2 , Issue.1 , pp. 30-38
    • Günther, F.1    Fritsch, S.2
  • 31
    • 33846419128 scopus 로고    scopus 로고
    • Uncertainties in real-time flood forecasting with neural networks
    • Han D., Kwong T., Li S. Uncertainties in real-time flood forecasting with neural networks. Hydrol. Process. 2007, 21(2):223-228.
    • (2007) Hydrol. Process. , vol.21 , Issue.2 , pp. 223-228
    • Han, D.1    Kwong, T.2    Li, S.3
  • 32
    • 33947669633 scopus 로고    scopus 로고
    • Automization of INS/GPS integration system using genetic optimization
    • In: Proceedings of the 5th International Symposium of Soft Computing for Industry, Seville, Spain.
    • Hassanain, M.A., Taha, M.R., Noureldin, A., El-Sheimy, N., 2004. Automization of INS/GPS integration system using genetic optimization. In: Proceedings of the 5th International Symposium of Soft Computing for Industry, Seville, Spain.
    • (2004)
    • Hassanain, M.A.1    Taha, M.R.2    Noureldin, A.3    El-Sheimy, N.4
  • 34
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K., Stichcombe M., White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2(5):359-366.
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stichcombe, M.2    White, H.3
  • 35
    • 0034641121 scopus 로고    scopus 로고
    • River flow prediction using artificial neural networks: generalisation beyond the calibration range
    • Imrie C.E., Durucan S., Korre A. River flow prediction using artificial neural networks: generalisation beyond the calibration range. J. Hydrol. 2000, 233(1-4):138-153.
    • (2000) J. Hydrol. , vol.233 , Issue.1-4 , pp. 138-153
    • Imrie, C.E.1    Durucan, S.2    Korre, A.3
  • 36
    • 0033197895 scopus 로고    scopus 로고
    • Application of ANN for reservoir inflow prediction and operation
    • Jain S.K., Das A., Srivastava D.K. Application of ANN for reservoir inflow prediction and operation. J. Water Resour. Plan. Manage. 1999, 125(5):263-271.
    • (1999) J. Water Resour. Plan. Manage. , vol.125 , Issue.5 , pp. 263-271
    • Jain, S.K.1    Das, A.2    Srivastava, D.K.3
  • 37
    • 0027601884 scopus 로고
    • ANFIS: adaptive-network-based fuzzy inference system
    • Jang J.S.R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23(3):665-685.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Jang, J.S.R.1
  • 39
    • 30444441291 scopus 로고    scopus 로고
    • Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction
    • Jeong D., Kim Y.O. Rainfall-runoff models using artificial neural networks for ensemble streamflow prediction. Hydrol. Process. 2005, 19(19):3819-3835.
    • (2005) Hydrol. Process. , vol.19 , Issue.19 , pp. 3819-3835
    • Jeong, D.1    Kim, Y.O.2
  • 40
    • 33750682003 scopus 로고    scopus 로고
    • Bootstrapped artificial neural networks for synthetic flow generation with a small data sample
    • Jia Y., Culver T.B. Bootstrapped artificial neural networks for synthetic flow generation with a small data sample. J. Hydrol. 2006, 331(3-4):580-590.
    • (2006) J. Hydrol. , vol.331 , Issue.3-4 , pp. 580-590
    • Jia, Y.1    Culver, T.B.2
  • 41
    • 84862673732 scopus 로고    scopus 로고
    • Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data
    • Jothiprakash V., Magar R.B. Multi-time-step ahead daily and hourly intermittent reservoir inflow prediction by artificial intelligent techniques using lumped and distributed data. J. Hydrol. 2012, 450-451:293-307.
    • (2012) J. Hydrol. , pp. 293-307
    • Jothiprakash, V.1    Magar, R.B.2
  • 42
    • 80054087295 scopus 로고    scopus 로고
    • Applicability of adaptive neuro-fuzzy inference systems in daily reservoir inflow forecasting
    • Karimi-Googhari S.H., Lee T.S. Applicability of adaptive neuro-fuzzy inference systems in daily reservoir inflow forecasting. Int. J. Soft Comput. 2011, 6(3):75-84.
