메뉴 건너뛰기




Volumn 26, Issue 2, 2012, Pages 281-296

Simulating and predicting river discharge time series using a wavelet-neural network hybrid modelling approach

Author keywords

Artificial neural network; River discharge; Wavelet; Weihe River

Indexed keywords

ACCURATE PREDICTION; ARTIFICIAL NEURAL NETWORK; DISCRETE WAVELETS; DYNAMIC BEHAVIOURS; HIGH FREQUENCY CHARACTERISTICS; HYBRID MODELLING; INPUT DATAS; NON-LINEAR MODEL; RIVER DISCHARGE; TIME INTERVAL; TIME-SERIES DATA; WATERSHED MANAGEMENT; WAVELET;

EID: 84855462883     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.8227     Document Type: Article
Times cited : (86)

References (68)
  • 1
    • 77956064562 scopus 로고    scopus 로고
    • Seizure detection in temporal lobe epileptic EEGs using the best basis wavelet functions
    • Abibullaev B, Kim MS, Seo HD. 2009. Seizure detection in temporal lobe epileptic EEGs using the best basis wavelet functions. Journal of Medical Systems 34(4): 755-765.
    • (2009) Journal of Medical Systems , vol.34 , Issue.4 , pp. 755-765
    • Abibullaev, B.1    Kim, M.S.2    Seo, H.D.3
  • 2
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments
    • Abrahart RJ, See L. 2000. Comparing neural network and autoregressive moving average techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrological Processes 14: 2157-2172.
    • (2000) Hydrological Processes , vol.14 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 3
  • 5
    • 84855461557 scopus 로고    scopus 로고
    • An empirical analysis to study the cyclical trends on stock exchange using wavelet methods
    • Badiei E, Mohammadi S. 2011. An empirical analysis to study the cyclical trends on stock exchange using wavelet methods. Management Science Letters 1: 57-64.
    • (2011) Management Science Letters , vol.1 , pp. 57-64
    • Badiei, E.1    Mohammadi, S.2
  • 7
    • 33751401308 scopus 로고    scopus 로고
    • Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning
    • Cannas B, Fanni A, See L, Sias G. 2006. Data preprocessing for river flow forecasting using neural networks: wavelet transforms and data partitioning. Physics and Chemistry of the Earth 31(18): 1164-1171.
    • (2006) Physics and Chemistry of the Earth , vol.31 , Issue.18 , pp. 1164-1171
    • Cannas, B.1    Fanni, A.2    See, L.3    Sias, G.4
  • 8
    • 0035340711 scopus 로고    scopus 로고
    • A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction
    • Chang FJ, Chen YC. 2001. A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. Journal of Hydrology 245: 153-164.
    • (2001) Journal of Hydrology , vol.245 , pp. 153-164
    • Chang, F.J.1    Chen, Y.C.2
  • 9
    • 34548033948 scopus 로고    scopus 로고
    • Wavelet and artificial neural network analyses of tide forecasting and supplement of tides around Taiwan and South China Sea
    • Chen BF, Wang HD, Chu CC. 2007. Wavelet and artificial neural network analyses of tide forecasting and supplement of tides around Taiwan and South China Sea. Ocean Engineering 34: 2157-2175.
    • (2007) Ocean Engineering , vol.34 , pp. 2157-2175
    • Chen, B.F.1    Wang, H.D.2    Chu, C.C.3
  • 10
    • 31044455061 scopus 로고    scopus 로고
    • Integration of artificial neural networks with conceptual models in rainfall-runoff modeling
    • Chen J, Adams BJ. 2006. Integration of artificial neural networks with conceptual models in rainfall-runoff modeling. Journal of Hydrology 318: 232-249.
    • (2006) Journal of Hydrology , vol.318 , pp. 232-249
    • Chen, J.1    Adams, B.J.2
  • 11
    • 0033738757 scopus 로고    scopus 로고
    • Automatic ARMA identification using neural networks and the extended samples autocorrelation function: a reevaluation
    • Chenoweth T, Hubata R, St. Louis RD. 2000. Automatic ARMA identification using neural networks and the extended samples autocorrelation function: a reevaluation. Journal of Decision Support Systems 29: 21-30.
