메뉴 건너뛰기




Volumn 9, Issue 1, 2014, Pages 93-104

Support vector machines for drug discovery

Author keywords

Chemical biological property prediction; Compound activity prediction; Compound classification; Hybrid methods; Kernel functions; Machine learning; Regression modeling; Support vector machines; Virtual screening

Indexed keywords

ALGORITHM; CLASSIFICATION; CLASSIFIER; DRUG DEVELOPMENT; HUMAN; HYBRID; KERNEL METHOD; MACHINE LEARNING; PHYSICAL CHEMISTRY; PREDICTION; PRIORITY JOURNAL; REVIEW; SUPPORT VECTOR MACHINE; THEORY;

EID: 84890517122     PISSN: 17460441     EISSN: 1746045X     Source Type: Journal    
DOI: 10.1517/17460441.2014.866943     Document Type: Review
Times cited : (144)

References (75)
  • 1
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20:273-97
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 2
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • Burbidge R, Trotter M, Buxton B, Holden S. Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Comput Chem 2001;26:5-14
    • (2001) Comput Chem , vol.26 , pp. 5-14
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 3
    • 0037365194 scopus 로고    scopus 로고
    • Active learning with support vector machines in the drug discovery process
    • Warmuth MK, Liao J, Ratsch G, et al. Active learning with support vector machines in the drug discovery process. J Chem Inf Comput Sci 2003;43:667-73
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 667-673
    • Warmuth, M.K.1    Liao, J.2    Ratsch, G.3
  • 4
    • 0345548661 scopus 로고    scopus 로고
    • Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
    • Byvatov E, Fechner U, Sadowski J, Schneider G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci 2003;43:1882-9
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1882-1889
    • Byvatov, E.1    Fechner, U.2    Sadowski, J.3    Schneider, G.4
  • 5
    • 0344254815 scopus 로고    scopus 로고
    • Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions
    • Zernov VV, Balakin KV, Ivaschenko AA, et al. Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions. J Chem Inf Comput Sci 2003;43:2048-56
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 2048-2056
    • Zernov, V.V.1    Balakin, K.V.2    Ivaschenko, A.A.3
  • 7
    • 44449107147 scopus 로고    scopus 로고
    • Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds
    • SVMs using fingerprint descriptors is shown to outperform fingerprint-based similarity searching
    • Geppert H, Horváth T, Gartner T, et al. Support-vector-machine- based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds. J Chem Inf Model 2008;48:742-6. SVMs using fingerprint descriptors is shown to outperform fingerprint-based similarity searching.
    • (2008) J Chem Inf Model , vol.48 , pp. 742-746
    • Geppert, H.1    Horváth, T.2    Gartner, T.3
  • 8
    • 79952170351 scopus 로고    scopus 로고
    • Large-scale learning of structureactivity relationships using a linear support vector machine and problemspecific metrics
    • Hinselmann G, Rosenbaum L, Jahn A, et al. Large-scale learning of structureactivity relationships using a linear support vector machine and problemspecific metrics. J Chem Inf Model 2011;51:203-13
    • (2011) J Chem Inf Model , vol.51 , pp. 203-213
    • Hinselmann, G.1    Rosenbaum, L.2    Jahn, A.3
  • 10
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • A useful SVM tutorial
    • Burges CJC. A. Tutorial on Support Vector Machines for Pattern Recognition. Data Min Knowl Disc 1998;2:121-67. A useful SVM tutorial.
    • (1998) Data Min Knowl Disc , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 11
    • 20444410410 scopus 로고    scopus 로고
    • Virtual screening of molecular databases using a support vector machine
    • Original proposal of an SVM compound ranking strategy
    • Jorissen RN, Gilson MK. Virtual screening of molecular databases using a support vector machine. J Chem Inf Model 2005;45:549-61. Original proposal of an SVM compound ranking strategy.
