메뉴 건너뛰기




Volumn 77, Issue 1, 2011, Pages 30-38

Potency-Directed Similarity Searching Using Support Vector Machines

Author keywords

Compound classification; Compound potency; Kernel functions; Molecular similarity; Similarity searching; Support vector machines

Indexed keywords

ARTICLE; CALCULATION; CONTROLLED STUDY; DATA BASE; DRUG INFORMATION; DRUG POTENCY; HIGH THROUGHPUT SCREENING; KERNEL METHOD; MEDICAL RESEARCH; PRIORITY JOURNAL; REFERENCE DATABASE; SAMPLE SIZE; SUPPORT VECTOR MACHINE;

EID: 78650095648     PISSN: 17470277     EISSN: 17470285     Source Type: Journal    
DOI: 10.1111/j.1747-0285.2010.01059.x     Document Type: Article
Times cited : (8)

References (26)
  • 1
    • 77649220192 scopus 로고    scopus 로고
    • Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation
    • Geppert H., Vogt M., Bajorath J. (2010) Current trends in ligand-based virtual screening: molecular representations, data mining methods, new application areas, and performance evaluation. J Chem Inf Model;50:205-216.
    • (2010) J Chem Inf Model , vol.50 , pp. 205-216
    • Geppert, H.1    Vogt, M.2    Bajorath, J.3
  • 2
    • 33847207834 scopus 로고    scopus 로고
    • Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches
    • Eckert H., Bajorath J. (2007) Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. Drug Discov Today;12:225-233.
    • (2007) Drug Discov Today , vol.12 , pp. 225-233
    • Eckert, H.1    Bajorath, J.2
  • 3
    • 3242701695 scopus 로고    scopus 로고
    • Methods for applying the quantitative structure-activity relationship paradigm
    • Esposito E.X., Hopfinger A.J., Madura J.D. (2004) Methods for applying the quantitative structure-activity relationship paradigm. Methods Mol Biol;275:131-214.
    • (2004) Methods Mol Biol , vol.275 , pp. 131-214
    • Esposito, E.X.1    Hopfinger, A.J.2    Madura, J.D.3
  • 4
    • 34247250736 scopus 로고    scopus 로고
    • Analysis of a high-throughput screening data set using potency-scaled molecular similarity algorithms
    • Vogt I., Bajorath J. (2007) Analysis of a high-throughput screening data set using potency-scaled molecular similarity algorithms. J Chem Inf Model;47:367-375.
    • (2007) J Chem Inf Model , vol.47 , pp. 367-375
    • Vogt, I.1    Bajorath, J.2
  • 5
    • 0003450542 scopus 로고    scopus 로고
    • The Nature of Statistical Learning Theory
    • 2nd edn. New York: Springer.
    • Vapnik V.N. (2000) The Nature of Statistical Learning Theory, 2nd edn. New York: Springer.
    • (2000)
    • Vapnik, V.N.1
  • 6
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning Theory. Pittsburgh, Pennsylvania. New York: ACM
    • Boser B.E., Guyon I.M., Vapnik V. (1992) A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning Theory. Pittsburgh, Pennsylvania. New York: ACM; p. 144-152.
    • (1992) , pp. 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.3
  • 8
    • 0004094721 scopus 로고    scopus 로고
    • Learning with Kernels
    • Cambridge, MA: MIT Press.
    • Schölkopf B., Smola A. (2002) Learning with Kernels. Cambridge, MA: MIT Press.
    • (2002)
    • Schölkopf, B.1    Smola, A.2
  • 9
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: support vector machines for pharmaceutical data analysis
    • Burbidge R., Trotter M., Buxton B., Holden S. (2001) Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput Chem;26:5-14.
    • (2001) Comput Chem , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 11
    • 20444410410 scopus 로고    scopus 로고
    • Virtual screening of molecular databases using a support vector machine
    • Jorissen R.N., Gilson M.K. (2005) Virtual screening of molecular databases using a support vector machine. J Chem Inf Model;45:549-561.
    • (2005) J Chem Inf Model , vol.45 , pp. 549-561
    • Jorissen, R.N.1    Gilson, M.K.2
  • 12
    • 65249163404 scopus 로고    scopus 로고
    • Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors
    • Wassermann A.M., Geppert H., Bajorath J. (2009) Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors. J Chem Inf Model;49:582-592.
    • (2009) J Chem Inf Model , vol.49 , pp. 582-592
    • Wassermann, A.M.1    Geppert, H.2    Bajorath, J.3
  • 13
    • 77952768125 scopus 로고    scopus 로고
    • Ranking chemical structures for drug discovery: a new machine learning approach
    • Agarwal S., Dugar D., Sengupta S. (2010) Ranking chemical structures for drug discovery: a new machine learning approach. J Chem Inf Model;50:716-731.
    • (2010) J Chem Inf Model , vol.50 , pp. 716-731
    • Agarwal, S.1    Dugar, D.2    Sengupta, S.3
  • 14
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: an improved chemogenomics approach
    • Jacob L., Vert J.-P. (2008) Protein-ligand interaction prediction: an improved chemogenomics approach. Bioinformatics;24:2149-2156.