    • (2000) Journal of Decision Support Systems , vol.29 , pp. 21-30
    • Chenoweth, T.1    Hubata, R.2    St. Louis, R.D.3
  • 12
    • 84855464515 scopus 로고    scopus 로고
    • An application of artificial networks-tidal predication and supplement around Taiwan waters. In The 22nd Ocean Engineering Conference, Kaohsiung, Taiwan.
    • Chu CC, Chen BF. 2000. An application of artificial networks-tidal predication and supplement around Taiwan waters. In The 22nd Ocean Engineering Conference, Kaohsiung, Taiwan.
    • (2000)
    • Chu, C.C.1    Chen, B.F.2
  • 13
    • 1342310688 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data by multilayer perceptrons
    • Cigizoǧlu HK. 2004. Estimation and forecasting of daily suspended sediment data by multilayer perceptrons. Advances in Water Resources 27: 185-195.
    • (2004) Advances in Water Resources , vol.27 , pp. 185-195
    • Cigizoǧlu, H.K.1
  • 14
    • 0025482241 scopus 로고
    • The wavelet transform, time-frequency localization and signal analysis
    • Daubechies I. 1990. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory 36(5): 961-1005.
    • (1990) IEEE Transactions on Information Theory , vol.36 , Issue.5 , pp. 961-1005
    • Daubechies, I.1
  • 15
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson CW, Wilby RL. 2001. Hydrological modelling using artificial neural networks. Progress in Physical Geography 25(1): 80-108.
    • (2001) Progress in Physical Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 17
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • Duan Q, Sorooshian S, Gupta VK. 1992. Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research 28(4): 1015-1031.
    • (1992) Water Resources Research , vol.28 , Issue.4 , pp. 1015-1031
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.K.3
  • 18
    • 41049106111 scopus 로고    scopus 로고
    • Integrated clustering modeling with backpropagation neutral network for efficient customer relationship management
    • Ruan D, Chen G, Kerre EE, Weta G (eds). Springer: Berlin
    • Ertay T, Çekyay B. 2006. Integrated clustering modeling with backpropagation neutral network for efficient customer relationship management. In Intelligent Data Mining: Techniques and Applications Ruan D, Chen G, Kerre EE, Weta G (eds). Springer: Berlin; 355-373.
    • (2006) Intelligent Data Mining: Techniques and Applications , pp. 355-373
    • Ertay, T.1    Çekyay, B.2
  • 19
    • 41049094220 scopus 로고    scopus 로고
    • On hydrologic calculation using artificial neural networks
    • Feng LH, Hong WH. 2008. On hydrologic calculation using artificial neural networks. Applied Mathematics Letters 21: 453-458.
    • (2008) Applied Mathematics Letters , vol.21 , pp. 453-458
    • Feng, L.H.1    Hong, W.H.2
  • 20
    • 0010162709 scopus 로고
    • Algorithm AS 154: an algorithm for exact maximum likelihood estimation of autoregressive moving average models by means of Kalman filtering
    • Gardner G, Harvey AC, Phillips GDA. 1980. Algorithm AS 154: an algorithm for exact maximum likelihood estimation of autoregressive moving average models by means of Kalman filtering. Journal of the Royal Statistical Society Series C-Applied Statistics 29: 311-322.
    • (1980) Journal of the Royal Statistical Society Series C-Applied Statistics , vol.29 , pp. 311-322
    • Gardner, G.1    Harvey, A.C.2    Phillips, G.D.A.3
  • 21
    • 84855419287 scopus 로고    scopus 로고
    • Orthogonal wavelet decomposition. Available via Mulgor Consulting Ltd, web Accessed on 20 March 2011).
    • Goring D. 2006. Orthogonal wavelet decomposition. Available via Mulgor Consulting Ltd, web Accessed on 20 March 2011).
    • (2006)
    • Goring, D.1
  • 22
    • 77950804433 scopus 로고    scopus 로고
    • Multiple time scale analysis of precipitation series in Changbai Mountain Region in 1959-2006
    • Chinese).