    • (2005) J Chem Inf Model , vol.45 , pp. 549-561
    • Jorissen, R.N.1    Gilson, M.K.2
  • 12
    • 0026966646 scopus 로고
    • In: Haussler D Editor. Proceedings Of The 5th Annual Workshop On Computational Learning Theory ACM Pittsburgh, PA, USA
    • Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Haussler D, editor. Proceedings of the 5th Annual Workshop on Computational Learning Theory. ACM; Pittsburgh, PA, USA; 1992. p. 144-52
    • (1992) A Training Algorithm for Optimal Margin Classifiers , pp. 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 13
    • 51349131079 scopus 로고    scopus 로고
    • Machine learning for in silico virtual screening and chemical genomics: New strategies
    • Review of various kernel functions for chemogenomics
    • Vert J-P, Jacob L. Machine learning for in silico virtual screening and chemical genomics: New strategies. Comb Chem High Throughput Screen 2008;11:677-85. Review of various kernel functions for chemogenomics.
    • (2008) Comb Chem High Throughput Screen , vol.11 , pp. 677-685
    • Vert, J.-P.1    Jacob, L.2
  • 14
    • 77952766987 scopus 로고    scopus 로고
    • A User's guide to support vector machines
    • Ben-Hur A, Weston J. A User's guide to support vector machines. Methods Mol Biol 2010;609:223-39
    • (2010) Methods Mol Biol , vol.609 , pp. 223-239
    • Ben-Hur, A.1    Weston, J.2
  • 15
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola AJ, Scholkopf B. A tutorial on support vector regression. Stat Comput 2004;14:199-222
    • (2004) Stat Comput , vol.14 , pp. 199-222
    • Smola, A.J.1    Scholkopf, B.2
  • 17
    • 1942516986 scopus 로고    scopus 로고
    • In: Fawcett T Mishra N Editors. Proceedings Of The 20th International Conference On Machine Learning. The AAAI Press; Washington DC USA
    • Kashima H, Tsuda K, Inokuchi A. Marginalized kernels between labeled graphs. In: Fawcett T, Mishra N, editors. Proceedings of the 20th International Conference on Machine Learning. The AAAI Press; Washington DC, USA; 2003
    • (2003) Marginalized Kernels between Labeled Graphs
    • Kashima, H.1    Tsuda, K.2    Inokuchi, A.3
  • 18
    • 23844458045 scopus 로고    scopus 로고
    • Graph kernels for molecular structureactivity relationship analysis with support vector machines
    • Mahé P, Ueda N, Akutsu T, et al. Graph kernels for molecular structureactivity relationship analysis with support vector machines. J Chem Inf Model 2005;45:939-51
    • (2005) J Chem Inf Model , vol.45 , pp. 939-951
    • Mahé, P.1    Ueda, N.2    Akutsu, T.3
  • 19
    • 23844480138 scopus 로고    scopus 로고
    • Graph kernels for chemical informatics
    • Introduction of the Tanimoto kernel
    • Ralaivola L, Swamidass SJ, Saigo H, Baldi P. Graph kernels for chemical informatics. Neural Netw 2005;18:1093-110. Introduction of the Tanimoto kernel.
    • (2005) Neural Netw , vol.18 , pp. 1093-110
    • Ralaivola, L.1    Swamidass, S.J.2    Saigo, H.3    Baldi, P.4
  • 20
    • 33750294461 scopus 로고    scopus 로고
    • The pharmacophore kernel for virtual screening with support vector machines
    • Mahé P, Ralaivola L, Stoven V, Vert J-P. The pharmacophore kernel for virtual screening with support vector machines. J Chem Inf Model 2006;46:2003-14
    • (2006) J Chem Inf Model , vol.46 , pp. 2003-2014
    • Mahé, P.1    Ralaivola, L.2    Stoven, V.3    Vert, J.-P.4
  • 21
    • 54249156505 scopus 로고    scopus 로고
    • Molecule kernels: A descriptor-and alignment-free quantitative structure-activity relationship approach
    • Mohr JA, Jain BJ, Obermayer K. Molecule kernels: A descriptor-and alignment-free quantitative structure-activity relationship approach. J Chem Inf Model 2008;48:1868-81
    • (2008) J Chem Inf Model , vol.48 , pp. 1868-1881
    • Mohr, J.A.1    Jain, B.J.2    Obermayer, K.3
  • 22
    • 34250813174 scopus 로고    scopus 로고
    • One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties
    • Azencott C-A, Ksikes A, Swamidass SJ, et al. One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties. J Chem Inf Model 2007;47:965-74
    • (2007) J Chem Inf Model , vol.47 , pp. 965-974
    • Azencott, C.-A.1    Ksikes, A.2    Swamidass, S.J.3
  • 23
    • 33646251586 scopus 로고    scopus 로고
    • Collaborative filtering on a family of biological targets
    • Introduction of a target-ligand kernel
    • Erhan D, L'heureux P-J, Yue SY, Bengio Y. Collaborative filtering on a family of biological targets. J Chem Inf Model 2006;46:626-35. Introduction of a target-ligand kernel.
