메뉴 건너뛰기




Volumn 38, Issue 3, 2010, Pages 275-286

Wavelet and neuro-fuzzy conjunction approach for suspended sediment prediction

Author keywords

Multi linear regression; Neuro fuzzy; Sediment rating curve; Suspended sediment prediction; Wavelet analysis

Indexed keywords

ARTIFICIAL NEURAL NETWORK; FUZZY MATHEMATICS; MODELING; PREDICTION; RATING CURVE; REGRESSION ANALYSIS; RIVER FLOW; SEDIMENT TRANSPORT; SUSPENDED SEDIMENT; WAVELET ANALYSIS;

EID: 77949939808     PISSN: 18630650     EISSN: 18630669     Source Type: Journal    
DOI: 10.1002/clen.200900191     Document Type: Article
Times cited : (32)

References (48)
  • 2
    • 0023962844 scopus 로고
    • Uncertainty in Suspended Sediment Transport Curves
    • E. A. McBean, S. Al-Nassri, Uncertainty in Suspended Sediment Transport Curves, J. Hydraul. Eng. 1988, 114 (1), 63-74.
    • (1988) J. Hydraul. Eng , vol.114 , Issue.1 , pp. 63-74
    • McBean, E.A.1    Al-Nassri, S.2
  • 3
    • 0034874799 scopus 로고    scopus 로고
    • Factors Controlling Sediment Yield from Small Intensively Cultivated Catchments in a Temperate Humid Climate
    • G. Verstraeten, J. Poesen, Factors Controlling Sediment Yield from Small Intensively Cultivated Catchments in a Temperate Humid Climate, Geomorphology 2001, 40, 123-144.
    • (2001) Geomorphology , vol.40 , pp. 123-144
    • Verstraeten, G.1    Poesen, J.2
  • 4
    • 23044459648 scopus 로고    scopus 로고
    • Suspended Sediment Estimation Using Neuro-fuzzy and Neural Network Approaches
    • O. Kisi, Suspended Sediment Estimation Using Neuro-fuzzy and Neural Network Approaches, Hydrol. Sci. J. 2005, 50 (4), 683-696.
    • (2005) Hydrol. Sci. J , vol.50 , Issue.4 , pp. 683-696
    • Kisi, O.1
  • 5
    • 67649845504 scopus 로고    scopus 로고
    • Modeling River Stage-discharge Relationships Using Different Neural Network Computing Techniques
    • O. Kisi, Modeling River Stage-discharge Relationships Using Different Neural Network Computing Techniques, Clean - Soil, Air, Water 2009,37 (2),160-169.
    • (2009) Clean - Soil, Air, Water , vol.37 , Issue.2 , pp. 160-169
    • Kisi, O.1
  • 6
    • 69449095330 scopus 로고    scopus 로고
    • Modeling Monthly Mean Flow in a Poorly Gauged Basin by Fuzzy Logic
    • Z. F. Toprak et al., Modeling Monthly Mean Flow in a Poorly Gauged Basin by Fuzzy Logic, Clean - Soil, Air, Water 2009, 37 (7), 555-564.
    • (2009) Clean - Soil, Air, Water , vol.37 , Issue.7 , pp. 555-564
    • Toprak, Z.F.1
  • 7
    • 70349604899 scopus 로고    scopus 로고
    • Flow Discharge Modeling in Open Canals Using a New Fuzzy Modeling Technique (SMRGT)
    • Z. F. Toprak, Flow Discharge Modeling in Open Canals Using a New Fuzzy Modeling Technique (SMRGT), Clean - Soil, Air, Water 2009, 37 (9),742-752.
    • (2009) Clean - Soil, Air, Water , vol.37 , Issue.9 , pp. 742-752
    • Toprak, Z.F.1
  • 8
    • 38049071628 scopus 로고    scopus 로고
    • Longitudinal Dispersion Modeling in Natural Channels by Fuzzy Logic
    • Z. F. Toprak, M. E. Savci, Longitudinal Dispersion Modeling in Natural Channels by Fuzzy Logic, Clean - Soil, Air, Water 2007, 35 (6), 626-637.
    • (2007) Clean - Soil, Air, Water , vol.35 , Issue.6 , pp. 626-637
    • Toprak, Z.F.1    Savci, M.E.2
  • 9
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of Several Flood Forecasting Models in Yangtze River
    • K. W. Chau, C. L. Wu, Y. S. Li, Comparison of Several Flood Forecasting Models in Yangtze River, J. Hydrol. Eng. 2005, 10 (6), 485-491.
    • (2005) J. Hydrol. Eng , vol.10 , Issue.6 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 10
    • 37249083060 scopus 로고    scopus 로고
