-
1
-
-
34249753618
-
Support-vector networks
-
Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995;20:273-97
-
(1995)
Mach Learn
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
2
-
-
0034740222
-
Drug design by machine learning: Support vector machines for pharmaceutical data analysis
-
Burbidge R, Trotter M, Buxton B, Holden S. Drug design by machine learning: Support vector machines for pharmaceutical data analysis. Comput Chem 2001;26:5-14
-
(2001)
Comput Chem
, vol.26
, pp. 5-14
-
-
Burbidge, R.1
Trotter, M.2
Buxton, B.3
Holden, S.4
-
3
-
-
0037365194
-
Active learning with support vector machines in the drug discovery process
-
Warmuth MK, Liao J, Ratsch G, et al. Active learning with support vector machines in the drug discovery process. J Chem Inf Comput Sci 2003;43:667-73
-
(2003)
J Chem Inf Comput Sci
, vol.43
, pp. 667-673
-
-
Warmuth, M.K.1
Liao, J.2
Ratsch, G.3
-
4
-
-
0345548661
-
Comparison of support vector machine and artificial neural network systems for drug/nondrug classification
-
Byvatov E, Fechner U, Sadowski J, Schneider G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci 2003;43:1882-9
-
(2003)
J Chem Inf Comput Sci
, vol.43
, pp. 1882-1889
-
-
Byvatov, E.1
Fechner, U.2
Sadowski, J.3
Schneider, G.4
-
5
-
-
0344254815
-
Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions
-
Zernov VV, Balakin KV, Ivaschenko AA, et al. Drug discovery using support vector machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions. J Chem Inf Comput Sci 2003;43:2048-56
-
(2003)
J Chem Inf Comput Sci
, vol.43
, pp. 2048-2056
-
-
Zernov, V.V.1
Balakin, K.V.2
Ivaschenko, A.A.3
-
7
-
-
44449107147
-
Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds
-
SVMs using fingerprint descriptors is shown to outperform fingerprint-based similarity searching
-
Geppert H, Horváth T, Gartner T, et al. Support-vector-machine- based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds. J Chem Inf Model 2008;48:742-6. SVMs using fingerprint descriptors is shown to outperform fingerprint-based similarity searching.
-
(2008)
J Chem Inf Model
, vol.48
, pp. 742-746
-
-
Geppert, H.1
Horváth, T.2
Gartner, T.3
-
8
-
-
79952170351
-
Large-scale learning of structureactivity relationships using a linear support vector machine and problemspecific metrics
-
Hinselmann G, Rosenbaum L, Jahn A, et al. Large-scale learning of structureactivity relationships using a linear support vector machine and problemspecific metrics. J Chem Inf Model 2011;51:203-13
-
(2011)
J Chem Inf Model
, vol.51
, pp. 203-213
-
-
Hinselmann, G.1
Rosenbaum, L.2
Jahn, A.3
-
10
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
A useful SVM tutorial
-
Burges CJC. A. Tutorial on Support Vector Machines for Pattern Recognition. Data Min Knowl Disc 1998;2:121-67. A useful SVM tutorial.
-
(1998)
Data Min Knowl Disc
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
11
-
-
20444410410
-
Virtual screening of molecular databases using a support vector machine
-
Original proposal of an SVM compound ranking strategy
-
Jorissen RN, Gilson MK. Virtual screening of molecular databases using a support vector machine. J Chem Inf Model 2005;45:549-61. Original proposal of an SVM compound ranking strategy.