    • (2006) J Chem Inf Model , vol.46 , pp. 626-635
    • Erhan, D.1    L'Heureux, P.-J.2    Yue, S.Y.3    Bengio, Y.4
  • 24
    • 52749085437 scopus 로고    scopus 로고
    • Protein-ligand interaction prediction: An improved chemogenomics approach
    • Jacob L, Vert J-P. Protein-ligand interaction prediction: An improved chemogenomics approach. Bioinformatics 2008;24:2149-56
    • (2008) Bioinformatics , vol.24 , pp. 2149-2156
    • Jacob, L.1    Vert, J.-P.2
  • 25
    • 79960721268 scopus 로고    scopus 로고
    • Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel
    • Meslamani J, Rognan D. Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel. J Chem Inf Model 2011;51:1593-603
    • (2011) J Chem Inf Model , vol.51 , pp. 1593-1603
    • Meslamani, J.1    Rognan, D.2
  • 26
    • 78650095648 scopus 로고    scopus 로고
    • Potency-directed similarity searching using support vector machines
    • Wassermann AM, Heikamp K, Bajorath J. Potency-directed similarity searching using support vector machines. Chem Biol Drug Des 2011;77:30-8
    • (2011) Chem Biol Drug des , vol.77 , pp. 30-38
    • Wassermann, A.M.1    Heikamp, K.2    Bajorath, J.3
  • 27
    • 84866700901 scopus 로고    scopus 로고
    • Prediction of activity cliffs using support vector machines
    • Heikamp K, Hu X, Yan A, Bajorath J. Prediction of activity cliffs using support vector machines. J Chem Inf Model 2012;52:2354-65
    • (2012) J Chem Inf Model , vol.52 , pp. 2354-2365
    • Heikamp, K.1    Hu, X.2    Yan, A.3    Bajorath, J.4
  • 28
    • 66149099982 scopus 로고    scopus 로고
    • SVM model for virtual screening of Lck inhibitors
    • Liew CY, Ma XH, Liu X, Yap CW. SVM model for virtual screening of Lck inhibitors. J Chem Inf Model 2009;49:877-85
    • (2009) J Chem Inf Model , vol.49 , pp. 877-885
    • Liew, C.Y.1    Ma, X.H.2    Liu, X.3    Yap, C.W.4
  • 29
    • 75849120416 scopus 로고    scopus 로고
    • Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods
    • Lv W, Xue Y. Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods. Eur J Med Chem 2010;45:1167-72
    • (2010) Eur J Med Chem , vol.45 , pp. 1167-1172
    • Lv, W.1    Xue, Y.2
  • 30
    • 80054909003 scopus 로고    scopus 로고
    • Predictive models for cytochrome p450 isozymes based on quantitative high throughput screening data
    • Sun H, Veith H, Xia M, et al. Predictive models for cytochrome p450 isozymes based on quantitative high throughput screening data. J Chem Inf Model 2011;51:2474-81
    • (2011) J Chem Inf Model , vol.51 , pp. 2474-2481
    • Sun, H.1    Veith, H.2    Xia, M.3
  • 31
    • 77952768125 scopus 로고    scopus 로고
    • Ranking chemical structures for drug discovery: A new machine learning approach
    • Agarwal S, Dugar D, Sengupta S. Ranking chemical structures for drug discovery: A new machine learning approach. J Chem Inf Model 2010;50:716-31