    • Hu NF, Wang AZ, Guan DX, Yuan FH, Jin CJ, Wu JB, Wang JJ. 2010. Multiple time scale analysis of precipitation series in Changbai Mountain Region in 1959-2006. Journal of Applied Ecology 21(3): 549-56 (in Chinese).
    • (2010) Journal of Applied Ecology , vol.21 , Issue.3 , pp. 549-556
    • Hu, N.F.1    Wang, A.Z.2    Guan, D.X.3    Yuan, F.H.4    Jin, C.J.5    Wu, J.B.6    Wang, J.J.7
  • 23
    • 0012759982 scopus 로고    scopus 로고
    • Insights into neural network forecasting of time series corresponding to ARMA (p,q) structures
    • Hwarng HB. 2001. Insights into neural network forecasting of time series corresponding to ARMA (p, q) structures. Journal of Omega 29: 273-289.
    • (2001) Journal of Omega , vol.29 , pp. 273-289
    • Hwarng, H.B.1
  • 25
    • 33748033402 scopus 로고    scopus 로고
    • Implementation of wavelets and artificial neural networks to detection of toxic response behavior of chironomids (Chironomidae: Diptera) for water quality monitoring
    • Kim CK, Kwak IS, Cha EY, Chon TS. 2006. Implementation of wavelets and artificial neural networks to detection of toxic response behavior of chironomids (Chironomidae: Diptera) for water quality monitoring. Ecological Modelling 195: 61-71.
    • (2006) Ecological Modelling , vol.195 , pp. 61-71
    • Kim, C.K.1    Kwak, I.S.2    Cha, E.Y.3    Chon, T.S.4
  • 26
    • 0344121593 scopus 로고    scopus 로고
    • Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks
    • Kim T, Valdes JB. 2003. Nonlinear model for drought forecasting based on a conjunction of wavelet transforms and neural networks. Journal of Hydrologic Engineering 8(6): 319-328.
    • (2003) Journal of Hydrologic Engineering , vol.8 , Issue.6 , pp. 319-328
    • Kim, T.1    Valdes, J.B.2
  • 27
    • 61849131098 scopus 로고    scopus 로고
    • Stream flow forecasting using neuro-wavelet technique
    • Kisi Ö. 2008. Stream flow forecasting using neuro-wavelet technique. Hydrological Processes 22(20): 4142-4152.
    • (2008) Hydrological Processes , vol.22 , Issue.20 , pp. 4142-4152
    • Kisi, Ö.1
  • 28
    • 67650333111 scopus 로고    scopus 로고
    • Neural network and wavelet conjunction model for modelling monthly level fluctuations in Turkey
    • Kisi Ö. 2009. Neural network and wavelet conjunction model for modelling monthly level fluctuations in Turkey. Hydrological Processes 23: 2081-2092.
    • (2009) Hydrological Processes , vol.23 , pp. 2081-2092
    • Kisi, Ö.1
  • 29
    • 34548425056 scopus 로고    scopus 로고
    • Comparison of different ANN techniques in river flow prediction
    • Kisi O, Cigizoglu HK. 2007. Comparison of different ANN techniques in river flow prediction. Civil Engineering and Environmental Systems 24(3): 211-231.
    • (2007) Civil Engineering and Environmental Systems , vol.24 , Issue.3 , pp. 211-231
    • Kisi, O.1    Cigizoglu, H.K.2
  • 30
    • 58249134818 scopus 로고    scopus 로고
    • Stepwise regression model for daily runoff prediction based on wavelet decomposition
    • Chinese).
    • Li H, Lian JJ, Wang XJ. 2008. Stepwise regression model for daily runoff prediction based on wavelet decomposition. Journal of Hydraulic Engineering 39(12): 1334-1339 (in Chinese).
    • (2008) Journal of Hydraulic Engineering , vol.39 , Issue.12 , pp. 1334-1339
    • Li, H.1    Lian, J.J.2    Wang, X.J.3
  • 31
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • MacKay DJC. 1992. Bayesian interpolation. Neural Computation 4(3): 415-447.