    • (2011) Int. J. Soft Comput. , vol.6 , Issue.3 , pp. 75-84
    • Karimi-Googhari, S.H.1    Lee, T.S.2
  • 43
    • 33646572227 scopus 로고    scopus 로고
    • Chaotic time series prediction with a global model: artificial neural network
    • Karunasinghe D.S.K., Liong S.Y. Chaotic time series prediction with a global model: artificial neural network. J. Hydrol. 2006, 323(1-4):92-105.
    • (2006) J. Hydrol. , vol.323 , Issue.1-4 , pp. 92-105
    • Karunasinghe, D.S.K.1    Liong, S.Y.2
  • 44
    • 84980480384 scopus 로고    scopus 로고
    • Application of information content to extract wavelet-based feature of rainfall-runoff process
    • In: Proceedings of the 12th WSEAS International Conference on Applied Computer Science, WSEAS, Greece
    • Khanghah, T.R., Nourani, V., Parhizkar, M., Sharghi, E., 2012. Application of information content to extract wavelet-based feature of rainfall-runoff process. In: Proceedings of the 12th WSEAS International Conference on Applied Computer Science, WSEAS, Greece, pp. 148-153.
    • (2012) , pp. 148-153
    • Khanghah, T.R.1    Nourani, V.2    Parhizkar, M.3    Sharghi, E.4
  • 45
    • 0036827271 scopus 로고    scopus 로고
    • Fuzzy logic model of Langmuir probe discharge data
    • Kim B., Park J.H., Kim B.S. Fuzzy logic model of Langmuir probe discharge data. Comput. Chem. 2002, 26(6):573-581.
    • (2002) Comput. Chem. , vol.26 , Issue.6 , pp. 573-581
    • Kim, B.1    Park, J.H.2    Kim, B.S.3
  • 46
    • 84864232529 scopus 로고    scopus 로고
    • Estimation of pan evaporation using neural networks and climate-based models
    • Kim S., Park K.B., Seo Y. Estimation of pan evaporation using neural networks and climate-based models. Disaster Adv. 2012, 5(3):34-43.
    • (2012) Disaster Adv. , vol.5 , Issue.3 , pp. 34-43
    • Kim, S.1    Park, K.B.2    Seo, Y.3
  • 47
    • 84865479667 scopus 로고    scopus 로고
    • Pan evaporation modeling using neural computing approach for different climatic zones
    • Kim S., Shiri J., Kisi O. Pan evaporation modeling using neural computing approach for different climatic zones. Water Resour. Manage. 2012, 26(11):3231-3249.
    • (2012) Water Resour. Manage. , vol.26 , Issue.11 , pp. 3231-3249
    • Kim, S.1    Shiri, J.2    Kisi, O.3
  • 48
    • 84890873768 scopus 로고    scopus 로고
    • Assessment of pan evaporation modeling using bootstrap resampling and soft computing methods
    • Kim S., Seo Y., Singh V.P. Assessment of pan evaporation modeling using bootstrap resampling and soft computing methods. J. Comput. Civ. Eng. 2013, 1943. 10.1061/(ASCE)CP-5487.0000367.
    • (2013) J. Comput. Civ. Eng. , vol.1943
    • Kim, S.1    Seo, Y.2    Singh, V.P.3
  • 49
    • 84876427289 scopus 로고    scopus 로고
    • Estimating daily pan evaporation using different data-driven methods and lag-time patterns
    • Kim S., Shiri J., Kisi O., Singh V.P. Estimating daily pan evaporation using different data-driven methods and lag-time patterns. Water Resour. Manage. 2013, 27(7):2267-2286.
