-
1
-
-
77649220192
-
Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation
-
Geppert H., Vogt M., Bajorath J. (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model;50:205-216.
-
(2010)
J Chem Inf Model
, vol.50
, pp. 205-216
-
-
Geppert, H.1
Vogt, M.2
Bajorath, J.3
-
2
-
-
33847207834
-
Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches
-
Eckert H., Bajorath J. (2007) Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov Today;12:225-233.
-
(2007)
Drug Discov Today
, vol.12
, pp. 225-233
-
-
Eckert, H.1
Bajorath, J.2
-
3
-
-
3242701695
-
Methods for applying the quantitative structure-activity relationship paradigm
-
Esposito E.X., Hopfinger A.J., Madura J.D. (2004) Methods for applying the quantitative structure-activity relationship paradigm. Methods Mol Biol;275:131-214.
-
(2004)
Methods Mol Biol
, vol.275
, pp. 131-214
-
-
Esposito, E.X.1
Hopfinger, A.J.2
Madura, J.D.3
-
4
-
-
34247250736
-
Analysis of a high-throughput screening data set using potency-scaled molecular similarity algorithms
-
Vogt I., Bajorath J. (2007) Analysis of a high-throughput screening data set using potency-scaled molecular similarity algorithms. J Chem Inf Model;47:367-375.
-
(2007)
J Chem Inf Model
, vol.47
, pp. 367-375
-
-
Vogt, I.1
Bajorath, J.2
-
5
-
-
0003450542
-
The Nature of Statistical Learning Theory
-
2nd edn. New York: Springer.
-
Vapnik V.N. (2000) The Nature of Statistical Learning Theory, 2nd edn. New York: Springer.
-
(2000)
-
-
Vapnik, V.N.1
-
6
-
-
0026966646
-
-
A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning Theory. Pittsburgh, Pennsylvania. New York: ACM
-
Boser B.E., Guyon I.M., Vapnik V. (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning Theory. Pittsburgh, Pennsylvania. New York: ACM; p. 144-152.
-
(1992)
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.3
-
7
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
Müller K.-R., Mika S., Rätsch G., Tsuda K., Schölkopf B. (2001) An introduction to kernel-based learning algorithms. IEEE Neural Netw;12:181-201.
-
(2001)
IEEE Neural Netw
, vol.12
, pp. 181-201
-
-
Müller, K.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
8
-
-
0004094721
-
Learning with Kernels
-
Cambridge, MA: MIT Press.
-
Schölkopf B., Smola A. (2002) Learning with Kernels. Cambridge, MA: MIT Press.
-
(2002)
-
-
Schölkopf, B.1
Smola, A.2
-
9
-
-
0034740222
-
Drug design by machine learning: support vector machines for pharmaceutical data analysis
-
Burbidge R., Trotter M., Buxton B., Holden S. (2001) Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem;26:5-14.
-
(2001)
Comput Chem
, vol.26
, pp. 5-14
-
-
Burbidge, R.1
Trotter, M.2
Buxton, B.3
Holden, S.4
-
10
-
-
0037365194
-
Active learning with support vector machines in the drug discovery process
-
Warmuth M.K., Liao J., Rätsch G., Mathieson M., Putta S., Lemmen C. (2003) Active learning with support vector machines in the drug discovery process. J Chem Inf Comput Sci;43:667-673.
-
(2003)
J Chem Inf Comput Sci
, vol.43
, pp. 667-673
-
-
Warmuth, M.K.1
Liao, J.2
Rätsch, G.3
Mathieson, M.4
Putta, S.5
Lemmen, C.6
-
11
-
-
20444410410
-
Virtual screening of molecular databases using a support vector machine
-
Jorissen R.N., Gilson M.K. (2005) Virtual screening of molecular databases using a support vector machine. J Chem Inf Model;45:549-561.
-
(2005)
J Chem Inf Model
, vol.45
, pp. 549-561
-
-
Jorissen, R.N.1
Gilson, M.K.2
-
12
-
-
65249163404
-
Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors
-
Wassermann A.M., Geppert H., Bajorath J. (2009) Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors. J Chem Inf Model;49:582-592.
-
(2009)
J Chem Inf Model
, vol.49
, pp. 582-592
-
-
Wassermann, A.M.1
Geppert, H.2
Bajorath, J.3
-
13
-
-
77952768125
-
Ranking chemical structures for drug discovery: a new machine learning approach
-
Agarwal S., Dugar D., Sengupta S. (2010) Ranking chemical structures for drug discovery: a new machine learning approach. J Chem Inf Model;50:716-731.
-
(2010)
J Chem Inf Model
, vol.50
, pp. 716-731
-
-
Agarwal, S.1
Dugar, D.2
Sengupta, S.3
-
14
-
-
52749085437
-
Protein-ligand interaction prediction: an improved chemogenomics approach
-
Jacob L., Vert J.-P. (2008) Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics;24:2149-2156.
-
(2008)
Bioinformatics
, vol.24
, pp. 2149-2156
-
-
Jacob, L.1
Vert, J.2
-
15
-
-
66149090260
-
Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors
-
Geppert H., Humrich J., Stumpfe D., Gärtner T., Bajorath J. (2009) Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors. J Chem Inf Model;49:767-779.