    • (1992) Neural Computation , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.J.C.1
  • 32
    • 0029663621 scopus 로고    scopus 로고
    • The use of neural networks for the prediction of water quality parameters
    • Maier HR, Dandy GC. 1996. The use of neural networks for the prediction of water quality parameters. Water Resources Research 32(4): 1013-1022.
    • (1996) Water Resources Research , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 33
    • 84966210236 scopus 로고
    • Multiresolution approximation and wavelet orthonormal bases of L2(R)
    • Mallat S. 1989. Multiresolution approximation and wavelet orthonormal bases of L2(R). Transactions of the American Mathematical Society 315: 69-87.
    • (1989) Transactions of the American Mathematical Society , vol.315 , pp. 69-87
    • Mallat, S.1
  • 37
    • 33750442194 scopus 로고    scopus 로고
    • Parameter estimation of an ARMA model for river flow forecasting using goal programming
    • Mohammadi K, Eslami HR, Kahawita R. 2006. Parameter estimation of an ARMA model for river flow forecasting using goal programming. Journal of Hydrology 331: 293-299.
    • (2006) Journal of Hydrology , vol.331 , pp. 293-299
    • Mohammadi, K.1    Eslami, H.R.2    Kahawita, R.3
  • 38
    • 0344514751 scopus 로고    scopus 로고
    • Estimation of monthly river discharge from Danish catchments
    • Müller-Wohlfeil DI, Xu CY, Iversen HL. 2003. Estimation of monthly river discharge from Danish catchments. Nordic Hydrology 34(4): 295-320.
    • (2003) Nordic Hydrology , vol.34 , Issue.4 , pp. 295-320
    • Müller-Wohlfeil, D.I.1    Xu, C.Y.2    Iversen, H.L.3
  • 39
    • 84855464516 scopus 로고    scopus 로고
    • Soil and water assessment tool: Theoretical documentation (version 2005). Available via the Official SWAT WebSite Accessed on 26 December 2009.
    • Neitsch SL, Arnold JG, Kiniry JR, Williams JR. 2005. Soil and water assessment tool: Theoretical documentation (version 2005). Available via the Official SWAT WebSite Accessed on 26 December 2009.
    • (2005)
    • Neitsch, S.L.1    Arnold, J.G.2    Kiniry, J.R.3    Williams, J.R.4
  • 40
    • 33645973241 scopus 로고    scopus 로고
    • Monthly runoff simulation: Comparing and combining conceptual and neural network models
    • Nilsson P, Uvo CB, Berndtsson R. 2006. Monthly runoff simulation: Comparing and combining conceptual and neural network models. Journal of Hydrology 321: 344-363.
    • (2006) Journal of Hydrology , vol.321 , pp. 344-363
    • Nilsson, P.1    Uvo, C.B.2    Berndtsson, R.3
  • 42
    • 84855419288 scopus 로고    scopus 로고
    • Applied hydrology I-deterministic. Unpublished Lecture Notes. Department of Engineering Hydrology, National University of Ireland, Galway.
    • O'Connor KM. 1997. Applied hydrology I-deterministic. Unpublished Lecture Notes. Department of Engineering Hydrology, National University of Ireland, Galway.
    • (1997)
    • O'Connor, K.M.1
  • 43
    • 71649098140 scopus 로고    scopus 로고
    • Modelling evapotranspiration using discrete wavelet transform and neural networks
    • Partal T. 2009. Modelling evapotranspiration using discrete wavelet transform and neural networks. Hydrological Processes 23: 3545-3555.
    • (2009) Hydrological Processes , vol.23 , pp. 3545-3555
    • Partal, T.1
  • 44
    • 48649085521 scopus 로고    scopus 로고
    • Estimation and forecasting of daily suspended sediment data using wavelet-neural networks
    • Partal T, Cigizoglu HK. 2008. Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. Journal of Hydrology 358: 317-331.
    • (2008) Journal of Hydrology , vol.358 , pp. 317-331
    • Partal, T.1    Cigizoglu, H.K.2
  • 45
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • Partal T, Kişi Ö. 2007. Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. Journal of Hydrology 342: 199-212.