    • (2013) Water Resour. Manage. , vol.27 , Issue.7 , pp. 2267-2286
    • Kim, S.1    Shiri, J.2    Kisi, O.3    Singh, V.P.4
  • 50
    • 34548146808 scopus 로고    scopus 로고
    • Streamflow forecasting using different artificial neural network algorithms
    • Kisi O. Streamflow forecasting using different artificial neural network algorithms. J. Hydrol. Eng. 2007, 12(5):532-539.
    • (2007) J. Hydrol. Eng. , vol.12 , Issue.5 , pp. 532-539
    • Kisi, O.1
  • 51
    • 41949142664 scopus 로고    scopus 로고
    • River flow forecasting and estimation using different artificial neural network techniques
    • Kisi O. River flow forecasting and estimation using different artificial neural network techniques. Hydrol. Res. 2008, 39(1):27-40.
    • (2008) Hydrol. Res. , vol.39 , Issue.1 , pp. 27-40
    • Kisi, O.1
  • 52
    • 77955049922 scopus 로고    scopus 로고
    • Wavelet regression model for short-term streamflow forecasting
    • Kisi O. Wavelet regression model for short-term streamflow forecasting. J. Hydrol. 2010, 389(3-4):344-353.
    • (2010) J. Hydrol. , vol.389 , Issue.3-4 , pp. 344-353
    • Kisi, O.1
  • 53
    • 79954624498 scopus 로고    scopus 로고
    • Evapotranspiration modeling using a wavelet regression model
    • Kisi O. Evapotranspiration modeling using a wavelet regression model. Irrig. Sci. 2011, 29(3):241-252.
    • (2011) Irrig. Sci. , vol.29 , Issue.3 , pp. 241-252
    • Kisi, O.1
  • 54
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly streamflow forecasting
    • Kisi O., Cimen M. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J. Hydrol. 2011, 399(1-2):132-140.
    • (2011) J. Hydrol. , vol.399 , Issue.1-2 , pp. 132-140
    • Kisi, O.1    Cimen, M.2
  • 55
    • 84916200755 scopus 로고    scopus 로고
    • A wavelet-genetic programming model for predicting short-term and long-term air temperatures
    • Kisi O., Shiri J., Nazemi A.H. A wavelet-genetic programming model for predicting short-term and long-term air temperatures. J. Civ. Eng. Urban. 2011, 1(1):25-37.
    • (2011) J. Civ. Eng. Urban. , vol.1 , Issue.1 , pp. 25-37
    • Kisi, O.1    Shiri, J.2    Nazemi, A.H.3
  • 56
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: the wavelet representation
    • Mallat S.G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11(7):674-693.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 57
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • Mamdani E.H., Assilian S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man Mach. Stud. 1975, 7(1):1-13.
    • (1975) Int. J. Man Mach. Stud. , vol.7 , Issue.1 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 58
    • 84916220844 scopus 로고    scopus 로고
    • Fuzzy Logic Toolbox User's Guide. The Mathworks, Inc. (accessed 06.07.14).
    • Mathworks, 2014a. Fuzzy Logic Toolbox User's Guide. The Mathworks, Inc. (accessed 06.07.14). http://www.mathworks.com/help/pdf_doc/fuzzy/fuzzy.pdf.
    • (2014)
  • 59
    • 84916241039 scopus 로고    scopus 로고
    • Wavelet Toolbox User's Guide. The Mathworks, Inc. (accessed 06.07.14).
    • Mathworks, 2014b. Wavelet Toolbox User's Guide. The Mathworks, Inc. (accessed 06.07.14). http://www.mathworks.com/help/pdf_doc/wavelet/wavelet_ug.pdf.
    • (2014)
  • 60
    • 78149474590 scopus 로고    scopus 로고
    • Wavelet neural networks for nonlinear time series analysis
    • Minu K.K., Lineesh M.C., John C.J. Wavelet neural networks for nonlinear time series analysis. Appl. Math. Sci. 2010, 4(50):2485-2495.
