메뉴 건너뛰기




Volumn 24, Issue 2, 2014, Pages 327-337

Assessing neural networks with wavelet denoising and regression models in predicting diel dynamics of eddy covariance-measured latent and sensible heat fluxes and evapotranspiration

Author keywords

Discrete wavelet transform; Eddy covariance; Energy exchanges; Hydrological processes

Indexed keywords

DISCRETE WAVELET TRANSFORMS; EVAPOTRANSPIRATION; LEARNING ALGORITHMS; MEAN SQUARE ERROR; MULTILAYER NEURAL NETWORKS; REGRESSION ANALYSIS; SIGNAL RECONSTRUCTION;

EID: 84892887743     PISSN: 09410643     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00521-012-1240-7     Document Type: Article
Times cited : (19)

References (38)
  • 4
    • 59649086425 scopus 로고    scopus 로고
    • Toward improving the reliability of hydrologic prediction: model structure uncertainty and its quantification using ensemble-based genetic programming framework
    • Parasuraman K, Elshorbagy A (2008) Toward improving the reliability of hydrologic prediction: model structure uncertainty and its quantification using ensemble-based genetic programming framework. Water Resour Res 44: W12406.
    • (2008) Water Resour Res , vol.44
    • Parasuraman, K.1    Elshorbagy, A.2
  • 6
    • 23044444044 scopus 로고    scopus 로고
    • Temperature-based approaches for estimating reference evapotranspiration
    • Trajkovic S (2005) Temperature-based approaches for estimating reference evapotranspiration. J Irrig Drain E-ASCE 131(4): 316-323.
    • (2005) J Irrig Drain E-ASCE , vol.131 , Issue.4 , pp. 316-323
    • Trajkovic, S.1
  • 7
    • 46449089657 scopus 로고    scopus 로고
    • Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation
    • Jain SK, Nayak PC, Sudheer KP (2008) Models for estimating evapotranspiration using artificial neural networks, and their physical interpretation. Hydrol Process 22(13): 2225-2234.
    • (2008) Hydrol Process , vol.22 , Issue.13 , pp. 2225-2234
    • Jain, S.K.1    Nayak, P.C.2    Sudheer, K.P.3
  • 8
    • 42049121124 scopus 로고    scopus 로고
    • Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain)
    • Landeras G, Ortiz-Barredo A, Lopez JJ (2008) Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric Water Manage 95(5): 553-565.
    • (2008) Agric Water Manage , vol.95 , Issue.5 , pp. 553-565
    • Landeras, G.1    Ortiz-Barredo, A.2    Lopez, J.J.3
  • 9
    • 60749116339 scopus 로고    scopus 로고
    • Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks
    • Chauhan S, Shrivastava RK (2009) Performance evaluation of reference evapotranspiration estimation using climate based methods and artificial neural networks. Water Resour Manage 23(5): 825-837.
    • (2009) Water Resour Manage , vol.23 , Issue.5 , pp. 825-837
    • Chauhan, S.1    Shrivastava, R.K.2
  • 10
    • 0038546820 scopus 로고    scopus 로고
    • Estimating actual evapotranspiration from limited climatic data using neural computing technique
    • Sudheer KP, Gosain AK, Ramasastri KS (2003) Estimating actual evapotranspiration from limited climatic data using neural computing technique. J Irrig Drain E-ASCE 129: 214-218.
    • (2003) J Irrig Drain E-ASCE , vol.129 , pp. 214-218
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 11
    • 33745435792 scopus 로고    scopus 로고
    • Spiking modular neural networks: a neural network modeling approach for hydrological processes
    • Parasuraman K, Elshorbagy A, Carey SK (2006) Spiking modular neural networks: a neural network modeling approach for hydrological processes. Water Resour Res 42: W05412.
    • (2006) Water Resour Res , vol.42
    • Parasuraman, K.1    Elshorbagy, A.2    Carey, S.K.3
  • 12
    • 34249799297 scopus 로고    scopus 로고
    • Modeling the dynamics of the evapotranspiration process using genetic programming
    • Parasuraman K, Elshorbagy A, Carey SK (2007) Modeling the dynamics of the evapotranspiration process using genetic programming. Hydrolog Sci J 52: 563-578.