    • (2010) J Chem Inf Model , vol.50 , pp. 716-731
    • Agarwal, S.1    Dugar, D.2    Sengupta, S.3
  • 32
    • 79952593481 scopus 로고    scopus 로고
    • StructRank: A new approach for ligand-based virtual screening
    • Rathke F, Hansen K, Brefeld U, Muller K-R. StructRank: A new approach for ligand-based virtual screening. J Chem Inf Model 2011;51:83-92
    • (2011) J Chem Inf Model , vol.51 , pp. 83-92
    • Rathke, F.1    Hansen, K.2    Brefeld, U.3    Muller, K.-R.4
  • 33
    • 84864185732 scopus 로고    scopus 로고
    • Structure based model for the prediction of phospholipidosis induction potential of small molecules
    • Sun H, Shahane S, Xia M, et al. Structure based model for the prediction of phospholipidosis induction potential of small molecules. J Chem Inf Model 2012;52:1798-805
    • (2012) J Chem Inf Model , vol.52 , pp. 1798-1805
    • Sun, H.1    Shahane, S.2    Xia, M.3
  • 34
    • 84879570665 scopus 로고    scopus 로고
    • Beyond the scope of Free-Wilson analysis: Building interpretable QSAR models with machine learning algorithms
    • Chen H, Carlsson L, Eriksson M, et al. Beyond the scope of Free-Wilson analysis: Building interpretable QSAR models with machine learning algorithms. J Chem Inf Model 2013;53:1324-36
    • (2013) J Chem Inf Model , vol.53 , pp. 1324-1336
    • Chen, H.1    Carlsson, L.2    Eriksson, M.3
  • 35
  • 36
    • 80155156908 scopus 로고    scopus 로고
    • Kernel-based data fusion improves the drug-protein interaction prediction
    • Wang Y-C, Zhang C-H, Deng N-Y, Wang Y. Kernel-based data fusion improves the drug-protein interaction prediction. Comput Biol Chem 2011;35:353-62
    • (2011) Comput Biol Chem , vol.35 , pp. 353-362
    • Wang, Y.-C.1    Zhang, C.-H.2    Deng, N.-Y.3    Wang, Y.4
  • 37
    • 82355168473 scopus 로고    scopus 로고
    • Computational screening for active compounds targeting protein sequences: Methodology and experimental validation
    • Wang F, Liu D, Wang H, et al. Computational screening for active compounds targeting protein sequences: Methodology and experimental validation. J Chem Inf Model 2011;51:2821-8
    • (2011) J Chem Inf Model , vol.51 , pp. 2821-2828
    • Wang, F.1    Liu, D.2    Wang, H.3
  • 38
    • 70350495651 scopus 로고    scopus 로고
    • Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects
    • Systematic analysis of different targetligand kernels revealing that orphan screening performance was dominated by compound similarity
    • Wassermann AM, Geppert H, Bajorath J. Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects. J Chem Inf Model 2009;49:2155-67. Systematic analysis of different targetligand kernels revealing that orphan screening performance was dominated by compound similarity.