    • (2010) Appl. Math. Sci. , vol.4 , Issue.50 , pp. 2485-2495
    • Minu, K.K.1    Lineesh, M.C.2    John, C.J.3
  • 62
    • 84899834741 scopus 로고    scopus 로고
    • Elevation of wavelet denoising performance via an ANN-based streamflow forecasting model
    • Nejad F.H., Nourani V. Elevation of wavelet denoising performance via an ANN-based streamflow forecasting model. Int. J. Comput. Sci. Manage. Res. 2012, 1(4):764-770.
    • (2012) Int. J. Comput. Sci. Manage. Res. , vol.1 , Issue.4 , pp. 764-770
    • Nejad, F.H.1    Nourani, V.2
  • 63
    • 61349106542 scopus 로고    scopus 로고
    • A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation
    • Nourani V., Alami M.T., Aminfar M.H. A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng. Appl. Artif. Intell. 2009, 22(3):466-472.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , Issue.3 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 64
    • 79955025170 scopus 로고    scopus 로고
    • Two hybrid artificial intelligence approaches for modeling rainfall-runoff process
    • Nourani V., Kisi O., Komasi M. Two hybrid artificial intelligence approaches for modeling rainfall-runoff process. J. Hydrol. 2011, 402(1-2):41-59.
    • (2011) J. Hydrol. , vol.402 , Issue.1-2 , pp. 41-59
    • Nourani, V.1    Kisi, O.2    Komasi, M.3
  • 65
    • 84997699944 scopus 로고    scopus 로고
    • Wavelet-based feature extraction of rainfall-runoff process via self-organizing map
    • In: Proceedings of the 12th WSEAS International Conference on Applied Computer Science, WSEAS, Greece
    • Nourani, V., Parhizkar, M., Khanghah, T.R., Baghanam, A.H., Sharghi, E., 2012. Wavelet-based feature extraction of rainfall-runoff process via self-organizing map. In: Proceedings of the 12th WSEAS International Conference on Applied Computer Science, WSEAS, Greece, pp. 101-106.
    • (2012) , pp. 101-106
    • Nourani, V.1    Parhizkar, M.2    Khanghah, T.R.3    Baghanam, A.H.4    Sharghi, E.5
  • 66
    • 84916217205 scopus 로고    scopus 로고
    • Using wavelet transform to improve generalization capability of feed forward neural networks in monthly runoff prediction
    • Okkan U. Using wavelet transform to improve generalization capability of feed forward neural networks in monthly runoff prediction. Sci. Res. Essays 2012, 7(17):1690-1703.
    • (2012) Sci. Res. Essays , vol.7 , Issue.17 , pp. 1690-1703
    • Okkan, U.1
  • 67
    • 84881622325 scopus 로고    scopus 로고
    • The combined use of wavelet transform and black box models in reservoir inflow modeling
    • Okkan U., Serbes Z.A. The combined use of wavelet transform and black box models in reservoir inflow modeling. J. Hydrol. Hydromech. 2013, 61(2):112-119.
    • (2013) J. Hydrol. Hydromech. , vol.61 , Issue.2 , pp. 112-119
    • Okkan, U.1    Serbes, Z.A.2
  • 68
    • 80053943536 scopus 로고    scopus 로고
    • Reservoir inflow forecasting using artificial neural network
    • Othman F., Naseri M. Reservoir inflow forecasting using artificial neural network. Int. J. Phys. Sci. 2011, 6(3):434-440.
    • (2011) Int. J. Phys. Sci. , vol.6 , Issue.3 , pp. 434-440
    • Othman, F.1    Naseri, M.2
  • 69
    • 48649085521 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data using wavelet-neural networks
    • Partal T., Cigizoglu H.K. Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. J. Hydrol. 2009, 358(3-4):317-331.
