-
2
-
-
85032751686
-
Expanding the scope of signal processing
-
Deng, L. Expanding the scope of signal processing. IEEE Signal Process. Mag., 25 (3) (2008), 2-4.
-
(2008)
IEEE Signal Process. Mag.
, vol.25
, Issue.3
, pp. 2-4
-
-
Deng, L.1
-
3
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
Hinton, G.; Osindero, S.; Teh, Y. A fast learning algorithm for deep belief nets. Neural Comput., 18 (2006), 1527-1554.
-
(2006)
Neural Comput.
, vol.18
, pp. 1527-1554
-
-
Hinton, G.1
Osindero, S.2
Teh, Y.3
-
4
-
-
69349090197
-
Learning deep architectures for AI
-
Bengio, Y. Learning deep architectures for AI. Found. TrendsMach. Learn., 2 (1) (2009), 1-127.
-
(2009)
Found. Trends Mach. Learn.
, vol.2
, Issue.1
, pp. 1-127
-
-
Bengio, Y.1
-
5
-
-
84879854889
-
Representation learning A review and new perspectives
-
Bengio, Y.; Courville, A.; Vincent, P. Representation learning a review and new perspectives, IEEETrans.PatternAnal.Mach. Intell., 35 (2013), 1798-1828.
-
(2013)
IEEET rans.Pattern Anal.Mach. Intell.
, vol.35
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
6
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition
-
Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Process.Mag., 29 (6) (2012), 82-97.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
-
7
-
-
85032782045
-
Deep learning and its applications to signal and information processing
-
Yu, D.; Deng, L. Deep learning and its applications to signal and information processing. IEEE Signal Process. Mag., 28 (2011), 145- 154.
-
(2011)
IEEE Signal Process. Mag.
, vol.28
, pp. 145-154
-
-
Yu D.Deng, L.1
-
8
-
-
77958488310
-
Deep machine learning - A new frontier in artificial intelligence
-
Arel, I.; Rose, C.; Karnowski, T. Deep machine learning - A new frontier in artificial intelligence, in IEEE Computational Intelligence Mag., 5 (2010), 13-18.
-
(2010)
IEEE Computational Intelligence Mag.
, vol.5
, pp. 13-18
-
-
Arel, I.1
Rose, C.2
Karnowski, T.3
-
9
-
-
84903700854
-
Scientists see promise in deep-learning programs
-
November 24
-
Markoff, J. Scientists See Promise in Deep-Learning Programs. New York Times, November 24, 2012.
-
(2012)
New York Times
-
-
Markoff, J.1
-
10
-
-
78149327741
-
Kernel methods for deep learning
-
Cho, Y.; Saul, L. Kernel methods for deep learning. NIPS, 2009, 342-350.
-
(2009)
NIPS
, pp. 342-350
-
-
Cho, Y.1
Saul, L.2
-
11
-
-
84874256530
-
Use of kernel deep convex networks and end-to-end learning for spoken language understanding
-
December
-
Deng, L.; Tur, G., He, X.; Hakkani-Tur, D. Use of kernel deep convex networks and end-to-end learning for spoken language understanding, in Proc. IEEE Workshop on Spoken Language Technologies, December 2012.
-
(2012)
Proc. IEEE Workshop on Spoken Language Technologies
-
-
Deng, L.1
Tur, G.2
He, X.3
Hakkani-Tur, D.4
-
12
-
-
84877777313
-
Learning with recursive perceptual representations
-
Vinyals, O.; Jia, Y.; Deng, L.; Darrell, T. Learning with recursive perceptual representations, in Proc. NIPS, 2012.
-
(2012)
Proc. NIPS
-
-
Vinyals, O.1
Jia, Y.2
Deng, L.3
Darrell, T.4
-
13
-
-
85032751593
-
Research developments and directions in speech recognition and understanding
-
Baker, J. et al. Research developments and directions in speech recognition and understanding. IEEE Signal Process. Mag., 26 (3) (2009), 75-80.
-
(2009)
IEEE Signal Process. Mag.
, vol.26
, Issue.3
, pp. 75-80
-
-
Baker, J.1
-
14
-
-
85032759066
-
Updated MINS report on speech recognition and understanding
-
Baker, J. et al. Updated MINS report on speech recognition and understanding. IEEE Signal. Process. Mag., 26 (4) (2009), 78-85.