    • Using Adaptive Neuro-fuzzy Inference System for Hydrological Time Series Prediction
    • M. Zounemat-Kermani, M. Teshnehlab, Using Adaptive Neuro-fuzzy Inference System for Hydrological Time Series Prediction, Appl. Soft Comput. 2008, 8, 928-936.
    • (2008) Appl. Soft Comput , vol.8 , pp. 928-936
    • Zounemat-Kermani, M.1    Teshnehlab, M.2
  • 12
    • 33845872549 scopus 로고    scopus 로고
    • River Suspended Sediment Modeling Using a Fuzzy Logic Approach
    • O. Kisi, E. Karahan, Z. Sen, River Suspended Sediment Modeling Using a Fuzzy Logic Approach, Hydrol. Processes 2006, 20 (20), 4351-4362.
    • (2006) Hydrol. Processes , vol.20 , Issue.20 , pp. 4351-4362
    • Kisi, O.1    Karahan, E.2    Sen, Z.3
  • 13
    • 34547743385 scopus 로고    scopus 로고
    • Deriving Stage-discharge-sediment Concentration Relationships Using Fuzzy Logic
    • A. K. Lohani, N. K. Goel, K. K. Bhatia, Deriving Stage-discharge-sediment Concentration Relationships Using Fuzzy Logic, Hydrol. Sci. J. 2007,52 (4),793-807.
    • (2007) Hydrol. Sci. J , vol.52 , Issue.4 , pp. 793-807
    • Lohani, A.K.1    Goel, N.K.2    Bhatia, K.K.3
  • 14
    • 60849126964 scopus 로고    scopus 로고
    • Adaptive Neuro-fuzzy Computing Technique for Suspended Sediment Estimation
    • O. Kisi et al., Adaptive Neuro-fuzzy Computing Technique for Suspended Sediment Estimation, Adv. Eng. Softw. 2008, 40, 438-444.
    • (2008) Adv. Eng. Softw , vol.40 , pp. 438-444
    • Kisi, O.1
  • 15
    • 67649111107 scopus 로고    scopus 로고
    • Daily Suspended Sediment Concentration Simulation Using ANN and Neuro-fuzzy Models
    • T. Rajaee, S. A. Mirbagheri, M. Zounemat-Kermani, V. Nourani, Daily Suspended Sediment Concentration Simulation Using ANN and Neuro-fuzzy Models, Sci. Total Environ. 2009, 407, 4916-4927.
    • (2009) Sci. Total Environ , vol.407 , pp. 4916-4927
    • Rajaee, T.1    Mirbagheri, S.A.2    Zounemat-Kermani, M.3    Nourani, V.4
  • 16
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear Model for Drought Forecasting Based on a Conjunction of Wavelet Transforms and Neural Networks
    • T. W. Kim, J. B. Valdes, Nonlinear Model for Drought Forecasting Based on a Conjunction of Wavelet Transforms and Neural Networks, J. Hydrol. Eng., ASCE 2003, 8 (6), 319-328.
    • (2003) J. Hydrol. Eng., ASCE , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.W.1    Valdes, J.B.2
  • 17
    • 0035154671 scopus 로고    scopus 로고
    • Using Wavelets for Data Generation
    • M. Bayazit, H. Aksoy, Using Wavelets for Data Generation, J. Appl. Stat. 2001, 28 (2), 157-166.
    • (2001) J. Appl. Stat , vol.28 , Issue.2 , pp. 157-166
    • Bayazit, M.1    Aksoy, H.2
  • 18
    • 3242711607 scopus 로고    scopus 로고
    • Stochastic Generation of Hourly Mean Wind Speed Data
    • H. Aksoy, Z. F. Toprak, A. Aytek, N. E. Ünal, Stochastic Generation of Hourly Mean Wind Speed Data, Renew. Energy 2004, 29 (14), 2111-2131.
    • (2004) Renew. Energy , vol.29 , Issue.14 , pp. 2111-2131
    • Aksoy, H.1    Toprak, Z.F.2    Aytek, A.3    Ünal, N.E.4
  • 19
    • 36348960804 scopus 로고    scopus 로고
    • Discussion of "Comparison of Two Nonparametric Alternatives for Stochastic Generation of Monthly Rainfall"
    • by R. Srikanthan, A. Sharma, T. A. McMahon
    • H. Aksoy, N. E. Unal, Discussion of "Comparison of Two Nonparametric Alternatives for Stochastic Generation of Monthly Rainfall" by R. Srikanthan, A. Sharma, T. A. McMahon, J. Hydrolog. Eng. 2007, 12 (6), 699-702.
    • (2007) J. Hydrolog. Eng , vol.12 , Issue.6 , pp. 699-702
    • Aksoy, H.1    Unal, N.E.2
  • 20
    • 44949260972 scopus 로고    scopus 로고