    • (2009) J Chem Inf Model , vol.49 , pp. 2155-2167
    • Wassermann, A.M.1    Geppert, H.2    Bajorath, J.3
  • 39
    • 66149090260 scopus 로고    scopus 로고
    • Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors
    • Geppert H, Humrich J, Stumpfe D, et al. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors. J Chem Inf Model 2009;49:767-79
    • (2009) J Chem Inf Model , vol.49 , pp. 767-779
    • Geppert, H.1    Humrich, J.2    Stumpfe, D.3
  • 40
    • 65249163404 scopus 로고    scopus 로고
    • Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors
    • Wassermann AM, Geppert H, Bajorath J. Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors. J Chem Inf Model 2009;49:582-92
    • (2009) J Chem Inf Model , vol.49 , pp. 582-592
    • Wassermann, A.M.1    Geppert, H.2    Bajorath, J.3
  • 41
    • 73349125784 scopus 로고    scopus 로고
    • Exploring potency and selectivity receptor antagonist profiles using a multilabel classification approach: The human adenosine receptors as a key study
    • Michielan L, Stephanie F, Terfloth L, et al. Exploring potency and selectivity receptor antagonist profiles using a multilabel classification approach: The human adenosine receptors as a key study. J Chem Inf Model 2009;49:2820-36
    • (2009) J Chem Inf Model , vol.49 , pp. 2820-2836
    • Michielan, L.1    Stephanie, F.2    Terfloth, L.3
  • 42
    • 84876577793 scopus 로고    scopus 로고
    • Prediction of compounds with closely related activity profiles using weighted support vector machine linear combinations
    • Heikamp K, Bajorath J. Prediction of compounds with closely related activity profiles using weighted support vector machine linear combinations. J Chem Inf Model 2013;53:791-801
    • (2013) J Chem Inf Model , vol.53 , pp. 791-801
    • Heikamp, K.1    Bajorath, J.2
  • 43
    • 47349113899 scopus 로고    scopus 로고
    • Predictive activity profiling of drugs by topological-fragment-spectra- based support vector machines
    • Kawai K, Fujishima S, Takahashi Y. Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines. J Chem Inf Model 2008;48:1152-60
    • (2008) J Chem Inf Model , vol.48 , pp. 1152-1160
    • Kawai, K.1    Fujishima, S.2    Takahashi, Y.3
  • 44
    • 58149099516 scopus 로고    scopus 로고
    • In silico functional profiling of small molecules and its applications
    • Sato T, Matsuo Y, Honma T, Yokoyama S. In silico functional profiling of small molecules and its applications. J Med Chem 2008;51:7705-16
    • (2008) J Med Chem , vol.51 , pp. 7705-7716
    • Sato, T.1    Matsuo, Y.2    Honma, T.3    Yokoyama, S.4
  • 45
    • 0345548663 scopus 로고    scopus 로고
    • Support vector machines for the estimation of aqueous solubility
    • Lind P, Maltseva T. Support vector machines for the estimation of aqueous solubility. J Chem Inf Comput Sci 2003;43:1855-9
    • (2003) J Chem Inf Comput Sci , vol.43 , pp. 1855-1859
    • Lind, P.1    Maltseva, T.2
  • 46
    • 79952229990 scopus 로고    scopus 로고
    • Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection
    • Cheng T, Li Q, Wang Y, et al. Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection. J Chem Inf Model 2011;51:229-36
    • (2011) J Chem Inf Model , vol.51 , pp. 229-236
    • Cheng, T.1    Li, Q.2    Wang, Y.3
  • 47
    • 77954068708 scopus 로고    scopus 로고
    • Estimation of ADME properties with substructure pattern recognition
    • Shen J, Cheng F, Xu Y, et al. Estimation of ADME properties with substructure pattern recognition. J Chem Inf Model 2010;50:1034-41
    • (2010) J Chem Inf Model , vol.50 , pp. 1034-1041
    • Shen, J.1    Cheng, F.2    Xu, Y.3
  • 48
    • 37249042636 scopus 로고    scopus 로고
    • ADME evaluation in drug discovery the prediction of human intestinal absorption by a support vector machine
    • Hou T, Wang J, Li Y. ADME evaluation in drug discovery. The prediction of human intestinal absorption by a support vector machine. J Chem Inf Model 2007;47:2408-15