-
(2009)
EEE Signal. Process. Mag.
, vol.26
, Issue.4
, pp. 78-85
-
-
Baker, J.1
-
15
-
-
0039503389
-
Computational models for speech production
-
Springer- Verlag, Berlin, Heidelberg
-
Deng, L. Computational models for speech production, in Computational Models of Speech Pattern Processing, 199-213, Springer- Verlag, 1999, Berlin, Heidelberg.
-
(1999)
Computational Models of Speech Pattern Processing
, pp. 199-213
-
-
Deng, L.1
-
16
-
-
33744966595
-
Switching dynamic system models for speech articulation and acoustics
-
Springer, New York
-
Deng, L. Switching dynamic system models for speech articulation and acoustics, in Mathematical Foundations of Speech and Language Processing, 115-134, Springer, NewYork, 2003.
-
(2003)
Mathematical Foundations of Speech and Language Processing
, pp. 115-134
-
-
Deng, L.1
-
19
-
-
84903722546
-
How the brain might work The role of information and learning in understanding and replicating intelligence
-
(G. Jacovitt, A. Pettorossi, R. Consolo, V. Senni, eds), Lateran University Press, Amsterdam, Netherlands
-
Poggio, T. How the brain might work the role of information and learning in understanding and replicating intelligence, in Information Science and Technology for the New Century (G. Jacovitt, A. Pettorossi, R. Consolo, V. Senni, eds), 45-61, Lateran University Press, 2007, Amsterdam, Netherlands.
-
(2007)
Information Science and Technology for the New Century
, pp. 45-61
-
-
Poggio, T.1
-
20
-
-
79951563340
-
Understanding the difficulty of training deep feed forward neural networks
-
Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feed forward neural networks, in Proc. AISTAT, 2010.
-
(2010)
Proc. AISTAT
-
-
Glorot, X.1
Bengio, Y.2
-
21
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G.; Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science, 313 (5786) (2006), 504-507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.1
Salakhutdinov, R.2
-
22
-
-
84905237729
-
Context-dependent DBNHMMs in large vocabulary continuous speech recognition
-
Dahl, G.; Yu, D.; Deng, L.; Acero, A. Context-dependent DBNHMMs in large vocabulary continuous speech recognition, in Proc. ICASSP, 2011.
-
(2011)
Proc. ICASSP
-
-
Dahl, G.1
Yu, D.2
Deng, L.3
Acero, A.4
-
23
-
-
79959840616
-
Investigation of full-sequence training of deep belief networks for speech recognition
-
September
-
Mohamed, A.; Yu, D.; Deng, L. Investigation of full-sequence training of deep belief networks for speech recognition, in Proc. Inter speech, September 2010.
-
(2010)
Proc. Inter Speech
-
-
Mohamed, A.1
Yu, D.2
Deng, L.3
-
24
-
-
84055211743
-
Acoustic modeling using deep belief networks
-
Mohamed, A.; Dahl, G.; Hinton, G. Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process., 20 (1) (2012), 14-22.
-
(2012)
IEEE Trans. Audio Speech Lang. Process.
, vol.20
, Issue.1
, pp. 14-22
-
-
Mohamed, A.1
Dahl, G.2
Hinton, G.3
-
25
-
-
84055222005
-
Context-dependent DBNHMMs in large vocabulary continuous speech recognition
-
Dahl, G.; Yu, D.; Deng, L.; Acero, A. Context-dependent DBNHMMs in large vocabulary continuous speech recognition. IEEE Trans. Audio Speech, Lang. Process., 20 (1) (2012), 30-42.
-
(2012)
IEEE Trans. Audio Speech, Lang. Process.
, vol.20
, Issue.1
, pp. 30-42
-
-
Dahl, G.1
Yu, D.2
Deng, L.3
Acero, A.4
-
26
-
-
84867585919
-
Understanding how deep belief networks perform acoustic modeling
-
Mohamed, A.; Hinton, G.; Penn, G. Understanding how deep belief networks perform acoustic modelling, in Proc. ICASSP, 2012.