    • (2009) J. Hydrol. , vol.358 , Issue.3-4 , pp. 317-331
    • Partal, T.1    Cigizoglu, H.K.2
  • 70
    • 0036206371 scopus 로고    scopus 로고
    • Similarity search over time-series data using wavelets
    • In: Proceedings of 18th International Conference on Data Engineering, San Jose, CA
    • Popivanov, I., Miller, R.J., 2002. Similarity search over time-series data using wavelets. In: Proceedings of 18th International Conference on Data Engineering, San Jose, CA, pp. 212-221.
    • (2002) , pp. 212-221
    • Popivanov, I.1    Miller, R.J.2
  • 71
    • 84863304598 scopus 로고    scopus 로고
    • R: A Language and Environment for Statistical Computing
    • R Foundation for Statistical Computing, Vienna, Austria. (accessed 06.07.14).
    • R Core Team, 2014. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. (accessed 06.07.14). http://www.R-project.org.
    • (2014)
  • 72
    • 77949939808 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction approach for suspended sediment prediction
    • Rajaee T. Wavelet and neuro-fuzzy conjunction approach for suspended sediment prediction. Clean: Soil, Air, Water 2010, 38(3):275-288.
    • (2010) Clean: Soil, Air, Water , vol.38 , Issue.3 , pp. 275-288
    • Rajaee, T.1
  • 73
    • 79961076393 scopus 로고    scopus 로고
    • River suspended sediment load prediction: application of ANN and wavelet conjunction model
    • Rajaee T., Nourani V., Mohammad Z.K., Kisi O. River suspended sediment load prediction: application of ANN and wavelet conjunction model. J. Hydrol. Eng. 2011, 16(8):613-627.
    • (2011) J. Hydrol. Eng. , vol.16 , Issue.8 , pp. 613-627
    • Rajaee, T.1    Nourani, V.2    Mohammad, Z.K.3    Kisi, O.4
  • 74
    • 58149181821 scopus 로고    scopus 로고
    • Reservoir inflow modeling using temporal neural networks with forgetting factor approach
    • Razavi S., Araghinejad S. Reservoir inflow modeling using temporal neural networks with forgetting factor approach. Water Res. Manage. 2009, 23(1):39-55.
    • (2009) Water Res. Manage. , vol.23 , Issue.1 , pp. 39-55
    • Razavi, S.1    Araghinejad, S.2
  • 75
    • 84904819907 scopus 로고    scopus 로고
    • Discrete wavelet transform coupled with ANN for daily discharge forecasting into Três Marias reservoir
    • In: Proceedings of the International Association of Hydrological Sciences, Bologna, Italy
    • Santos, C.A.G., Freire, P.K.M.M., Silva, G.B.L., Silva, R.M., 2014. Discrete wavelet transform coupled with ANN for daily discharge forecasting into Três Marias reservoir. In: Proceedings of the International Association of Hydrological Sciences, Bologna, Italy, pp. 100-105.
    • (2014) , pp. 100-105
    • Santos, C.A.G.1    Freire, P.K.M.M.2    Silva, G.B.L.3    Silva, R.M.4
  • 76
    • 84916234256 scopus 로고    scopus 로고
    • Flood forecasting and uncertainty assessment using bootstrapped ANFIS
    • In: Proceedings of 6th Conference of Asia Pacific Association of Hydrology and Water Resources, Seoul, South Korea
    • Seo, Y., Kim, S., Singh, V.P., 2013a. Flood forecasting and uncertainty assessment using bootstrapped ANFIS. In: Proceedings of 6th Conference of Asia Pacific Association of Hydrology and Water Resources, Seoul, South Korea, pp. 1-8.
    • (2013) , pp. 1-8
    • Seo, Y.1    Kim, S.2    Singh, V.P.3
  • 77
    • 84916217603 scopus 로고    scopus 로고
    • Comparative study on fuzzy rule-based systems for flood level forecasting
    • In: Proceedings of Korea Water Resources Association, South Korea, (in Korean).