    • (2007) Hydrolog Sci J , vol.52 , pp. 563-578
    • Parasuraman, K.1    Elshorbagy, A.2    Carey, S.K.3
  • 13
    • 0032053312 scopus 로고    scopus 로고
    • Sensible heat flux estimation over the FIFE site by neural networks
    • Abareshi B, Schuepp PH (1998) Sensible heat flux estimation over the FIFE site by neural networks. J Atmos Sci 55: 1185-1197.
    • (1998) J Atmos Sci , vol.55 , pp. 1185-1197
    • Abareshi, B.1    Schuepp, P.H.2
  • 15
    • 43949116579 scopus 로고    scopus 로고
    • Assessing the multi-resolution information content of remotely sensed variables and elevation for evapotranspiration in a tall-grass prairie environment
    • Brunsell NA, Ham JM, Owensby CE (2008) Assessing the multi-resolution information content of remotely sensed variables and elevation for evapotranspiration in a tall-grass prairie environment. Remote Sens Environ 112(6): 2977-2987.
    • (2008) Remote Sens Environ , vol.112 , Issue.6 , pp. 2977-2987
    • Brunsell, N.A.1    Ham, J.M.2    Owensby, C.E.3
  • 16
    • 50549085536 scopus 로고    scopus 로고
    • Downscaling and forecasting of evapotranspiration using a synthetic model of wavelets and support vector machines
    • Kaheil YH, Rosero E, Gill MK, McKee M, Bastidas LA (2008) Downscaling and forecasting of evapotranspiration using a synthetic model of wavelets and support vector machines. IEEE T Geosci Remote 46(9): 2692-2707.
    • (2008) IEEE T Geosci Remote , vol.46 , Issue.9 , pp. 2692-2707
    • Kaheil, Y.H.1    Rosero, E.2    Gill, M.K.3    McKee, M.4    Bastidas, L.A.5
  • 17
    • 71649098140 scopus 로고    scopus 로고
    • Modelling evapotranspiration using discrete wavelet transform and neural networks
    • Partal T (2009) Modelling evapotranspiration using discrete wavelet transform and neural networks. Hydrol Process 23(25): 3545-3555.
    • (2009) Hydrol Process , vol.23 , Issue.25 , pp. 3545-3555
    • Partal, T.1
  • 18
    • 0018923326 scopus 로고
    • Correction of flux measurements for density effects due to heat and water vapour transfer
    • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J Roy Meteor Soc 106: 85-100.
    • (1980) Q J Roy Meteor Soc , vol.106 , pp. 85-100
    • Webb, E.K.1    Pearman, G.I.2    Leuning, R.3
  • 22
    • 84875428511 scopus 로고    scopus 로고
    • On the factors influencing surface-layer energy balance closure and their seasonal variability over semi-arid loess plateau of Northwest China
    • Xiao X, Zuo HC, Yang QD, Wang SJ, Wang LJ, Chen JW, Chen BL, Zhang BD (2011) On the factors influencing surface-layer energy balance closure and their seasonal variability over semi-arid loess plateau of Northwest China. Hydrol Earth Syst Sc Discus 8: 555-584.
    • (2011) Hydrol Earth Syst Sc Discus , vol.8 , pp. 555-584
    • Xiao, X.1    Zuo, H.C.2    Yang, Q.D.3    Wang, S.J.4    Wang, L.J.5    Chen, J.W.6    Chen, B.L.7    Zhang, B.D.8
  • 23
    • 34247142946 scopus 로고    scopus 로고
    • Wavelet analysis of hydrological and water quality signals in an agricultural watershed
    • Kang SJ, Lin H (2007) Wavelet analysis of hydrological and water quality signals in an agricultural watershed. J Hydrol 338: 1-14.
    • (2007) J Hydrol , vol.338 , pp. 1-14
    • Kang, S.J.1    Lin, H.2
  • 24
    • 77958451511 scopus 로고    scopus 로고
    • Time and frequency domain analyses of high-frequency hydrologic and chloride data in an east Tennessee watershed
    • Koirala SR, Gentry RW, Mulholland PJ, Perfect E, Schwartz JS (2010) Time and frequency domain analyses of high-frequency hydrologic and chloride data in an east Tennessee watershed. J Hydrol 387: 256-264.
    • (2010) J Hydrol , vol.387 , pp. 256-264
    • Koirala, S.R.1    Gentry, R.W.2    Mulholland, P.J.3    Perfect, E.4    Schwartz, J.S.5
  • 25
    • 0034993945 scopus 로고    scopus 로고