-
(2012)
Proc. ICASSP
-
-
Mohamed, A.1
Hinton, G.2
Penn, G.3
-
27
-
-
79551480483
-
Stacked de noising auto encoders Leaning useful representations in a deep network with a local de noising criterion
-
Vincent, P.; Larochelle, H.; Lajoie, I.; Bengio, Y.; Manzagol, P. Stacked denoising autoencoders leaning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res., 11 (2010), 3371-3408.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.5
-
28
-
-
80053460450
-
Contractive auto encoders Explicit invariance during feature extraction
-
Rifai, S.; Vincent, P.; Muller, X.; Glorot, X.; Bengio, Y. Contractive autoencoders explicit invariance during feature extraction, in Proc. ICML, 2011, 833-840.
-
(2011)
Proc. ICML
, pp. 833-840
-
-
Rifai, S.1
Vincent, P.2
Muller, X.3
Glorot, X.4
Bengio, Y.5
-
29
-
-
70049094447
-
Sparse feature learning for deep belief networks
-
Ranzato, M.; Boureau, Y.; LeCun, Y. Sparse feature learning for deep belief networks, in Proc. NIPS, 2007.
-
(2007)
Proc. NIPS
-
-
Ranzato, M.1
Boureau, Y.2
LeCun, Y.3
-
30
-
-
79959842828
-
Binary coding of speech spectrograms using a deep auto-encoder
-
Deng, L.; Seltzer, M.; Yu, D.; Acero, A.; Mohamed, A.; Hinton, G. Binary coding of speech spectrograms using a deep auto-encoder, in Proc. Interspeech, 2010.
-
(2010)
Proc. Inter speech
-
-
Deng, L.1
Seltzer, M.2
Yu, D.3
Acero, A.4
Mohamed, A.5
Hinton, G.6
-
31
-
-
84919206023
-
Global optimization of a neural network - Hidden Markov model hybrid
-
Bengio, Y.; De Mori, R.; Flammia, G.; Kompe, F. Global optimization of a neural network - Hidden Markov model hybrid, in Proc. Proc. Euro speech, 1991.
-
(1991)
Proc. Proc. Euro Speech
-
-
Bengio, Y.1
De Mori, R.2
Flammia, G.3
Kompe, F.4
-
32
-
-
0003573244
-
Connectionist speech recognition A hybrid approach
-
Norwell, MA
-
Bourlard, H.; Morgan, N. Connectionist Speech Recognition A Hybrid Approach, Kluwer, Norwell, MA, 1993.
-
(1993)
Kluwer
-
-
Bourlard, H.1
Morgan, N.2
-
33
-
-
84255177123
-
Deep and wide Multiple layers in automatic speech recognition
-
Morgan, N. Deep and wide multiple layers in automatic speech recognition. IEEE Trans.Audio Speech, Lang. Process., 20 (1) (2012), 7-13.
-
(2012)
IEEE Trans.Audio Speech, Lang. Process.
, vol.20
, Issue.1
, pp. 7-13
-
-
Morgan, N.1
-
34
-
-
84876672166
-
Machine learning paradigms in speech recognition An overview
-
Deng, L.; Li, X. Machine learning paradigms in speech recognition an overview. IEEE Trans. Audio Speech, Lang., 21 (2013), 1060-1089.
-
(2013)
IEEE Trans. Audio Speech, Lang.
, vol.21
, pp. 1060-1089
-
-
Deng, L.1
Li, X.2
-
35
-
-
51249093914
-
Energy-based models in document recognition and computer vision
-
LeCun, Y.; Chopra, S.; Ranzato, M.; Huang, F. Energy-based models in document recognition and computer vision, in Proc. Int. Conf. Document Analysis and Recognition, (ICDAR), 2007.
-
(2007)
Proc. Int. Conf. Document Analysis and Recognition,(ICDAR)
-
-
LeCun, Y.1
Chopra, S.2
Ranzato, M.3
Huang, F.4
-
36
-
-
85112276587
-
Efficient learning of sparse representations with an energy-based model
-
Ranzato, M.; Poultney, C.; Chopra, S.; LeCun, Y. Efficient learning of sparse representations with an energy-based model, in Proc. NIPS, 2006.
-
(2006)
Proc. NIPS
-
-
Ranzato, M.1
Poultney, C.2
Chopra, S.3
LeCun, Y.4
-
37
-
-
80053437179
-
Multimodal deep learning
-
Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; Ng, A. Multimodal deep learning, in Proc. ICML, 2011.