    • Seo, Y., Park, K.B., Kim, S., 2013b. Comparative study on fuzzy rule-based systems for flood level forecasting. In: Proceedings of Korea Water Resources Association, South Korea, pp. 421-425 (in Korean).
    • (2013) , pp. 421-425
    • Seo, Y.1    Park, K.B.2    Kim, S.3
  • 78
    • 84916224856 scopus 로고    scopus 로고
    • Application of bootstrap-based artificial neural networks to flood forecasting and uncertainty assessment
    • In: Proceedings of 6th International Perspective on Water Resources and the Environment, EWRI-ASCE, Izmir, Turkey.
    • Seo, Y., Park, K.B., Kim, S., Singh, V.P., 2013c. Application of bootstrap-based artificial neural networks to flood forecasting and uncertainty assessment. In: Proceedings of 6th International Perspective on Water Resources and the Environment, EWRI-ASCE, Izmir, Turkey.
    • (2013)
    • Seo, Y.1    Park, K.B.2    Kim, S.3    Singh, V.P.4
  • 79
    • 68349123741 scopus 로고    scopus 로고
    • Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment
    • Sharma S.K., Tiwari K.N. Bootstrap based artificial neural network (BANN) analysis for hierarchical prediction of monthly runoff in Upper Damodar Valley Catchment. J. Hydrol. 2009, 374(3-4):209-222.
    • (2009) J. Hydrol. , vol.374 , Issue.3-4 , pp. 209-222
    • Sharma, S.K.1    Tiwari, K.N.2
  • 81
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2(6):568-576.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 82
    • 36749007877 scopus 로고    scopus 로고
    • A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models
    • Srivastav R.K., Sudheer K.P., Chaubey I. A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models. Water Resour. Res. 2007, 43(10):W10407.
    • (2007) Water Resour. Res. , vol.43 , Issue.10 , pp. W10407
    • Srivastav, R.K.1    Sudheer, K.P.2    Chaubey, I.3
  • 83
    • 84873478642 scopus 로고    scopus 로고
    • A Wavelets based Approach for Time Series Mining
    • Ph.D. Dissertation, Telecom Bretagne, France.
    • Stolojescu, C.L., 2012. A Wavelets based Approach for Time Series Mining, Ph.D. Dissertation, Telecom Bretagne, France.
    • (2012)
    • Stolojescu, C.L.1
  • 84
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer K.P., Gosain A.K., Ramasastri K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Process. 2002, 16(6):1325-1330.
    • (2002) Hydrol. Process. , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 85
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its application to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 1985, 15(1):116-132.
    • (1985) IEEE Trans. Syst. Man Cybern. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 86
    • 0001572432 scopus 로고    scopus 로고
    • A comparison of some error estimates for neural network models
    • Tibshirani R. A comparison of some error estimates for neural network models. Neural Comput. 1996, 8(1):152-163.
    • (1996) Neural Comput. , vol.8 , Issue.1 , pp. 152-163
    • Tibshirani, R.1
  • 87
    • 75149131606 scopus 로고    scopus 로고
    • Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs)
    • Tiwari M.K., Chatterjee C. Uncertainty assessment and ensemble flood forecasting using bootstrap based artificial neural networks (BANNs). J. Hydrol. 2010, 382(1-4):20-33.
    • (2010) J. Hydrol. , vol.382 , Issue.1-4 , pp. 20-33
    • Tiwari, M.K.1    Chatterjee, C.2
  • 88
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach
    • Tiwari M.K., Chatterjee C. Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach. J. Hydrol. 2010, 394(3-4):458-470.
    • (2010) J. Hydrol. , vol.394 , Issue.3-4 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 90
    • 0032140934 scopus 로고    scopus 로고
    • Bias and variance of validation methods for function approximation neural networks under conditions of sparse data
    • Twomey J.M., Smith A.E. Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Trans. Syst. Man Cybern. 1998, 28(3):417-430.