    • Artificial neural network modeling of water table depth fluctuations
    • Coulibaly P, Anctil F, Aravena R, Bobee B (2001) Artificial neural network modeling of water table depth fluctuations. Water Resour Res 37: 885-896.
    • (2001) Water Resour Res , vol.37 , pp. 885-896
    • Coulibaly, P.1    Anctil, F.2    Aravena, R.3    Bobee, B.4
  • 28
    • 84957790817 scopus 로고
    • Natural evaporation from open water, bare soil and grass
    • Penman HL (1948) Natural evaporation from open water, bare soil and grass. P Roy Soc Lond 193: 120-146.
    • (1948) P Roy Soc Lond , vol.193 , pp. 120-146
    • Penman, H.L.1
  • 30
    • 0003511586 scopus 로고
    • FAO Irrigation and Drainage Paper 24, Food and Agriculture Organization, Rome
    • Doorenbos J, Pruitt WO (1977) Crop water requirements. FAO Irrigation and Drainage Paper 24, Food and Agriculture Organization, Rome.
    • (1977) Crop water requirements
    • Doorenbos, J.1    Pruitt, W.O.2
  • 31
    • 0003168082 scopus 로고
    • Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date
    • Turc L (1961) Estimation of irrigation water requirements, potential evapotranspiration: a simple climatic formula evolved up to date. Ann Agron 12: 13-14.
    • (1961) Ann Agron , vol.12 , pp. 13-14
    • Turc, L.1
  • 33
    • 61749090181 scopus 로고    scopus 로고
    • Artificial neural network models for estimating regional reference evapotranspiration based on climate factors
    • Dai X, Shi H, Li Y, Ouyang Z, Huo Z (2009) Artificial neural network models for estimating regional reference evapotranspiration based on climate factors. Hydrol Process 23(3): 442-450.
    • (2009) Hydrol Process , vol.23 , Issue.3 , pp. 442-450
    • Dai, X.1    Shi, H.2    Li, Y.3    Ouyang, Z.4    Huo, Z.5
  • 34
    • 48749093170 scopus 로고    scopus 로고
    • Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso
    • Wang Y, Traore S, Kerh T (2008) Neural network approach for estimating reference evapotranspiration from limited climatic data in Burkina Faso. WSEAS T Comput 7(6): 704-713.
    • (2008) WSEAS T Comput , vol.7 , Issue.6 , pp. 704-713
    • Wang, Y.1    Traore, S.2    Kerh, T.3
  • 35
    • 0346875564 scopus 로고    scopus 로고
    • Forecasting reference evapotranspiration by artificial neural networks
    • Trajkovic S, Todorovic B, Stankovic M (2003) Forecasting reference evapotranspiration by artificial neural networks. J Irrig Drain E-ASCE 129(6): 454-457.
    • (2003) J Irrig Drain E-ASCE , vol.129 , Issue.6 , pp. 454-457
    • Trajkovic, S.1    Todorovic, B.2    Stankovic, M.3
  • 36
    • 33746879196 scopus 로고    scopus 로고
    • Evapotranspiration estimation using feed-forward neural networks
    • Kisi O (2006) Evapotranspiration estimation using feed-forward neural networks. Nord Hydrol 37(3): 247-260.
    • (2006) Nord Hydrol , vol.37 , Issue.3 , pp. 247-260
    • Kisi, O.1
  • 37
    • 84884816020 scopus 로고    scopus 로고
    • Artificial neural network-genetic algorithm for estimation of crop evapotranspiration in a semi-arid region of Iran
    • doi: 10. 1007/s00521-012-1087-y (in press)
    • Aghajanloo M-B, Sabziparvar A-A, Talaee PH (2012) Artificial neural network-genetic algorithm for estimation of crop evapotranspiration in a semi-arid region of Iran. Neural Comput Appl. doi: 10. 1007/s00521-012-1087-y (in press).
    • (2012) Neural Comput Appl.
    • Aghajanloo, M.-B.1    Sabziparvar, A.-A.2    Talaee, P.H.3
  • 38
    • 17444402426 scopus 로고    scopus 로고
    • Predicting time series using neural networks with wavelet-based denoising layers
    • Lotric U, Dobnikar A (2005) Predicting time series using neural networks with wavelet-based denoising layers. Neural Comput Appl 14(1): 11-17.
    • (2005) Neural Comput Appl , vol.14 , Issue.1 , pp. 11-17
    • Lotric, U.1    Dobnikar, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.