-
(2011)
Proc. ICML
-
-
Ngiam, J.1
Khosla, A.2
Kim, M.3
Nam, J.4
Lee, H.5
Ng, A.6
-
38
-
-
80053445973
-
Learning deep energy models
-
Ngiam, J.; Chen, Z.; Koh, P.; Ng, A. Learning deep energy models, in Proc. ICML, 2011.
-
(2011)
Proc. ICML
-
-
Ngiam, J.1
Chen, Z.2
Koh, P.3
Ng, A.4
-
41
-
-
84877755914
-
A better way to pre train deep Boltzmann machines
-
Salakhutdinov, R.; Hinton, G. A better way to pre train deep Boltzmann machines, in Proc. NIPS, 2012.
-
(2012)
Proc. NIPS
-
-
Salakhutdinov, R.1
Hinton, G.2
-
42
-
-
84877724347
-
Multimodal learning with deep boltzmann machines
-
Srivastava, N.; Salakhutdinov, R. Multimodal learning with deep Boltzmann machines, in Proc. NIPS, 2012.
-
(2012)
Proc. NIPS
-
-
Srivastava, N.1
Salakhutdinov, R.2
-
43
-
-
85162069624
-
Phone recognition with the mean-covariance restricted Boltzmann machine
-
Dahl, G.; Ranzato, M.; Mohamed, A.; Hinton, G. Phone recognition with themean-covariance restricted Boltzmannmachine. Proc. NIPS, 23 (2010), 469-477.
-
(2010)
Proc. NIPS
, vol.23
, pp. 469-477
-
-
Dahl, G.1
Ranzato, M.2
Mohamed, A.3
Hinton, G.4
-
45
-
-
84877731706
-
Discriminative learning of sum-product networks
-
Gens, R.; Domingo, P. Discriminative learning of sum-product networks. Proc. NIPS, 2012.
-
(2012)
Proc. NIPS
-
-
Gens, R.1
Domingo, P.2
-
47
-
-
84865683125
-
Deep learning with Hessian-free optimization
-
Martens, J. Deep learning with Hessian-free optimization, in Proc. ICML, 2010.
-
(2010)
Proc. ICML
-
-
Martens, J.1
-
48
-
-
80053451847
-
Learning recurrent neural networks with Hessian-free optimization
-
Martens, J.; Sutskever, I. Learning recurrent neural networks with Hessian-free optimization, in Proc. ICML, 2011.
-
(2011)
Proc. ICML
-
-
Martens, J.1
Sutskever, I.2
-
51
-
-
79959829092
-
Recurrent neural network based language model
-
Mikolov, T.; Karafiat, M.; Burget, L.; Cernocky, J.; Khudanpur, S. Recurrent neural network based language model, in Proc. ICASSP, 2010, 1045-1048.
-
(2010)
Proc. ICASSP
, pp. 1045-1048
-
-
Mikolov, T.1
Karafiat, M.2
Burget, L.3
Cernocky, J.4
Khudanpur, S.5
-
52
-
-
84906237242
-
Investigation of re current neural- network architectures and learning methods for spoken language understanding
-
Mesnil, G.; He, X.; Deng, L.; Bengio, Y. Investigation of recurrentneural- network architectures and learning methods for spoken language understanding, in Proc. Inter speech, 2013.
-
(2013)
Proc. Inter Speech
-
-
Mesnil, G.1
He, X.2
Deng, L.3
Bengio, Y.4
-
54
-
-
0026854213
-
A generalized hidden Markov model with state conditioned trend functions of time for the speech signal
-
Deng, L. A generalized hidden Markov model with state conditioned trend functions of time for the speech signal. Signal Process., 27 (1) (1992), 65-78.
-
(1992)
Signal Process.
, vol.27
, Issue.1
, pp. 65-78
-
-
Deng, L.1
-
55
-
-
0027678649
-
A stochastic model of speech incorporating hierarchical non stationarity
-
Deng, L. A stochastic model of speech incorporating hierarchical nonstationarity. IEEE Trans. Speech Audio Process., 1 (4) (1993), 471-475.
-
(1993)
IEEE Trans. Speech Audio Process.
, vol.1
, Issue.4
, pp. 471-475
-
-
Deng, L.1
-
56
-
-
0028516022
-
Speech recognition using hidden markov models with polynomial regression functions as nonstationary states
-
Deng, L.; Aksmanovic, M.; Sun, D.; Wu, J. Speech recognition using hiddenMarkov models with polynomial regression functions as nonstationary states. IEEE Trans. Speech Audio Process., 2 (4) (1994), 507-520.