    • (2007) Journal of Hydrology , vol.342 , pp. 199-212
    • Partal, T.1    Kişi, Ö.2
  • 46
    • 33845620661 scopus 로고    scopus 로고
    • Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds
    • Pulido-Calvo I, Portela MM. 2007. Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. Journal of Hydrology 332: 1-15.
    • (2007) Journal of Hydrology , vol.332 , pp. 1-15
    • Pulido-Calvo, I.1    Portela, M.M.2
  • 48
    • 0001857840 scopus 로고    scopus 로고
    • Streamflow forecasting based on artificial neural networks
    • Govindaraju RS, Rao AR (eds). Kluwer: Berlin.
    • Salas JD, Markus M, Tokar AS. 2000. Streamflow forecasting based on artificial neural networks. In Artificial Neural Networks in Hydrology, Govindaraju RS, Rao AR (eds). Kluwer: Berlin.
    • (2000) Artificial Neural Networks in Hydrology,
    • Salas, J.D.1    Markus, M.2    Tokar, A.S.3
  • 49
    • 69949114540 scopus 로고    scopus 로고
    • A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments
    • Salerno F, Tartari G. 2009. A coupled approach of surface hydrological modelling and Wavelet Analysis for understanding the baseflow components of river discharge in karst environments. Journal of Hydrology 376: 295-306.
    • (2009) Journal of Hydrology , vol.376 , pp. 295-306
    • Salerno, F.1    Tartari, G.2
  • 50
    • 77955369901 scopus 로고    scopus 로고
    • Wavelet Transform-Based Denoising Method for Processing Eddy Current Signals
    • Sasi B, Rao BPC, Jayakumar T, Raj B. 2010. Wavelet Transform-Based Denoising Method for Processing Eddy Current Signals. Research in Nondestructive Evaluation 21(3): 157-170.
    • (2010) Research in Nondestructive Evaluation , vol.21 , Issue.3 , pp. 157-170
    • Sasi, B.1    Rao, B.P.C.2    Jayakumar, T.3    Raj, B.4
  • 51
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: use of phase space reconstruction and artificial neural networks approaches
    • Sivakumar B, Jayawardena AW, Fernando TMKG. 2002. River flow forecasting: use of phase space reconstruction and artificial neural networks approaches. Journal of Hydrology 265: 225-245.
    • (2002) Journal of Hydrology , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 52
    • 34247275833 scopus 로고    scopus 로고
    • Ecological and environmental instream flow requirements for the Wei River-the largest tributary of the Yellow River
    • Song JX, Xu ZX, Liu CM, Li HE. 2007. Ecological and environmental instream flow requirements for the Wei River-the largest tributary of the Yellow River. Hydrological Processes 21: 1066-1073.
    • (2007) Hydrological Processes , vol.21 , pp. 1066-1073
    • Song, J.X.1    Xu, Z.X.2    Liu, C.M.3    Li, H.E.4
  • 53
    • 57949116748 scopus 로고    scopus 로고
    • River flow prediction using an integrated approach
    • Srinivasulu S, Jain A. 2009. River flow prediction using an integrated approach. Journal of Hydrologic Engineering 14(1): 75-83.
    • (2009) Journal of Hydrologic Engineering , vol.14 , Issue.1 , pp. 75-83
    • Srinivasulu, S.1    Jain, A.2
  • 54
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar AS, Johnson PA. 1999. Rainfall-runoff modeling using artificial neural networks. Journal of Hydrologic Engineering 4(3): 232-239.
    • (1999) Journal of Hydrologic Engineering , vol.4 , Issue.3 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 55
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • Toth E, Brath A, Montanari A. 2000. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology 239: 132-147.
    • (2000) Journal of Hydrology , vol.239 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 57
    • 0037036332 scopus 로고    scopus 로고
    • Neural network for wave forecasting among multi-stations
    • Tsai CP, Lin C, Shen JN. 2002. Neural network for wave forecasting among multi-stations. Ocean Engineering 29(13): 1683-1695.