-
(2009)
J Chem Inf Model
, vol.49
, pp. 767-779
-
-
Geppert, H.1
Humrich, J.2
Stumpfe, D.3
Gärtner, T.4
Bajorath, J.5
-
16
-
-
70350495651
-
Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects
-
Wassermann A.M., Geppert H., Bajorath J. (2009) Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects. J Chem Inf Model;49:2155-2167.
-
(2009)
J Chem Inf Model
, vol.49
, pp. 2155-2167
-
-
Wassermann, A.M.1
Geppert, H.2
Bajorath, J.3
-
17
-
-
72949114936
-
Multi-assay-based structure-activity relationship models: improving structure-activity relationship models by incorporating activity information from related targets
-
Ning X., Rangwala H., Karypis G. (2009) Multi-assay-based structure-activity relationship models: improving structure-activity relationship models by incorporating activity information from related targets. J Chem Inf Model;49:2444-2456.
-
(2009)
J Chem Inf Model
, vol.49
, pp. 2444-2456
-
-
Ning, X.1
Rangwala, H.2
Karypis, G.3
-
18
-
-
70350512851
-
Target fishing for chemical compounds using target-ligand activity data and ranking based methods
-
Wale N., Karypis G. (2009) Target fishing for chemical compounds using target-ligand activity data and ranking based methods. J Chem Inf Model;49:2190-2201.
-
(2009)
J Chem Inf Model
, vol.49
, pp. 2190-2201
-
-
Wale, N.1
Karypis, G.2
-
19
-
-
72949110641
-
Comparison of multilabel and single-label classification applied to the prediction of the isoform specificity of cytochrome P450 substrates
-
Michielan L., Terfloth L., Gasteiger J., Moro S. (2009) Comparison of multilabel and single-label classification applied to the prediction of the isoform specificity of cytochrome P450 substrates. J Chem Inf Model;49:2588-2605.
-
(2009)
J Chem Inf Model
, vol.49
, pp. 2588-2605
-
-
Michielan, L.1
Terfloth, L.2
Gasteiger, J.3
Moro, S.4
-
20
-
-
73349125784
-
Exploring potency and selectivity receptor antagonist profiles using a multilabel classification approach: the human adenosine receptors as a key study
-
Michielan L., Stephanie F., Terfloth L., Hristozov D., Cacciari B., Klotz K.-N., Spalluto G., Gasteiger J., Moro S. (2009) Exploring potency and selectivity receptor antagonist profiles using a multilabel classification approach: the human adenosine receptors as a key study. J Chem Inf Model;49:2820-2836.
-
(2009)
J Chem Inf Model
, vol.49
, pp. 2820-2836
-
-
Michielan, L.1
Stephanie, F.2
Terfloth, L.3
Hristozov, D.4
Cacciari, B.5
Klotz, K.6
Spalluto, G.7
Gasteiger, J.8
Moro, S.9
-
21
-
-
77952772341
-
Extended-connectivity fingerprints
-
Rogers D., Hahn M. (2010) Extended-connectivity fingerprints. J Chem Inf Model;50:742-754.
-
(2010)
J Chem Inf Model
, vol.50
, pp. 742-754
-
-
Rogers, D.1
Hahn, M.2
-
23
-
-
0037735753
-
Advances in Kernel Methods - Support Vector Learning
-
In: Schölkopf B., Burges C., Smola A., editors. Cambridge, MA: MIT-Press
-
Joachims T. (1999) Making large-scale SVM learning practical. In: Schölkopf B., Burges C., Smola A., editors. Advances in Kernel Methods - Support Vector Learning. Cambridge, MA: MIT-Press: p. 169-184.
-
(1999)
Making large-scale SVM learning practical
, pp. 169-184
-
-
Joachims, T.1
-
24
-
-
77949785840
-
Advanced fingerprint methods for similarity searching: balancing molecular complexity effects
-
Wang Y., Bajorath J. (2010) Advanced fingerprint methods for similarity searching: balancing molecular complexity effects. Comb Chem High Throughput Screen;13:220-228.
-
(2010)
Comb Chem High Throughput Screen
, vol.13
, pp. 220-228
-
-
Wang, Y.1
Bajorath, J.2
-
25
-
-
39449093724
-
Balancing the influence of molecular complexity on fingerprint similarity searching
-
Wang Y., Bajorath J. (2008) Balancing the influence of molecular complexity on fingerprint similarity searching. J Chem Inf Model;48:75-84.
-
(2008)
J Chem Inf Model
, vol.48
, pp. 75-84
-
-
Wang, Y.1
Bajorath, J.2
-
26
-
-
33748903368
-
Measure, mine, model, and manipulate: the future for HTS and chemoinformatics?
-
Parker C.N., Shamu C.E., Kraybill B., Austin C.P., Bajorath J. (2006) Measure, mine, model, and manipulate: the future for HTS and chemoinformatics? Drug Discov Today;11:863-865.
-
(2006)
Drug Discov Today
, vol.11
, pp. 863-865
-
-
Parker, C.N.1
Shamu, C.E.2
Kraybill, B.3
Austin, C.P.4
Bajorath, J.5
|