-
(1994)
IEEE Trans. Speech Audio Process.
, vol.2
, Issue.4
, pp. 507-520
-
-
Deng, L.1
Aksmanovic, M.2
Sun, D.3
Wu, J.4
-
57
-
-
0030245363
-
From HMM's to segment models A unified view of stochastic modeling for speech recognition
-
Ostendorf, M.; Digalakis, V.; Kimball, O. From HMM's to segment models a unified view of stochastic modeling for speech recognition. IEEE Trans. Speech Audio Process., 4 (5) (1996), 360-378.
-
(1996)
IEEE Trans. Speech Audio Process.
, vol.4
, Issue.5
, pp. 360-378
-
-
Ostendorf, M.1
Digalakis, V.2
Kimball, O.3
-
58
-
-
0030190520
-
Transitional speech units and their representation by regressive Markov states Applications to speech recognition
-
Deng, L.; Sameti, H. Transitional speech units and their representation by regressiveMarkov states applications to speech recognition. IEEE Trans. Speech Audio Process., 4 (4) (1996), 301-306.
-
(1996)
IEEE Trans. Speech Audio Process.
, vol.4
, Issue.4
, pp. 301-306
-
-
Deng, L.1
Sameti, H.2
-
59
-
-
0031185482
-
Speaker-independent phonetic classification using hidden Markov models with state-conditioned mixtures of trend functions
-
Deng, L.; Aksmanovic, M. Speaker-independent phonetic classification using hidden Markov models with state-conditioned mixtures of trend functions. IEEE Trans. Speech Audio Process., 5 (1997), 319-324.
-
(1997)
IEEE Trans. Speech Audio Process.
, vol.5
, pp. 319-324
-
-
Deng, L.1
Aksmanovic, M.2
-
60
-
-
85032752267
-
Solving nonlinear estimation problems using splines
-
Yu, D.; Deng, L. Solving nonlinear estimation problems using Splines. IEEE Signal Process. Mag., 26 (4) (2009), 86-90.
-
(2009)
IEEE Signal Process. Mag.
, vol.26
, Issue.4
, pp. 86-90
-
-
Yu, D.1
Deng, L.2
-
61
-
-
68549140008
-
A novel framework and training algorithm for variable-parameter hidden Markov models
-
Yu, D., Deng, L.; Gong, Y.; Acero, A. A novel framework and training algorithm for variable-parameter hidden Markov models. IEEE Trans. Audio Speech Lang. Process., 17 (7) (2009), 1348- 1360.
-
(2009)
IEEE Trans. Audio Speech Lang. Process.
, vol.17
, Issue.7
, pp. 1348-1360
-
-
Yu, D.1
Deng, L.2
Gong, Y.3
Acero, A.4
-
62
-
-
78149260085
-
Continuous stochastic feature mapping based on trajectory HMMs
-
Zen, H.; Nankaku, Y.; Tokuda, K. Continuous stochastic feature mapping based on trajectory HMMs. IEEE Trans. Audio Speech, Lang. Process., 19 (2) (2011), 417-430.
-
(2011)
IEEE Trans. Audio Speech, Lang. Process.
, vol.19
, Issue.2
, pp. 417-430
-
-
Zen, H.1
Nankaku, Y.2
Tokuda, K.3
-
63
-
-
85008525798
-
Product of experts for statistical parametric speech synthesis
-
Zen, H.; Gales, M. J. F.; Nankaku, Y.; Tokuda, K. Product of experts for statistical parametric speech synthesis. IEEE Trans. Audio Speech, Lang. Process., 20 (3) (2012), 794-805.
-
(2012)
IEEE Trans. Audio Speech, Lang. Process.
, vol.20
, Issue.3
, pp. 794-805
-
-
Zen, H.1
Gales, M.J.F.2
Nankaku, Y.3
Tokuda, K.4
-
64
-
-
84869440340
-
Articulatory control of HMM based parametric speech synthesis using feature-space-switched multiple regression
-
Ling, Z.; Richmond, K.; Yamagishi, J. Articulatory control ofHMMbased parametric speech synthesis using feature-space-switched multiple regression. IEEE Trans. Audio Speech Lang. Process., 21 (2013), 207-219.
-
(2013)
IEEE Trans. Audio Speech Lang. Process.