    • (1998) IEEE Trans. Syst. Man Cybern. , vol.28 , Issue.3 , pp. 417-430
    • Twomey, J.M.1    Smith, A.E.2
  • 91
    • 0035341139 scopus 로고    scopus 로고
    • Lake evaporation estimates in tropical Africa (Lake Ziway, Ethiopia)
    • Vallet-Coulomb C., Legesse D., Gasse F., Travi Y., Chernet T. Lake evaporation estimates in tropical Africa (Lake Ziway, Ethiopia). J. Hydrol. 2001, 245(1-4):1-18.
    • (2001) J. Hydrol. , vol.245 , Issue.1-4 , pp. 1-18
    • Vallet-Coulomb, C.1    Legesse, D.2    Gasse, F.3    Travi, Y.4    Chernet, T.5
  • 92
  • 93
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang W., Ding J. Wavelet network model and its application to the prediction of hydrology. Nat. Sci. 2003, 1(1):67-71.
    • (2003) Nat. Sci. , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 94
    • 33646547633 scopus 로고    scopus 로고
    • Forecasting daily streamflow using hybrid ANN models
    • Wang W., Van Gelder P., Vrijling J.K., Ma J. Forecasting daily streamflow using hybrid ANN models. J. Hydrol. 2006, 324(1-4):383-399.
    • (2006) J. Hydrol. , vol.324 , Issue.1-4 , pp. 383-399
    • Wang, W.1    Van Gelder, P.2    Vrijling, J.K.3    Ma, J.4
  • 95
    • 34250003509 scopus 로고    scopus 로고
    • Cuntan station of the Yangtze River annual runoff forecasting with set pair analysis method
    • Wang H.F., Huang W.J., Wang W.S. Cuntan station of the Yangtze River annual runoff forecasting with set pair analysis method. J. Heilongjiang Hydraul. Eng. Coll. 2006, 33(4):3-5.
    • (2006) J. Heilongjiang Hydraul. Eng. Coll. , vol.33 , Issue.4 , pp. 3-5
    • Wang, H.F.1    Huang, W.J.2    Wang, W.S.3
  • 96
    • 70349237925 scopus 로고    scopus 로고
    • Prediction of inflow at Three Gorges Dam in Yangtze River with wavelet network model
    • Wang W., Jin J., Li Y. Prediction of inflow at Three Gorges Dam in Yangtze River with wavelet network model. Water Res. Manage. 2009, 23(13):2791-2803.
    • (2009) Water Res. Manage. , vol.23 , Issue.13 , pp. 2791-2803
    • Wang, W.1    Jin, J.2    Li, Y.3
  • 97
    • 84855462883 scopus 로고    scopus 로고
    • Simulating and predicting river discharge time series using a wavelet-neural network hybrid modelling approach
    • Wei S., Song J., Khan N.I. Simulating and predicting river discharge time series using a wavelet-neural network hybrid modelling approach. Hydrol. Process. 2012, 26(2):281-296.
    • (2012) Hydrol. Process. , vol.26 , Issue.2 , pp. 281-296
    • Wei, S.1    Song, J.2    Khan, N.I.3
  • 98
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques
    • Wu C.L., Chau K.W., Li Y.S. Predicting monthly streamflow using data-driven models coupled with data-preprocessing techniques. Water Resour. Res. 2009, 45(8):W08432.
    • (2009) Water Resour. Res. , vol.45 , Issue.8 , pp. W08432
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 99
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Zhang G., Patuwo B.E., Hu M.Y. Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 1998, 14(1):35-62.
    • (1998) Int. J. Forecast. , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Patuwo, B.E.2    Hu, M.Y.3
  • 100
    • 33746375347 scopus 로고    scopus 로고
    • A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes
    • Zio E. A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting nuclear transient processes. IEEE Trans. Nucl. Sci. 2006, 53(3):1460-1478.
    • (2006) IEEE Trans. Nucl. Sci. , vol.53 , Issue.3 , pp. 1460-1478
    • Zio, E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.