-
(2005)
J Chem Inf Model
, vol.45
, pp. 549-561
-
-
Jorissen, R.N.1
Gilson, M.K.2
-
12
-
-
0026966646
-
-
In: Haussler D Editor. Proceedings Of The 5th Annual Workshop On Computational Learning Theory ACM Pittsburgh, PA, USA
-
Boser BE, Guyon IM, Vapnik VN. A training algorithm for optimal margin classifiers. In: Haussler D, editor. Proceedings of the 5th Annual Workshop on Computational Learning Theory. ACM; Pittsburgh, PA, USA; 1992. p. 144-52
-
(1992)
A Training Algorithm for Optimal Margin Classifiers
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
13
-
-
51349131079
-
Machine learning for in silico virtual screening and chemical genomics: New strategies
-
Review of various kernel functions for chemogenomics
-
Vert J-P, Jacob L. Machine learning for in silico virtual screening and chemical genomics: New strategies. Comb Chem High Throughput Screen 2008;11:677-85. Review of various kernel functions for chemogenomics.
-
(2008)
Comb Chem High Throughput Screen
, vol.11
, pp. 677-685
-
-
Vert, J.-P.1
Jacob, L.2
-
14
-
-
77952766987
-
A User's guide to support vector machines
-
Ben-Hur A, Weston J. A User's guide to support vector machines. Methods Mol Biol 2010;609:223-39
-
(2010)
Methods Mol Biol
, vol.609
, pp. 223-239
-
-
Ben-Hur, A.1
Weston, J.2
-
15
-
-
4043137356
-
A tutorial on support vector regression
-
Smola AJ, Scholkopf B. A tutorial on support vector regression. Stat Comput 2004;14:199-222
-
(2004)
Stat Comput
, vol.14
, pp. 199-222
-
-
Smola, A.J.1
Scholkopf, B.2
-
17
-
-
1942516986
-
-
In: Fawcett T Mishra N Editors. Proceedings Of The 20th International Conference On Machine Learning. The AAAI Press; Washington DC USA
-
Kashima H, Tsuda K, Inokuchi A. Marginalized kernels between labeled graphs. In: Fawcett T, Mishra N, editors. Proceedings of the 20th International Conference on Machine Learning. The AAAI Press; Washington DC, USA; 2003
-
(2003)
Marginalized Kernels between Labeled Graphs
-
-
Kashima, H.1
Tsuda, K.2
Inokuchi, A.3
-
18
-
-
23844458045
-
Graph kernels for molecular structureactivity relationship analysis with support vector machines
-
Mahé P, Ueda N, Akutsu T, et al. Graph kernels for molecular structureactivity relationship analysis with support vector machines. J Chem Inf Model 2005;45:939-51
-
(2005)
J Chem Inf Model
, vol.45
, pp. 939-951
-
-
Mahé, P.1
Ueda, N.2
Akutsu, T.3
-
19
-
-
23844480138
-
Graph kernels for chemical informatics
-
Introduction of the Tanimoto kernel
-
Ralaivola L, Swamidass SJ, Saigo H, Baldi P. Graph kernels for chemical informatics. Neural Netw 2005;18:1093-110. Introduction of the Tanimoto kernel.
-
(2005)
Neural Netw
, vol.18
, pp. 1093-110
-
-
Ralaivola, L.1
Swamidass, S.J.2
Saigo, H.3
Baldi, P.4
-
20
-
-
33750294461
-
The pharmacophore kernel for virtual screening with support vector machines
-
Mahé P, Ralaivola L, Stoven V, Vert J-P. The pharmacophore kernel for virtual screening with support vector machines. J Chem Inf Model 2006;46:2003-14
-
(2006)
J Chem Inf Model
, vol.46
, pp. 2003-2014
-
-
Mahé, P.1
Ralaivola, L.2
Stoven, V.3
Vert, J.-P.4
-
21
-
-
54249156505
-
Molecule kernels: A descriptor-and alignment-free quantitative structure-activity relationship approach
-
Mohr JA, Jain BJ, Obermayer K. Molecule kernels: A descriptor-and alignment-free quantitative structure-activity relationship approach. J Chem Inf Model 2008;48:1868-81
-
(2008)
J Chem Inf Model
, vol.48
, pp. 1868-1881
-
-
Mohr, J.A.1
Jain, B.J.2
Obermayer, K.3
-
22
-
-
34250813174
-
One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties
-
Azencott C-A, Ksikes A, Swamidass SJ, et al. One-to four-dimensional kernels for virtual screening and the prediction of physical, chemical, and biological properties. J Chem Inf Model 2007;47:965-74
-
(2007)
J Chem Inf Model
, vol.47
, pp. 965-974
-
-
Azencott, C.-A.1
Ksikes, A.2
Swamidass, S.J.3
-
23
-
-
33646251586
-
Collaborative filtering on a family of biological targets
-
Introduction of a target-ligand kernel
-
Erhan D, L'heureux P-J, Yue SY, Bengio Y. Collaborative filtering on a family of biological targets. J Chem Inf Model 2006;46:626-35. Introduction of a target-ligand kernel.