    • Wavelet-based Multiresolution Analysis for Data Cleaning and Its Application to Water Quality Management Systems
    • L. He, G. H. Huang, G. M. Zeng, H. W. Lu, Wavelet-based Multiresolution Analysis for Data Cleaning and Its Application to Water Quality Management Systems, Expert Syst. Appl. 2008, 35, 1301-1310.
    • (2008) Expert Syst. Appl , vol.35 , pp. 1301-1310
    • He, L.1    Huang, G.H.2    Zeng, G.M.3    Lu, H.W.4
  • 21
    • 0034745667 scopus 로고    scopus 로고
    • Wavelet Transform Analysis of Open Channel Wake Flows
    • P. S. Addison, K. B. Murrary, J. N. Watson, Wavelet Transform Analysis of Open Channel Wake Flows, J. Eng. Mech. 2001, 127 (1), 58-70.
    • (2001) J. Eng. Mech , vol.127 , Issue.1 , pp. 58-70
    • Addison, P.S.1    Murrary, K.B.2    Watson, J.N.3
  • 23
    • 0034610444 scopus 로고    scopus 로고
    • Rainfall-runoff Relation for Karstic Spring. Part 2: Continuous Wavelet and Discrete Orthogonal Multi Resolution Analyses
    • D. Labat, R. Ababou, A. Mangin, Rainfall-runoff Relation for Karstic Spring. Part 2: Continuous Wavelet and Discrete Orthogonal Multi Resolution Analyses, J. Hydrol. 2000, 238, 149-178.
    • (2000) J. Hydrol , vol.238 , pp. 149-178
    • Labat, D.1    Ababou, R.2    Mangin, A.3
  • 25
    • 28444499418 scopus 로고    scopus 로고
    • Recent Advances in Wavelet Analyses. Part 1: A Review of Concepts
    • Labat, D., 2005. Recent Advances in Wavelet Analyses. Part 1: A Review of Concepts, J. Hydrol. 1995, 314, 275-288.
    • (2005) J. Hydrol , vol.1995 , Issue.314 , pp. 275-288
    • Labat, D.1
  • 26
    • 61349106542 scopus 로고    scopus 로고
    • A Combined Neural-wavelet Model for Prediction of Ligvanchai Watershed Precipitation
    • V. Nourani, M. T. Alami, M. H. Aminfar, A Combined Neural-wavelet Model for Prediction of Ligvanchai Watershed Precipitation, Eng. Appl. Artif. Intell. 2009, 22, 466-472.
    • (2009) Eng. Appl. Artif. Intell , vol.22 , pp. 466-472
    • Nourani, V.1    Alami, M.T.2    Aminfar, M.H.3
  • 27
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and Neuro-fuzzy Conjunction Model for Precipitation Forecasting
    • T. Partal, O. Kisi, Wavelet and Neuro-fuzzy Conjunction Model for Precipitation Forecasting, J. Hydrol. 2007, 342, 199-212.
    • (2007) J. Hydrol , vol.342 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 28
    • 0025482241 scopus 로고
    • The Wavelet Transform, Time-frequency Localization and Signal Analysis
    • I. Daubechies, The Wavelet Transform, Time-frequency Localization and Signal Analysis, IEEE Trans. Inform. Theor. 1990, 36 (5), 961-1005.
    • (1990) IEEE Trans. Inform. Theor , vol.36 , Issue.5 , pp. 961-1005
    • Daubechies, I.1
  • 29
    • 0030426875 scopus 로고    scopus 로고
    • The Local Effect of Intermittency on the Inertial Subrange Energy Spectrum of the Atmospheric Surface Layer
    • J. Szilagyi et al., The Local Effect of Intermittency on the Inertial Subrange Energy Spectrum of the Atmospheric Surface Layer, Boundary-Layer Meteorol. 1996, 79, 35-50.
    • (1996) Boundary-Layer Meteorol , vol.79 , pp. 35-50
    • Szilagyi, J.1
  • 31
    • 45449126257 scopus 로고    scopus 로고
    • Structure Identification of Fuzzy Model
    • M. Sugeno, G. T. Kank, Structure Identification of Fuzzy Model, Fuzzy Set. Syst. 1998, 28 (1), 15-33.
    • (1998) Fuzzy Set. Syst , vol.28 , Issue.1 , pp. 15-33
    • Sugeno, M.1    Kank, G.T.2
  • 32
    • 33947267506 scopus 로고    scopus 로고
    • Adaptive Neuro-fuzzy Inference Systems Based Approach to Nonlinear Noise Cancellation for Images