, vol.21
, pp. 207-219
-
-
Ling, Z.1
Richmond, K.2
Yamagishi, J.3
-
65
-
-
84890447002
-
Modeling spectral envelopes using restricted Boltzmann machines for statistical parametric speech synthesis
-
Ling, Z.; Deng, L.; Yu, D. Modeling spectral envelopes using restricted Boltzmann machines for statistical parametric speech synthesis, in ICASSP, 2013, 7825-7829.
-
(2013)
ICASSP
, pp. 7825-7829
-
-
Ling, Z.1
Deng, L.2
Yu, D.3
-
66
-
-
84872190545
-
Autoregressive models for statistical parametric speech synthesis
-
Shannon, M.; Zen, H.; Byrne, W. Autoregressive models for statistical parametric speech synthesis. IEEE Trans. Audio Speech Lang. Process., 21 (3) (2013), 587-597.
-
(2013)
IEEE Trans. Audio Speech Lang. Process.
, vol.21
, Issue.3
, pp. 587-597
-
-
Shannon, M.1
Zen, H.2
Byrne, W.3
-
67
-
-
0031198059
-
Production models as a structural basis for automatic speech recognition
-
Deng, L.; Ramsay, G.; Sun, D. Production models as a structural basis for automatic speech recognition. Speech Commun., 33 (2-3) (1997), 93-111.
-
(1997)
Speech Commun.
, vol.33
, Issue.2-3
, pp. 93-111
-
-
Deng, L.1
Ramsay, G.2
Sun, D.3
-
68
-
-
0001853667
-
An investigation of segmental hidden dynamic models of speech coarticulation for automatic speech recognition
-
Johns Hopkins
-
Bridle, J. et al. An investigation of segmental hidden dynamic models of speech coarticulation for automatic speech recognition. Final Report for 1998 Workshop on Language Engineering, CLSP, Johns Hopkins, 1998.
-
(1998)
Final Report for 1998 Workshop on Language Engineering, CLSP
-
-
Bridle, J.1
-
69
-
-
0032639922
-
Initial evaluation of hidden dynamic models on conversational speech
-
Picone, P. et al.: Initial evaluation of hidden dynamic models on conversational speech, in Proc. ICASSP, 1999.
-
(1999)
Proc. ICASSP
-
-
Picone, P.1
-
70
-
-
0036293703
-
A recognition method with parametric trajectory synthesized using direct relations between static and dynamic feature vector time series
-
Minami, Y.; McDermott, E.; Nakamura, A.; Katagiri, S.: A recognition method with parametric trajectory synthesized using direct relations between static and dynamic feature vector time series, in Proc. ICASSP, 2002, 957-960.
-
(2002)
Proc. ICASSP
, pp. 957-960
-
-
Minami, Y.1
McDermott, E.2
Nakamura, A.3
Katagiri, S.4
-
71
-
-
4243109553
-
Challenges in adopting speech recognition
-
Deng, L.; Huang, X.D.: Challenges in adopting speech recognition. Commun. ACM, 47 (1) (2004), 11-13.
-
(2004)
Commun. ACM
, vol.47
, Issue.1
, pp. 11-13
-
-
Deng, L.1
Huang, X.D.2
-
72
-
-
0347968275
-
Efficient decoding strategies for conversational speech recognition using a constrained nonlinear statespace model
-
Ma, J.; Deng, L.: Efficient decoding strategies for conversational speech recognition using a constrained nonlinear statespace model. IEEE Trans. Speech Audio Process., 11 (6) (2003), 590-602.
-
(2003)
IEEE Trans. Speech Audio Process.
, vol.11
, Issue.6
, pp. 590-602
-
-
Ma, J.1
Deng, L.2
-
73
-
-
0742307392
-
Target-directed mixture dynamic models for spontaneous speech recognition
-
Ma, J.; Deng, L.: Target-directed mixture dynamic models for spontaneous speech recognition. IEEE Trans. Speech Audio Process., 12 (1) (2004), 47-58.
-
(2004)
IEEE Trans. Speech Audio Process.
, vol.12
, Issue.1
, pp. 47-58
-
-
Ma, J.1
Deng, L.2
-
74
-
-
34047266395
-
Structured speech modeling
-
Deng, L.; Yu, D.; Acero, A.: Structured speechmodeling. IEEE Trans. Audio Speech Lang. Process., 14 (5) (2006), 1492-1504.