-
(2006)
J Chem Inf Model
, vol.46
, pp. 626-635
-
-
Erhan, D.1
L'Heureux, P.-J.2
Yue, S.Y.3
Bengio, Y.4
-
24
-
-
52749085437
-
Protein-ligand interaction prediction: An improved chemogenomics approach
-
Jacob L, Vert J-P. Protein-ligand interaction prediction: An improved chemogenomics approach. Bioinformatics 2008;24:2149-56
-
(2008)
Bioinformatics
, vol.24
, pp. 2149-2156
-
-
Jacob, L.1
Vert, J.-P.2
-
25
-
-
79960721268
-
Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel
-
Meslamani J, Rognan D. Enhancing the accuracy of chemogenomic models with a three-dimensional binding site kernel. J Chem Inf Model 2011;51:1593-603
-
(2011)
J Chem Inf Model
, vol.51
, pp. 1593-1603
-
-
Meslamani, J.1
Rognan, D.2
-
26
-
-
78650095648
-
Potency-directed similarity searching using support vector machines
-
Wassermann AM, Heikamp K, Bajorath J. Potency-directed similarity searching using support vector machines. Chem Biol Drug Des 2011;77:30-8
-
(2011)
Chem Biol Drug des
, vol.77
, pp. 30-38
-
-
Wassermann, A.M.1
Heikamp, K.2
Bajorath, J.3
-
27
-
-
84866700901
-
Prediction of activity cliffs using support vector machines
-
Heikamp K, Hu X, Yan A, Bajorath J. Prediction of activity cliffs using support vector machines. J Chem Inf Model 2012;52:2354-65
-
(2012)
J Chem Inf Model
, vol.52
, pp. 2354-2365
-
-
Heikamp, K.1
Hu, X.2
Yan, A.3
Bajorath, J.4
-
29
-
-
75849120416
-
Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods
-
Lv W, Xue Y. Prediction of acetylcholinesterase inhibitors and characterization of correlative molecular descriptors by machine learning methods. Eur J Med Chem 2010;45:1167-72
-
(2010)
Eur J Med Chem
, vol.45
, pp. 1167-1172
-
-
Lv, W.1
Xue, Y.2
-
30
-
-
80054909003
-
Predictive models for cytochrome p450 isozymes based on quantitative high throughput screening data
-
Sun H, Veith H, Xia M, et al. Predictive models for cytochrome p450 isozymes based on quantitative high throughput screening data. J Chem Inf Model 2011;51:2474-81
-
(2011)
J Chem Inf Model
, vol.51
, pp. 2474-2481
-
-
Sun, H.1
Veith, H.2
Xia, M.3
-
31
-
-
77952768125
-
Ranking chemical structures for drug discovery: A new machine learning approach
-
Agarwal S, Dugar D, Sengupta S. Ranking chemical structures for drug discovery: A new machine learning approach. J Chem Inf Model 2010;50:716-31
-
(2010)
J Chem Inf Model
, vol.50
, pp. 716-731
-
-
Agarwal, S.1
Dugar, D.2
Sengupta, S.3
-
33
-
-
84864185732
-
Structure based model for the prediction of phospholipidosis induction potential of small molecules
-
Sun H, Shahane S, Xia M, et al. Structure based model for the prediction of phospholipidosis induction potential of small molecules. J Chem Inf Model 2012;52:1798-805
-
(2012)
J Chem Inf Model
, vol.52
, pp. 1798-1805
-
-
Sun, H.1
Shahane, S.2
Xia, M.3
-
34
-
-
84879570665
-
Beyond the scope of Free-Wilson analysis: Building interpretable QSAR models with machine learning algorithms
-
Chen H, Carlsson L, Eriksson M, et al. Beyond the scope of Free-Wilson analysis: Building interpretable QSAR models with machine learning algorithms. J Chem Inf Model 2013;53:1324-36
-
(2013)
J Chem Inf Model
, vol.53