    • (2008) Bioinformatics , vol.24 , pp. 2149-2156
    • Jacob, L.1    Vert, J.2
  • 15
    • 66149090260 scopus 로고    scopus 로고
    • Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors
    • Geppert H., Humrich J., Stumpfe D., Gärtner T., Bajorath J. (2009) Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors. J Chem Inf Model;49:767-779.
    • (2009) J Chem Inf Model , vol.49 , pp. 767-779
    • Geppert, H.1    Humrich, J.2    Stumpfe, D.3    Gärtner, T.4    Bajorath, J.5
  • 16
    • 70350495651 scopus 로고    scopus 로고
    • Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects
    • Wassermann A.M., Geppert H., Bajorath J. (2009) Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects. J Chem Inf Model;49:2155-2167.
    • (2009) J Chem Inf Model , vol.49 , pp. 2155-2167
    • Wassermann, A.M.1    Geppert, H.2    Bajorath, J.3
  • 17
    • 72949114936 scopus 로고    scopus 로고
    • Multi-assay-based structure-activity relationship models: improving structure-activity relationship models by incorporating activity information from related targets
    • Ning X., Rangwala H., Karypis G. (2009) Multi-assay-based structure-activity relationship models: improving structure-activity relationship models by incorporating activity information from related targets. J Chem Inf Model;49:2444-2456.
    • (2009) J Chem Inf Model , vol.49 , pp. 2444-2456
    • Ning, X.1    Rangwala, H.2    Karypis, G.3
  • 18
    • 70350512851 scopus 로고    scopus 로고
    • Target fishing for chemical compounds using target-ligand activity data and ranking based methods
    • Wale N., Karypis G. (2009) Target fishing for chemical compounds using target-ligand activity data and ranking based methods. J Chem Inf Model;49:2190-2201.
    • (2009) J Chem Inf Model , vol.49 , pp. 2190-2201
    • Wale, N.1    Karypis, G.2
  • 19
    • 72949110641 scopus 로고    scopus 로고
    • Comparison of multilabel and single-label classification applied to the prediction of the isoform specificity of cytochrome P450 substrates
    • Michielan L., Terfloth L., Gasteiger J., Moro S. (2009) Comparison of multilabel and single-label classification applied to the prediction of the isoform specificity of cytochrome P450 substrates. J Chem Inf Model;49:2588-2605.
    • (2009) J Chem Inf Model , vol.49 , pp. 2588-2605
    • Michielan, L.1    Terfloth, L.2    Gasteiger, J.3    Moro, S.4
  • 20
    • 73349125784 scopus 로고    scopus 로고
    • Exploring potency and selectivity receptor antagonist profiles using a multilabel classification approach: the human adenosine receptors as a key study
    • Michielan L., Stephanie F., Terfloth L., Hristozov D., Cacciari B., Klotz K.-N., Spalluto G., Gasteiger J., Moro S. (2009) Exploring potency and selectivity receptor antagonist profiles using a multilabel classification approach: the human adenosine receptors as a key study. J Chem Inf Model;49:2820-2836.
    • (2009) J Chem Inf Model , vol.49 , pp. 2820-2836
    • Michielan, L.1    Stephanie, F.2    Terfloth, L.3    Hristozov, D.4    Cacciari, B.5    Klotz, K.6    Spalluto, G.7    Gasteiger, J.8    Moro, S.9
  • 21
    • 77952772341 scopus 로고    scopus 로고
    • Extended-connectivity fingerprints
    • Rogers D., Hahn M. (2010) Extended-connectivity fingerprints. J Chem Inf Model;50:742-754.
    • (2010) J Chem Inf Model , vol.50 , pp. 742-754
    • Rogers, D.1    Hahn, M.2
  • 23
    • 0037735753 scopus 로고    scopus 로고
    • Advances in Kernel Methods - Support Vector Learning
    • In: Schölkopf B., Burges C., Smola A., editors. Cambridge, MA: MIT-Press
    • Joachims T. (1999) Making large-scale SVM learning practical. In: Schölkopf B., Burges C., Smola A., editors. Advances in Kernel Methods - Support Vector Learning. Cambridge, MA: MIT-Press: p. 169-184.
    • (1999) Making large-scale SVM learning practical , pp. 169-184
    • Joachims, T.1
  • 24
    • 77949785840 scopus 로고    scopus 로고
    • Advanced fingerprint methods for similarity searching: balancing molecular complexity effects
    • Wang Y., Bajorath J. (2010) Advanced fingerprint methods for similarity searching: balancing molecular complexity effects. Comb Chem High Throughput Screen;13:220-228.
    • (2010) Comb Chem High Throughput Screen , vol.13 , pp. 220-228
    • Wang, Y.1    Bajorath, J.2
  • 25
    • 39449093724 scopus 로고    scopus 로고
    • Balancing the influence of molecular complexity on fingerprint similarity searching
    • Wang Y., Bajorath J. (2008) Balancing the influence of molecular complexity on fingerprint similarity searching. J Chem Inf Model;48:75-84.
    • (2008) J Chem Inf Model , vol.48 , pp. 75-84
    • Wang, Y.1    Bajorath, J.2
  • 26


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.