    • (2002) Ocean Engineering , vol.29 , Issue.13 , pp. 1683-1695
    • Tsai, C.P.1    Lin, C.2    Shen, J.N.3
  • 58
    • 33745621923 scopus 로고    scopus 로고
    • River flow forecasting with constructive Neural Network
    • Zhang S, Jarvis R. (eds). Springer: Berlin
    • Valença M, Ludermir T, Valença A. 2005. River flow forecasting with constructive Neural Network. In AI 2005: Advances in Artificial Intelligence, Zhang S, Jarvis R. (eds). Springer: Berlin; 1031-1036.
    • (2005) AI 2005: Advances in Artificial Intelligence , pp. 1031-1036
    • Valença, M.1    Ludermir, T.2    Valença, A.3
  • 59
    • 2342618373 scopus 로고
    • Monthly water and snow balance models on basin scale
    • Nir-Lar-Win, Banasik K, Zbikowski A (eds). Warsaw Agricultural University: Warsaw
    • Vandewiele GL, Nir-Lar-Win 1993. Monthly water and snow balance models on basin scale. In Runoff and Sediment Yield Modelling, Banasik K, Zbikowski A (eds). Warsaw Agricultural University: Warsaw; 83-88.
    • (1993) Runoff and Sediment Yield Modelling, , pp. 83-88
    • Vandewiele, G.L.1
  • 60
    • 56149115412 scopus 로고    scopus 로고
    • Problems existing in ARIMA model of hydrologic series and some improvement suggestions
    • Chinese).
    • Wang HR, Kang J, Lin X, Qian LX. 2008. Problems existing in ARIMA model of hydrologic series and some improvement suggestions. System Engineering- Theory & Practice 10: 166-176 (in Chinese).
    • (2008) System Engineering- Theory & Practice , vol.10 , pp. 166-176
    • Wang, H.R.1    Kang, J.2    Lin, X.3    Qian, L.X.4
  • 61
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the predication of hydrology
    • Wang W, Ding J. 2003. Wavelet network model and its application to the predication of hydrology. Nature and Science 1(1): 67-71.
    • (2003) Nature and Science , vol.1 , Issue.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 64
    • 84855426696 scopus 로고    scopus 로고
    • On the use of game theoretic Models for water resources management, PhD. dissertation. The Faculty of Environmental Sciences and Process Engineering, the Brandenburg University of Technology (BTU) Cottbus, Germany.
    • Wei S. 2008. On the use of game theoretic Models for water resources management, PhD. dissertation. The Faculty of Environmental Sciences and Process Engineering, the Brandenburg University of Technology (BTU) Cottbus, Germany.
    • (2008)
    • Wei, S.1
  • 65
    • 0030131273 scopus 로고    scopus 로고
    • Regional water balance modelling in the NOPEX area: development and application of monthly water balance model
    • Xu CY, Seibert J, Halldin S. 1996. Regional water balance modelling in the NOPEX area: development and application of monthly water balance model. Journal of Hydrology 180: 211-236.
    • (1996) Journal of Hydrology , vol.180 , pp. 211-236
    • Xu, C.Y.1    Seibert, J.2    Halldin, S.3
  • 66
    • 0033019602 scopus 로고    scopus 로고
    • Short term streamflow forecasting using artificial neural networks
    • Zealand CM, Burn DH, Simonovic SP. 1999. Short term streamflow forecasting using artificial neural networks. Journal of Hydrology 214: 32-48.
    • (1999) Journal of Hydrology , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 67
    • 0035964832 scopus 로고    scopus 로고
    • An adaptive neural wavelet model for short-term load forecasting
    • Zhang BL, Dong ZY. 2001. An adaptive neural wavelet model for short-term load forecasting. Electric Power Systems Research 59: 121-129.
    • (2001) Electric Power Systems Research , vol.59 , pp. 121-129
    • Zhang, B.L.1    Dong, Z.Y.2
  • 68
    • 34247257798 scopus 로고    scopus 로고
    • Evaluation of water quality and countermeasures of pollution prevention for the Wei River
    • Chinese).
    • Zhao H. 2003. Evaluation of water quality and countermeasures of pollution prevention for the Wei River. Northwest Water Resource and Water Engineering 14(1): 28-31 (in Chinese).
    • (2003) Northwest Water Resource and Water Engineering , vol.14 , Issue.1 , pp. 28-31
    • Zhao, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.