    • (2007) J Chem Inf Model , vol.47 , pp. 2408-2415
    • Hou, T.1    Wang, J.2    Li, Y.3
  • 49
    • 84878744355 scopus 로고    scopus 로고
    • A prediction model for oral bioavailability of drugs using physicochemical properties by support vector machine
    • Kumar R, Sharma A, Varadwaj PK. A prediction model for oral bioavailability of drugs using physicochemical properties by support vector machine. J Nat Sci Biol Med 2011;2:168-73
    • (2011) J Nat Sci Biol Med , vol.2 , pp. 168-173
    • Kumar, R.1    Sharma, A.2    Varadwaj, P.K.3
  • 50
    • 33845772315 scopus 로고    scopus 로고
    • Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs
    • Bhavani S, Nagargadde A, Thawani A, et al. Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs. J Chem Inf Model 2006;46:2478-86
    • (2006) J Chem Inf Model , vol.46 , pp. 2478-2486
    • Bhavani, S.1    Nagargadde, A.2    Thawani, A.3
  • 51
    • 82655172584 scopus 로고    scopus 로고
    • Rapid and accurate assessment of seizure liability of drugs by using an optimal support vector machine method
    • Zhang H, Li W, Xie Y, et al. Rapid and accurate assessment of seizure liability of drugs by using an optimal support vector machine method. Toxicol In Vitro 2011;25:1848-54
    • (2011) Toxicol in Vitro , vol.25 , pp. 1848-1854
    • Zhang, H.1    Li, W.2    Xie, Y.3
  • 52
    • 84862922236 scopus 로고    scopus 로고
    • In silico models to discriminate compounds inducing and noninducing toxic myopathy
    • Hu X, Yan A. In silico models to discriminate compounds inducing and noninducing toxic myopathy. Mol Inform 2012;31:27-39
    • (2012) Mol Inform , vol.31 , pp. 27-39
    • Hu, X.1    Yan, A.2
  • 53
    • 84862843449 scopus 로고    scopus 로고
    • Predictive toxicology modeling: Protocols for exploring hERG classification and Tetrahymena pyriformis end point predictions
    • Su B-H, Tu Y, Esposito EX, Tseng YJ. Predictive toxicology modeling: Protocols for exploring hERG classification and Tetrahymena pyriformis end point predictions. J Chem Inf Model 2012;52:1660-73
    • (2012) J Chem Inf Model , vol.52 , pp. 1660-1673
    • Su, B.-H.1    Tu, Y.2    Esposito, E.X.3    Tseng, Y.J.4
  • 54
    • 84878176071 scopus 로고    scopus 로고
    • Characterizing binding of small molecules. II. Evaluating the potency of small molecules to combat resistance based on docking structures
    • Ding B, Li N, Wang W. Characterizing binding of small molecules. II. Evaluating the potency of small molecules to combat resistance based on docking structures. J Chem Inf Model 2013;53:1213-22
    • (2013) J Chem Inf Model , vol.53 , pp. 1213-1222
    • Ding, B.1    Li, N.2    Wang, W.3
  • 55
    • 77954054048 scopus 로고    scopus 로고
    • Assessing synthetic accessibility of chemical compounds using machine learning methods
    • Podolyan Y, Walters M A, Karypis G. Assessing synthetic accessibility of chemical compounds using machine learning methods. J Chem Inf Model 2010;50:979-91
    • (2010) J Chem Inf Model , vol.50 , pp. 979-991
    • Podolyan, Y.1    Walters, M.A.2    Karypis, G.3
  • 56
    • 18344381621 scopus 로고    scopus 로고
    • Classifying "drug-likeness" with kernel-based learning methods
    • Muller K-R, Ratsch G, Sonnenburg S, et al. Classifying "drug-likeness" with kernel-based learning methods. J Chem Inf Model 2005;45:249-53
    • (2005) J Chem Inf Model , vol.45 , pp. 249-253
    • Muller, K.-R.1    Ratsch, G.2    Sonnenburg, S.3
  • 57
    • 46749128531 scopus 로고    scopus 로고
    • New predictive models for blood-brain barrier permeability of druglike molecules
    • Kortagere S, Chekmarev D, Welsh WJ, Ekins S. New predictive models for blood-brain barrier permeability of druglike molecules. Pharm Res 2008;25:1836-45
    • (2008) Pharm Res , vol.25 , pp. 1836-1845
    • Kortagere, S.1    Chekmarev, D.2    Welsh, W.J.3    Ekins, S.4
  • 58
    • 84857531280 scopus 로고    scopus 로고
    • Combining global and local measures for structure-based druggability predictions