, pp. 1324-1336
-
-
Chen, H.1
Carlsson, L.2
Eriksson, M.3
-
36
-
-
80155156908
-
Kernel-based data fusion improves the drug-protein interaction prediction
-
Wang Y-C, Zhang C-H, Deng N-Y, Wang Y. Kernel-based data fusion improves the drug-protein interaction prediction. Comput Biol Chem 2011;35:353-62
-
(2011)
Comput Biol Chem
, vol.35
, pp. 353-362
-
-
Wang, Y.-C.1
Zhang, C.-H.2
Deng, N.-Y.3
Wang, Y.4
-
37
-
-
82355168473
-
Computational screening for active compounds targeting protein sequences: Methodology and experimental validation
-
Wang F, Liu D, Wang H, et al. Computational screening for active compounds targeting protein sequences: Methodology and experimental validation. J Chem Inf Model 2011;51:2821-8
-
(2011)
J Chem Inf Model
, vol.51
, pp. 2821-2828
-
-
Wang, F.1
Liu, D.2
Wang, H.3
-
38
-
-
70350495651
-
Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects
-
Systematic analysis of different targetligand kernels revealing that orphan screening performance was dominated by compound similarity
-
Wassermann AM, Geppert H, Bajorath J. Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects. J Chem Inf Model 2009;49:2155-67. Systematic analysis of different targetligand kernels revealing that orphan screening performance was dominated by compound similarity.
-
(2009)
J Chem Inf Model
, vol.49
, pp. 2155-2167
-
-
Wassermann, A.M.1
Geppert, H.2
Bajorath, J.3
-
39
-
-
66149090260
-
Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors
-
Geppert H, Humrich J, Stumpfe D, et al. Ligand prediction from protein sequence and small molecule information using support vector machines and fingerprint descriptors. J Chem Inf Model 2009;49:767-79
-
(2009)
J Chem Inf Model
, vol.49
, pp. 767-779
-
-
Geppert, H.1
Humrich, J.2
Stumpfe, D.3
-
40
-
-
65249163404
-
Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors
-
Wassermann AM, Geppert H, Bajorath J. Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors. J Chem Inf Model 2009;49:582-92
-
(2009)
J Chem Inf Model
, vol.49
, pp. 582-592
-
-
Wassermann, A.M.1
Geppert, H.2
Bajorath, J.3
-
41
-
-
73349125784
-
Exploring potency and selectivity receptor antagonist profiles using a multilabel classification approach: The human adenosine receptors as a key study
-
Michielan L, Stephanie F, Terfloth L, et al. Exploring potency and selectivity receptor antagonist profiles using a multilabel classification approach: The human adenosine receptors as a key study. J Chem Inf Model 2009;49:2820-36
-
(2009)
J Chem Inf Model
, vol.49
, pp. 2820-2836
-
-
Michielan, L.1
Stephanie, F.2
Terfloth, L.3
-
42
-
-
84876577793
-
Prediction of compounds with closely related activity profiles using weighted support vector machine linear combinations
-
Heikamp K, Bajorath J. Prediction of compounds with closely related activity profiles using weighted support vector machine linear combinations. J Chem Inf Model 2013;53:791-801
-
(2013)
J Chem Inf Model
, vol.53
, pp. 791-801
-
-
Heikamp, K.1
Bajorath, J.2
-
43
-
-
47349113899
-
Predictive activity profiling of drugs by topological-fragment-spectra- based support vector machines
-
