메뉴 건너뛰기




Volumn 61, Issue 2, 2013, Pages 112-119

The combined use of wavelet transform and black box models in reservoir inflow modeling

Author keywords

Discrete wavelet transform; Feed forward neural networks; Hybrid model; Least squares support vector machines; Multiple linear regression; Reservoir inflow modeling

Indexed keywords

DISCRETE WAVELET TRANSFORMS; LINEAR REGRESSION; METEOROLOGY; NEURAL NETWORKS;

EID: 84881622325     PISSN: 0042790X     EISSN: 13384333     Source Type: Journal    
DOI: 10.2478/johh-2013-0015     Document Type: Article
Times cited : (42)

References (30)
  • 2
    • 11144345954 scopus 로고    scopus 로고
    • An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition
    • Anctil, F., Tape, D.G., 2004. An exploration of artificial neural network rainfall-runoff forecasting combined with wavelet decomposition. J. Environmental Engng. and Science, 3, 21-128.
    • (2004) J. Environmental Engng. and Science , vol.3 , pp. 21-128
    • Anctil, F.1    Tape, D.G.2
  • 3
    • 33746834358 scopus 로고    scopus 로고
    • Identification of support vector machines for runoff modelling
    • Bray, M., Han, D., 2004. Identification of support vector machines for runoff modelling. J. Hydroinformatics, 6, 265-280.
    • (2004) J. Hydroinformatics , vol.6 , pp. 265-280
    • Bray, M.1    Han, D.2
  • 4
    • 0032688155 scopus 로고    scopus 로고
    • River flood forecasting with a neural network model
    • Campolo, M., Andreussi, P., Soldati, A., 1999. River flood forecasting with a neural network model. Water Resour. Res., 35, 1191-1197.
    • (1999) Water Resour. Res. , vol.35 , pp. 1191-1197
    • Campolo, M.1    Andreussi, P.2    Soldati, A.3
  • 5
    • 79952414390 scopus 로고    scopus 로고
    • Periodic structures of great lakes levels using wavelet analysis
    • Cengiz, T.M., 2011. Periodic structures of great lakes levels using wavelet analysis. J. Hydrol. Hydromech., 59, 1, 24-35.
    • (2011) J. Hydrol. Hydromech. , vol.59 , Issue.1 , pp. 24-35
    • Cengiz, T.M.1
  • 6
    • 27944503514 scopus 로고    scopus 로고
    • Generalized regression neural networks in monthly flow forecasting
    • Cigizoglu, H.K., 2005. Generalized regression neural networks in monthly flow forecasting. Civil Engineering and Environmental Systems, 22, 2, 71-84.
    • (2005) Civil Engineering and Environmental Systems , vol.22 , Issue.2 , pp. 71-84
    • Cigizoglu, H.K.1
  • 7
    • 45449119903 scopus 로고    scopus 로고
    • Estimation of daily suspended sediments using support vector machines
    • Cimen, M., 2008. Estimation of daily suspended sediments using support vector machines. Hydrological Sciences Journal, 53, 3, 656-666.
    • (2008) Hydrological Sciences Journal , vol.53 , Issue.3 , pp. 656-666
    • Cimen, M.1
  • 8
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural Networks with stopped training approach
    • Coulibaly, P., Anctil, F., Bobee, B., 2000. Daily reservoir inflow forecasting using artificial neural Networks with stopped training approach. J. Hydrol., 230, 244-257.
    • (2000) J. Hydrol. , vol.230 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 9
    • 0025482241 scopus 로고
    • The wavelet transform, time-frequency localization and signal analysis
    • Daubechies, I., 1990. The wavelet transform, time-frequency localization and signal analysis. IEEE Transactions on Information Theory, 36, 5, 961-1005.
    • (1990) IEEE Transactions on Information Theory , vol.36 , Issue.5 , pp. 961-1005
    • Daubechies, I.1
  • 10
    • 0028543366 scopus 로고
    • Training feed forward techniques with the Marquardt algorithm
    • Hagan, M.T., Menhaj, M.B., 1994. Training feed forward techniques with the Marquardt algorithm. IEEE Transactions on Neural Networks, 5, 6, 989-993.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.T.1    Menhaj, M.B.2
  • 12
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly streamflow forecasting
    • Kisi, O., Cimen, M., 2011. A wavelet-support vector machine conjunction model for monthly streamflow forecasting. J. Hydrol., 399, 132-140.
    • (2011) J. Hydrol. , vol.399 , pp. 132-140
    • Kisi, O.1    Cimen, M.2
  • 13
    • 33751581359 scopus 로고    scopus 로고
    • Wavelet regression technique for streamflow prediction
    • Kucuk, M., Agiralioglu, N., 2006, Wavelet regression technique for streamflow prediction. J. Applied Statistics, 33, 9, 943-960.
    • (2006) J. Applied Statistics , vol.33 , Issue.9 , pp. 943-960
    • Kucuk, M.1    Agiralioglu, N.2
  • 14
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin, J.Y., Cheng, C.T., Chau, K.W., 2006. Using support vector machines for long-term discharge prediction. Hydrological Sciences J., 51, 4, 599-612.
    • (2006) Hydrological Sciences J. , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 15