    • Volkamer A, Kuhn D, Grombacher T, et al. Combining global and local measures for structure-based druggability predictions. J Chem Inf Model 2012;52:360-72
    • (2012) J Chem Inf Model , vol.52 , pp. 360-372
    • Volkamer, A.1    Kuhn, D.2    Grombacher, T.3
  • 59
    • 80053313926 scopus 로고    scopus 로고
    • Support vector regression scoring of receptorligand complexes for rank-ordering and virtual screening of chemical libraries
    • Li L, Wang B, Meroueh SO. Support vector regression scoring of receptorligand complexes for rank-ordering and virtual screening of chemical libraries. J Chem Inf Model 2011;51:2132-8
    • (2011) J Chem Inf Model , vol.51 , pp. 2132-2138
    • Li, L.1    Wang, B.2    Meroueh, S.O.3
  • 60
    • 84875428269 scopus 로고    scopus 로고
    • IDScore: A New Empirical Scoring Function Based on a Comprehensive Set of Descriptors Related to Protein-Ligand Interactions
    • Li G-B, Yang L-L, Wang W-J, et al. IDScore: A New Empirical Scoring Function Based on a Comprehensive Set of Descriptors Related to Protein-Ligand Interactions. J Chem Inf Model 2013;53:592-600
    • (2013) J Chem Inf Model , vol.53 , pp. 592-600
    • Li, G.-B.1    Yang, L.-L.2    Wang, W.-J.3
  • 61
    • 77951270486 scopus 로고    scopus 로고
    • Estimation of the applicability domain of kernel-based machine learning models for virtual screening
    • Fechner N, Jahn A, Hinselmann G, et al. Estimation of the applicability domain of kernel-based machine learning models for virtual screening. J Cheminform 2010;2:2
    • (2010) J Cheminform , vol.2 , pp. 2
    • Fechner, N.1    Jahn, A.2    Hinselmann, G.3
  • 62
    • 67650895854 scopus 로고    scopus 로고
    • Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening
    • Nagamine N, Shirakawa T, Minato Y, et al. Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening. PLoS Comput Biol 2009;5:e1000397
    • (2009) PLoS Comput Biol , vol.5
    • Nagamine, N.1    Shirakawa, T.2    Minato, Y.3
  • 63
    • 67650064506 scopus 로고    scopus 로고
    • Combining selectivity and affinity predictions using an integrated Support Vector Machine (SVM) approach: An alternative tool to discriminate between the human adenosine A(2A) and A(3) receptor pyrazolo-triazolo-pyrimidine antagonists binding sites
    • Michielan L, Bolcato C, Federico S, et al. Combining selectivity and affinity predictions using an integrated Support Vector Machine (SVM) approach: An alternative tool to discriminate between the human adenosine A(2A) and A(3) receptor pyrazolo-triazolo-pyrimidine antagonists binding sites. Bioorg Med Chem 2009;17:5259-74
    • (2009) Bioorg Med Chem , vol.17 , pp. 5259-5274
    • Michielan, L.1    Bolcato, C.2    Federico, S.3
  • 64
    • 80255135618 scopus 로고    scopus 로고
    • Brainstorming: Weighted voting prediction of inhibitors for protein targets
    • Plewczynski D. Brainstorming: weighted voting prediction of inhibitors for protein targets. J Mol Model 2011;17:2133-41
    • (2011) J Mol Model , vol.17 , pp. 2133-2141
    • Plewczynski, D.1
  • 65
    • 79960245348 scopus 로고    scopus 로고
    • Classification of cytochrome p450 inhibitors and noninhibitors using combined classifiers
    • Cheng F, Yu Y, Shen J, et al. Classification of cytochrome p450 inhibitors and noninhibitors using combined classifiers. J Chem Inf Model 2011;51:996-1011
    • (2011) J Chem Inf Model , vol.51 , pp. 996-1011
    • Cheng, F.1    Yu, Y.2    Shen, J.3
  • 66
    • 34250876925 scopus 로고    scopus 로고
    • A novel logic-based approach for quantitative toxicology prediction
    • Amini A, Muggleton SH, Lodhi H, Sternberg MJE. A novel logic-based approach for quantitative toxicology prediction. J Chem Inf Model 2007;47:998-1006
    • (2007) J Chem Inf Model , vol.47 , pp. 998-1006
    • Amini, A.1    Muggleton, S.H.2    Lodhi, H.3    Mje, S.4
  • 67
    • 36749002607 scopus 로고    scopus 로고