Kawai K, Fujishima S, Takahashi Y. Predictive activity profiling of drugs by topological-fragment-spectra-based support vector machines. J Chem Inf Model 2008;48:1152-60
-
(2008)
J Chem Inf Model
, vol.48
, pp. 1152-1160
-
-
Kawai, K.1
Fujishima, S.2
Takahashi, Y.3
-
44
-
-
58149099516
-
In silico functional profiling of small molecules and its applications
-
Sato T, Matsuo Y, Honma T, Yokoyama S. In silico functional profiling of small molecules and its applications. J Med Chem 2008;51:7705-16
-
(2008)
J Med Chem
, vol.51
, pp. 7705-7716
-
-
Sato, T.1
Matsuo, Y.2
Honma, T.3
Yokoyama, S.4
-
45
-
-
0345548663
-
Support vector machines for the estimation of aqueous solubility
-
Lind P, Maltseva T. Support vector machines for the estimation of aqueous solubility. J Chem Inf Comput Sci 2003;43:1855-9
-
(2003)
J Chem Inf Comput Sci
, vol.43
, pp. 1855-1859
-
-
Lind, P.1
Maltseva, T.2
-
46
-
-
79952229990
-
Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection
-
Cheng T, Li Q, Wang Y, et al. Binary classification of aqueous solubility using support vector machines with reduction and recombination feature selection. J Chem Inf Model 2011;51:229-36
-
(2011)
J Chem Inf Model
, vol.51
, pp. 229-236
-
-
Cheng, T.1
Li, Q.2
Wang, Y.3
-
47
-
-
77954068708
-
Estimation of ADME properties with substructure pattern recognition
-
Shen J, Cheng F, Xu Y, et al. Estimation of ADME properties with substructure pattern recognition. J Chem Inf Model 2010;50:1034-41
-
(2010)
J Chem Inf Model
, vol.50
, pp. 1034-1041
-
-
Shen, J.1
Cheng, F.2
Xu, Y.3
-
48
-
-
37249042636
-
ADME evaluation in drug discovery the prediction of human intestinal absorption by a support vector machine
-
Hou T, Wang J, Li Y. ADME evaluation in drug discovery. The prediction of human intestinal absorption by a support vector machine. J Chem Inf Model 2007;47:2408-15
-
(2007)
J Chem Inf Model
, vol.47
, pp. 2408-2415
-
-
Hou, T.1
Wang, J.2
Li, Y.3
-
49
-
-
84878744355
-
A prediction model for oral bioavailability of drugs using physicochemical properties by support vector machine
-
Kumar R, Sharma A, Varadwaj PK. A prediction model for oral bioavailability of drugs using physicochemical properties by support vector machine. J Nat Sci Biol Med 2011;2:168-73
-
(2011)
J Nat Sci Biol Med
, vol.2
, pp. 168-173
-
-
Kumar, R.1
Sharma, A.2
Varadwaj, P.K.3
-
50
-
-
33845772315
-
Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs
-
Bhavani S, Nagargadde A, Thawani A, et al. Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs. J Chem Inf Model 2006;46:2478-86
-
(2006)
J Chem Inf Model
, vol.46
, pp. 2478-2486
-
-
Bhavani, S.1
Nagargadde, A.2
Thawani, A.3
-
51
-
-
82655172584
-
Rapid and accurate assessment of seizure liability of drugs by using an optimal support vector machine method
-
Zhang H, Li W, Xie Y, et al. Rapid and accurate assessment of seizure liability of drugs by using an optimal support vector machine method. Toxicol In Vitro 2011;25:1848-54
-
(2011)
Toxicol in Vitro
, vol.25
, pp. 1848-1854
-
-
Zhang, H.1
Li, W.2
Xie, Y.3
-
52
-
-
84862922236
-
In silico models to discriminate compounds inducing and noninducing toxic myopathy
-