    • H. Qin, S. X. Yang, Adaptive Neuro-fuzzy Inference Systems Based Approach to Nonlinear Noise Cancellation for Images, Fuzzy Set. Syst. 2007,158,1036-1063.
    • (2007) Fuzzy Set. Syst , vol.158 , pp. 1036-1063
    • Qin, H.1    Yang, S.X.2
  • 34
    • 0027601884 scopus 로고
    • ANFIS: Adaptive Network Based Fuzzy Inference System
    • J. S. R. Jang, ANFIS: Adaptive Network Based Fuzzy Inference System, IEEE Trans. Syst. Man. Cybern. 1993, 23 (3), 665-683.
    • (1993) IEEE Trans. Syst. Man. Cybern , vol.23 , Issue.3 , pp. 665-683
    • Jang, J.S.R.1
  • 36
    • 34547131556 scopus 로고    scopus 로고
    • Analysis and Prediction of Flow from Local Source in a River Basin Using a Neuro-fuzzy Modeling Tool
    • M. Aqil, I. Kita, A. Yano, S. Nishiyama, Analysis and Prediction of Flow from Local Source in a River Basin Using a Neuro-fuzzy Modeling Tool, J. Environ. Manage. 2007, 85 (1), 215-223.
    • (2007) J. Environ. Manage , vol.85 , Issue.1 , pp. 215-223
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 37
    • 0029273384 scopus 로고
    • Neuro-fuzzy Modeling and Control
    • Piscataway, NJ
    • J. S. R. Jang, C. T. Sun, Neuro-fuzzy Modeling and Control, in Proc. IEEE 1995, Piscataway, NJ 1995 pp. 378-406.
    • (1995) Proc. IEEE 1995 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 40
    • 0034738487 scopus 로고    scopus 로고
    • Fitting and Interpretation of Sediment Rating Curves
    • N. E. M. Asselman, Fitting and Interpretation of Sediment Rating Curves, J. Hydrol. 2000, 234, 228-248.
    • (2000) J. Hydrol , vol.234 , pp. 228-248
    • Asselman, N.E.M.1
  • 41
    • 33846274953 scopus 로고    scopus 로고
    • Suspended Sediment Flux Modeling with Artificial Neural Network: An Example of the Longchuanjiang River in the Upper Yangtze Catchment, China
    • Y. M. Zhu, X. X. Lu, Y. Zhou, Suspended Sediment Flux Modeling with Artificial Neural Network: An Example of the Longchuanjiang River in the Upper Yangtze Catchment, China, Geomorphology 2007, 84, 111-125.
    • (2007) Geomorphology , vol.84 , pp. 111-125
    • Zhu, Y.M.1    Lu, X.X.2    Zhou, Y.3
  • 42
    • 0022854201 scopus 로고
    • Sediment Transport in the Burhi Dihing River, India
    • in, (Ed.: R. F. Hadley), IAHS, Wallingford, UK
    • J. N. Sarma, Sediment Transport in the Burhi Dihing River, India, in Drainage Basin Sediment Delivery (Ed.: R. F. Hadley), IAHS, Wallingford, UK 1986, pp. 199-215.
    • (1986) Drainage Basin Sediment Delivery , pp. 199-215
    • Sarma, J.N.1
  • 45
    • 33750474052 scopus 로고    scopus 로고
    • Treatment of Multi-dimensional Data To Enhance Neural Network Estimators in Regression Problems
    • H. Altun, A. Bilgil, B. C. Fidan, Treatment of Multi-dimensional Data To Enhance Neural Network Estimators in Regression Problems, Expert Syst. Appl. 2007, 32 (2), 599-605.
    • (2007) Expert Syst. Appl. , vol.32 , Issue.2 , pp. 599-605
    • Altun, H.1    Bilgil, A.2    Fidan, B.C.3
  • 47
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the Use of Goodness-of-fit Measures in Hydrologic and Hydroclimatic Model Validation
    • D. R. Legates, G. J. McCabe, Evaluating the Use of Goodness-of-fit Measures in Hydrologic and Hydroclimatic Model Validation, Water Res. 1999, 35 (1), 233-241.
    • (1999) Water Res , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 48
    • 0014776873 scopus 로고
    • River Flow Forecasting through Conceptual Models. Part I - A Discussion of Principles
    • J. E. Nash, J. V. Sutcliffe, River Flow Forecasting through Conceptual Models. Part I - A Discussion of Principles, J. Hydrol. 1970, 10 (3), 282-290.
    • (1970) J. Hydrol , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.