    • A general approach for developing system specific functions to score protein-ligand docked complexes using support vector inductive logic programming
    • Amini A, Shrimpton PJ, Muggleton SH, Sternberg MJE. A general approach for developing system specific functions to score protein-ligand docked complexes using support vector inductive logic programming. Proteins 2007;69:823-31
    • (2007) Proteins , vol.69 , pp. 823-831
    • Amini, A.1    Shrimpton, P.J.2    Muggleton, S.H.3    Sternberg, M.J.E.4
  • 68
    • 34247386376 scopus 로고    scopus 로고
    • Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds
    • Cannon EO, Amini A, Bender A, et al. Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds. J Comput Aided Mol Des 2007;21:269-80
    • (2007) J Comput Aided Mol des , vol.21 , pp. 269-280
    • Cannon, E.O.1    Amini, A.2    Bender, A.3
  • 69
    • 2942702317 scopus 로고    scopus 로고
    • SVM-based feature selection for characterization of focused compound collections
    • Byvatov E, Schneider G. SVM-based feature selection for characterization of focused compound collections. J Chem Inf Comput Sci 2004;44:993-9
    • (2004) J Chem Inf Comput Sci , vol.44 , pp. 993-999
    • Byvatov, E.1    Schneider, G.2
  • 70
    • 77956905367 scopus 로고    scopus 로고
    • Targeting multifunctional proteins by virtual screening: Structurally diverse cytohesin inhibitors with differentiated biological functions
    • Stumpfe D, Bill A, Novak N, et al. Targeting multifunctional proteins by virtual screening: Structurally diverse cytohesin inhibitors with differentiated biological functions. ACS Chem Biol 2010;5:839-49
    • (2010) ACS Chem Biol , vol.5 , pp. 839-849
    • Stumpfe, D.1    Bill, A.2    Novak, N.3
  • 71
    • 33947183028 scopus 로고    scopus 로고
    • A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability
    • Leong MK. A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability. Chem Res Toxicol 2007;20:217-26
    • (2007) Chem Res Toxicol , vol.20 , pp. 217-226
    • Leong, M.K.1
  • 72
    • 80054726684 scopus 로고    scopus 로고
    • Predicting activation of the promiscuous human pregnane X receptor by pharmacophore ensemble/support vector machine approach
    • Chen C-N, Shih Y-H, Ding Y-L, Leong MK. Predicting activation of the promiscuous human pregnane X receptor by pharmacophore ensemble/support vector machine approach. Chem Res Toxicol 2011;24:1765-78
    • (2011) Chem Res Toxicol , vol.24 , pp. 1765-1778
    • Chen, C.-N.1    Shih, Y.-H.2    Ding, Y.-L.3    Leong, M.K.4
  • 73
    • 80052931564 scopus 로고    scopus 로고
    • Combined SVM-based and dockingbased virtual screening for retrieving novel inhibitors of c-Met
    • Xie Q-Q, Zhong L, Pan Y-L, et al. Combined SVM-based and dockingbased virtual screening for retrieving novel inhibitors of c-Met. Eur J Med Chem 2011;46:3675-80
    • (2011) Eur J Med Chem , vol.46 , pp. 3675-3680
    • Xie, Q.-Q.1    Zhong, L.2    Pan, Y.-L.3
  • 74
    • 79959756890 scopus 로고    scopus 로고
    • Discovery of novel Pim-1 kinase inhibitors by a hierarchical multistage virtual screening approach based on SVM model, pharmacophore, and molecular docking
    • Ren J-X, Li L-L, Zheng R-L, et al. Discovery of novel Pim-1 kinase inhibitors by a hierarchical multistage virtual screening approach based on SVM model, pharmacophore, and molecular docking. J Chem Inf Model 2011;51:1364-75
    • (2011) J Chem Inf Model , vol.51 , pp. 1364-1375
    • Ren, J.-X.1    Li, L.-L.2    Zheng, R.-L.3
  • 75
    • 84884576643 scopus 로고    scopus 로고
    • Computational profiling of bioactive compounds using a targetdependent composite workflow
    • Meslamani J, Bhajun R, Martz F, Rognan D. Computational profiling of bioactive compounds using a targetdependent composite workflow. J Chem Inf Model 2013;53:2322-33
    • (2013) J Chem Inf Model , vol.53 , pp. 2322-2333
    • Meslamani, J.1    Bhajun, R.2    Martz, F.3    Rognan, D.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.