Hu X, Yan A. In silico models to discriminate compounds inducing and noninducing toxic myopathy. Mol Inform 2012;31:27-39
-
(2012)
Mol Inform
, vol.31
, pp. 27-39
-
-
Hu, X.1
Yan, A.2
-
53
-
-
84862843449
-
Predictive toxicology modeling: Protocols for exploring hERG classification and Tetrahymena pyriformis end point predictions
-
Su B-H, Tu Y, Esposito EX, Tseng YJ. Predictive toxicology modeling: Protocols for exploring hERG classification and Tetrahymena pyriformis end point predictions. J Chem Inf Model 2012;52:1660-73
-
(2012)
J Chem Inf Model
, vol.52
, pp. 1660-1673
-
-
Su, B.-H.1
Tu, Y.2
Esposito, E.X.3
Tseng, Y.J.4
-
54
-
-
84878176071
-
Characterizing binding of small molecules. II. Evaluating the potency of small molecules to combat resistance based on docking structures
-
Ding B, Li N, Wang W. Characterizing binding of small molecules. II. Evaluating the potency of small molecules to combat resistance based on docking structures. J Chem Inf Model 2013;53:1213-22
-
(2013)
J Chem Inf Model
, vol.53
, pp. 1213-1222
-
-
Ding, B.1
Li, N.2
Wang, W.3
-
55
-
-
77954054048
-
Assessing synthetic accessibility of chemical compounds using machine learning methods
-
Podolyan Y, Walters M A, Karypis G. Assessing synthetic accessibility of chemical compounds using machine learning methods. J Chem Inf Model 2010;50:979-91
-
(2010)
J Chem Inf Model
, vol.50
, pp. 979-991
-
-
Podolyan, Y.1
Walters, M.A.2
Karypis, G.3
-
56
-
-
18344381621
-
Classifying "drug-likeness" with kernel-based learning methods
-
Muller K-R, Ratsch G, Sonnenburg S, et al. Classifying "drug-likeness" with kernel-based learning methods. J Chem Inf Model 2005;45:249-53
-
(2005)
J Chem Inf Model
, vol.45
, pp. 249-253
-
-
Muller, K.-R.1
Ratsch, G.2
Sonnenburg, S.3
-
57
-
-
46749128531
-
New predictive models for blood-brain barrier permeability of druglike molecules
-
Kortagere S, Chekmarev D, Welsh WJ, Ekins S. New predictive models for blood-brain barrier permeability of druglike molecules. Pharm Res 2008;25:1836-45
-
(2008)
Pharm Res
, vol.25
, pp. 1836-1845
-
-
Kortagere, S.1
Chekmarev, D.2
Welsh, W.J.3
Ekins, S.4
-
58
-
-
84857531280
-
Combining global and local measures for structure-based druggability predictions
-
Volkamer A, Kuhn D, Grombacher T, et al. Combining global and local measures for structure-based druggability predictions. J Chem Inf Model 2012;52:360-72
-
(2012)
J Chem Inf Model
, vol.52
, pp. 360-372
-
-
Volkamer, A.1
Kuhn, D.2
Grombacher, T.3
-
59
-
-
80053313926
-
Support vector regression scoring of receptorligand complexes for rank-ordering and virtual screening of chemical libraries
-
Li L, Wang B, Meroueh SO. Support vector regression scoring of receptorligand complexes for rank-ordering and virtual screening of chemical libraries. J Chem Inf Model 2011;51:2132-8
-
(2011)
J Chem Inf Model
, vol.51
, pp. 2132-2138
-
-
Li, L.1
Wang, B.2
Meroueh, S.O.3
-
60
-
-
84875428269
-
IDScore: A New Empirical Scoring Function Based on a Comprehensive Set of Descriptors Related to Protein-Ligand Interactions
-
Li G-B, Yang L-L, Wang W-J, et al. IDScore: A New Empirical Scoring Function Based on a Comprehensive Set of Descriptors Related to Protein-Ligand Interactions. J Chem Inf Model 2013;53:592-600