    • 0036202123 scopus 로고    scopus 로고
    • Flood stage forecasting with support vector machines
    • Liong, S.Y., Sivapragasam, C., 2002. Flood stage forecasting with support vector machines. J. Amer. Water Resources Assoc., 38, 1, 173-186.
    • (2002) J. Amer. Water Resources Assoc. , vol.38 , Issue.1 , pp. 173-186
    • Liong, S.Y.1    Sivapragasam, C.2
  • 16
    • 0024700097 scopus 로고
    • A theory for multi resolution signal decomposition: The wavelet representation
    • Mallat, S.G., 1989. A theory for multi resolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 7, 674-693.
    • (1989) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.11 , Issue.7 , pp. 674-693
    • Mallat, S.G.1
  • 17
    • 84915425007 scopus 로고
    • Some comments on Cp
    • Mallows, C.L., 1973. Some comments on Cp. Technometrics, 15, 4, 661-675.
    • (1973) Technometrics , vol.15 , Issue.4 , pp. 661-675
    • Mallows, C.L.1
  • 18
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • Mercer, J., 1909. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society, London, 209, 415-446.
    • (1909) Philosophical Transactions of the Royal Society, London , vol.209 , pp. 415-446
    • Mercer, J.1
  • 19
    • 84859990240 scopus 로고    scopus 로고
    • Application of Levenberg-Marquardt optimization algorithm based multilayer neural networks for hydrological time series modeling
    • Okkan, U., 2011. Application of Levenberg-Marquardt optimization algorithm based multilayer neural networks for hydrological time series modeling. An Int. J. Optimization and Control: Theories & Applications, 1, 1, 53-63.
    • (2011) An Int. J. Optimization and Control: Theories & Applications , vol.1 , Issue.1 , pp. 53-63
    • Okkan, U.1
  • 20
    • 84859976791 scopus 로고    scopus 로고
    • Performance of least squares support vector machine for monthly reservoir inflow prediction
    • Okkan, U., 2012. Performance of least squares support vector machine for monthly reservoir inflow prediction. Fresenius Environmental Bull., 21, 3, 611-620.
    • (2012) Fresenius Environmental Bull. , vol.21 , Issue.3 , pp. 611-620
    • Okkan, U.1
  • 21
    • 79961076393 scopus 로고    scopus 로고
    • River suspended sediment load prediction: Application of ANN and wavelet conjunction model
    • Rajaee, T., Nourani, V., Mohammad, Z.K., Kisi, O., 2011. River suspended sediment load prediction: Application of ANN and wavelet conjunction model. J. Hydrol. Engng, 16, 8, 613-627.
    • (2011) J. Hydrol. Engng , vol.16 , Issue.8 , pp. 613-627
    • Rajaee, T.1    Nourani, V.2    Mohammad, Z.K.3    Kisi, O.4
  • 22
    • 58149181821 scopus 로고    scopus 로고
    • Reservoir inflow modeling using temporal neural networks with forgetting factor approach
    • Razavi, S., Araghinejad, S., 2009. Reservoir inflow modeling using temporal neural networks with forgetting factor approach. Water Resour. Management, 23, 39-55.
    • (2009) Water Resour. Management , vol.23 , pp. 39-55
    • Razavi, S.1    Araghinejad, S.2
  • 24
    • 0037197571 scopus 로고    scopus 로고
    • A datadriven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer, K.P., Gosain, A.K., Ramasastri, K.S., 2002, A datadriven algorithm for constructing artificial neural network rainfall-runoff models. Hydrol. Processes, 16, 1325-1330.
    • (2002) Hydrol. Processes , vol.16 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 27
    • 33845543385 scopus 로고    scopus 로고
    • Wavelet network model and its application to the prediction of hydrology
    • Wang, W., Ding, J., 2003. Wavelet network model and its application to the prediction of hydrology. Nature and Science, 1, 67-71.
    • (2003) Nature and Science , vol.1 , pp. 67-71
    • Wang, W.1    Ding, J.2
  • 28
    • 33646547633 scopus 로고    scopus 로고
    • Forecasting daily streamflow using hybrid ANN models
    • Wang, W., van Gelder, P., Vrijling, J.K., Ma, J., 2006. Forecasting daily streamflow using hybrid ANN models. J. Hydrol., 324, 383-399.
    • (2006) J. Hydrol. , vol.324 , pp. 383-399
    • Wang, W.1    Van Gelder, P.2    Vrijling, J.K.3    Ma, J.4
  • 29
    • 70349237925 scopus 로고    scopus 로고
    • Prediction of inflow at Three Gorges Dam in Yangtze River with wavelet network model
    • Wang, W., Jin, J., Li, Y., 2009. Prediction of inflow at Three Gorges Dam in Yangtze River with wavelet network model. Water Resour. Management, 23, 2791-2803.
    • (2009) Water Resour. Management , vol.23 , pp. 2791-2803
    • Wang, W.1    Jin, J.2    Li, Y.3
  • 30
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques
    • Wu, C.L., Chau, K.W., Li, Y.S., 2008. Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques. Water Resour. Res., 45, 8, 1-23.
    • (2008) Water Resour. Res. , vol.45 , Issue.8 , pp. 1-23
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.