-
(2013)
J Chem Inf Model
, vol.53
, pp. 592-600
-
-
Li, G.-B.1
Yang, L.-L.2
Wang, W.-J.3
-
61
-
-
77951270486
-
Estimation of the applicability domain of kernel-based machine learning models for virtual screening
-
Fechner N, Jahn A, Hinselmann G, et al. Estimation of the applicability domain of kernel-based machine learning models for virtual screening. J Cheminform 2010;2:2
-
(2010)
J Cheminform
, vol.2
, pp. 2
-
-
Fechner, N.1
Jahn, A.2
Hinselmann, G.3
-
62
-
-
67650895854
-
Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening
-
Nagamine N, Shirakawa T, Minato Y, et al. Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening. PLoS Comput Biol 2009;5:e1000397
-
(2009)
PLoS Comput Biol
, vol.5
-
-
Nagamine, N.1
Shirakawa, T.2
Minato, Y.3
-
63
-
-
67650064506
-
Combining selectivity and affinity predictions using an integrated Support Vector Machine (SVM) approach: An alternative tool to discriminate between the human adenosine A(2A) and A(3) receptor pyrazolo-triazolo-pyrimidine antagonists binding sites
-
Michielan L, Bolcato C, Federico S, et al. Combining selectivity and affinity predictions using an integrated Support Vector Machine (SVM) approach: An alternative tool to discriminate between the human adenosine A(2A) and A(3) receptor pyrazolo-triazolo-pyrimidine antagonists binding sites. Bioorg Med Chem 2009;17:5259-74
-
(2009)
Bioorg Med Chem
, vol.17
, pp. 5259-5274
-
-
Michielan, L.1
Bolcato, C.2
Federico, S.3
-
64
-
-
80255135618
-
Brainstorming: Weighted voting prediction of inhibitors for protein targets
-
Plewczynski D. Brainstorming: weighted voting prediction of inhibitors for protein targets. J Mol Model 2011;17:2133-41
-
(2011)
J Mol Model
, vol.17
, pp. 2133-2141
-
-
Plewczynski, D.1
-
65
-
-
79960245348
-
Classification of cytochrome p450 inhibitors and noninhibitors using combined classifiers
-
Cheng F, Yu Y, Shen J, et al. Classification of cytochrome p450 inhibitors and noninhibitors using combined classifiers. J Chem Inf Model 2011;51:996-1011
-
(2011)
J Chem Inf Model
, vol.51
, pp. 996-1011
-
-
Cheng, F.1
Yu, Y.2
Shen, J.3
-
66
-
-
34250876925
-
A novel logic-based approach for quantitative toxicology prediction
-
Amini A, Muggleton SH, Lodhi H, Sternberg MJE. A novel logic-based approach for quantitative toxicology prediction. J Chem Inf Model 2007;47:998-1006
-
(2007)
J Chem Inf Model
, vol.47
, pp. 998-1006
-
-
Amini, A.1
Muggleton, S.H.2
Lodhi, H.3
Mje, S.4
-
67
-
-
36749002607
-
A general approach for developing system specific functions to score protein-ligand docked complexes using support vector inductive logic programming
-
Amini A, Shrimpton PJ, Muggleton SH, Sternberg MJE. A general approach for developing system specific functions to score protein-ligand docked complexes using support vector inductive logic programming. Proteins 2007;69:823-31
-
(2007)
Proteins
, vol.69
, pp. 823-831
-
-
Amini, A.1
Shrimpton, P.J.2
Muggleton, S.H.3
Sternberg, M.J.E.4
-
68
-
-
34247386376
-
Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds
-
Cannon EO, Amini A, Bender A, et al. Support vector inductive logic programming outperforms the naive Bayes classifier and inductive logic programming for the classification of bioactive chemical compounds. J Comput Aided Mol Des 2007;21:269-80
-
(2007)
J Comput Aided Mol des
, vol.21
, pp. 269-280
-
-
Cannon, E.O.1
Amini, A.2
Bender, A.3
-
69
-
-
2942702317
-
SVM-based feature selection for characterization of focused compound collections
-
Byvatov E, Schneider G. SVM-based feature selection for characterization of focused compound collections. J Chem Inf Comput Sci 2004;44:993-9
-
(2004)
J Chem Inf Comput Sci
, vol.44
, pp. 993-999
-
-
Byvatov, E.1
Schneider, G.2
-
70
-
-
77956905367
-
Targeting multifunctional proteins by virtual screening: Structurally diverse cytohesin inhibitors with differentiated biological functions
-
Stumpfe D, Bill A, Novak N, et al. Targeting multifunctional proteins by virtual screening: Structurally diverse cytohesin inhibitors with differentiated biological functions. ACS Chem Biol 2010;5:839-49
-
(2010)
ACS Chem Biol
, vol.5
, pp. 839-849
-
-
Stumpfe, D.1
Bill, A.2
Novak, N.3
-
71
-
-
33947183028
-
A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability
-
Leong MK. A novel approach using pharmacophore ensemble/support vector machine (PhE/SVM) for prediction of hERG liability. Chem Res Toxicol 2007;20:217-26
-
(2007)
Chem Res Toxicol
, vol.20
, pp. 217-226
-
-
Leong, M.K.1
-
72
-
-
80054726684
-
Predicting activation of the promiscuous human pregnane X receptor by pharmacophore ensemble/support vector machine approach
-
Chen C-N, Shih Y-H, Ding Y-L, Leong MK. Predicting activation of the promiscuous human pregnane X receptor by pharmacophore ensemble/support vector machine approach. Chem Res Toxicol 2011;24:1765-78
-
(2011)
Chem Res Toxicol
, vol.24
, pp. 1765-1778
-
-
Chen, C.-N.1
Shih, Y.-H.2
Ding, Y.-L.3
Leong, M.K.4
-
73
-
-
80052931564
-
Combined SVM-based and dockingbased virtual screening for retrieving novel inhibitors of c-Met
-
Xie Q-Q, Zhong L, Pan Y-L, et al. Combined SVM-based and dockingbased virtual screening for retrieving novel inhibitors of c-Met. Eur J Med Chem 2011;46:3675-80
-
(2011)
Eur J Med Chem
, vol.46
, pp. 3675-3680
-
-
Xie, Q.-Q.1
Zhong, L.2
Pan, Y.-L.3
-
74
-
-
79959756890
-
Discovery of novel Pim-1 kinase inhibitors by a hierarchical multistage virtual screening approach based on SVM model, pharmacophore, and molecular docking
-
Ren J-X, Li L-L, Zheng R-L, et al. Discovery of novel Pim-1 kinase inhibitors by a hierarchical multistage virtual screening approach based on SVM model, pharmacophore, and molecular docking. J Chem Inf Model 2011;51:1364-75
-
(2011)
J Chem Inf Model
, vol.51
, pp. 1364-1375
-
-
Ren, J.-X.1
Li, L.-L.2
Zheng, R.-L.3
-
75
-
-
84884576643
-
Computational profiling of bioactive compounds using a targetdependent composite workflow
-
Meslamani J, Bhajun R, Martz F, Rognan D. Computational profiling of bioactive compounds using a targetdependent composite workflow. J Chem Inf Model 2013;53:2322-33
-
(2013)
J Chem Inf Model
, vol.53
, pp. 2322-2333
-
-
Meslamani, J.1
Bhajun, R.2
Martz, F.3
Rognan, D.4
|