-
(2006)
IEEE Trans. Audio Speech Lang. Process.
, vol.14
, Issue.5
, pp. 1492-1504
-
-
Deng, L.1
Yu, D.2
Acero, A.3
-
75
-
-
33744966561
-
A bidirectional target filtering model of speech coarticulation: Two-stage implementation for phonetic recognition
-
Deng, L.; Yu, D.; Acero, A.: A bidirectional target filtering model of speech coarticulation: two-stage implementation for phonetic recognition. IEEE Trans. Audio Speech Process., 14 (1) (2006a), 256-265.
-
(2006)
IEEE Trans. Audio Speech Process.
, vol.14
, Issue.1
, pp. 256-265
-
-
Deng, L.1
Yu, D.2
Acero, A.3
-
76
-
-
34547551709
-
Use of differential cepstra as acoustic features in hidden trajectory modeling for phonetic recognition
-
April
-
Deng, L.; Yu, D.: Use of differential cepstra as acoustic features in hidden trajectory modeling for phonetic recognition, in Proc. ICASSP, April 2007.
-
(2007)
Proc. ICASSP
-
-
Deng, L.1
Yu, D.2
-
77
-
-
85032752364
-
Graphical model architectures for speech recognition
-
Bilmes, J.; Bartels, C.: Graphical model architectures for speech recognition. IEEE Signal Process. Mag., 22 (2005), 89-100.
-
(2005)
IEEE Signal Process. Mag.
, vol.22
, pp. 89-100
-
-
Bilmes, J.1
Bartels, C.2
-
78
-
-
85032751937
-
Dynamic graphical models
-
Bilmes, J.: Dynamic graphical models. IEEE Signal Process.Mag., 33 (2010), 29-42.
-
(2010)
IEEE Signal Process.Mag.
, vol.33
, pp. 29-42
-
-
Bilmes, J.1
-
79
-
-
85032751986
-
Single-channel multi talker speech recognition - graphical modeling approaches
-
Rennie, S.; Hershey, H.; Olsen, P.: Single-channelmultitalker speech recognition - graphical modeling approaches. IEEE Signal Process. Mag., 33 (2010), 66-80.
-
(2010)
IEEE Signal Process. Mag.
, vol.33
, pp. 66-80
-
-
Rennie, S.1
Hershey, H.2
Olsen, P.3
-
80
-
-
79951599228
-
A probabilistic interaction model for multi pitch tracking with factorial hidden markov model
-
Wohlmayr, M.; Stark, M.; Pernkopf, F.: A probabilistic interaction model for multipitch tracking with factorial hiddenMarkov model. IEEE Trans. Audio Speech, Lang. Process., 19 (4) (2011).
-
(2011)
IEEE Trans. Audio Speech, Lang. Process.
, vol.19
, Issue.4
-
-
Wohlmayr, M.1
Stark, M.2
Pernkopf, F.3
-
81
-
-
84862270634
-
Empirical risk minimization of graphical model parameters given approximate inference, decoding, and model structure
-
Stoyanov, V.; Ropson, A.; Eisner, J.: Empirical risk minimization of graphicalmodel parameters given approximate inference, decoding, and model structure, in Proc. AISTAT, 2011.
-
(2011)
Proc. AISTAT
-
-
Stoyanov, V.1
Ropson, A.2
Eisner, J.3
-
83
-
-
0032119668
-
The hierarchical hidden markov model: Analysis and applications
-
Fine, S.; Singer, Y.; Tishby, N.: The Hierarchical Hidden Markov Model: Analysis and applications. Mach. Learn., 32 (1998), 41-62.
-
(1998)
Mach. Learn.
, vol.32
, pp. 41-62
-
-
Fine, S.1
Singer, Y.2
Tishby, N.3
-
84
-
-
4944221356
-
Layered representations for learning and inferring office activity from multiple sensory channels
-
Oliver, N.; Garg, A.; Horvitz, E.: Layered representations for learning and inferring office activity from multiple sensory channels. Comput. Vis. Image Understand., 96 (2004), 163-180.
-
(2004)
Comput. Vis. Image Understand.
, vol.96
, pp. 163-180
-
-
Oliver, N.1
Garg, A.2
Horvitz, E.3
-
85
-
-
84864026688
-
Modeling human motion using binary latent variables
-
Taylor, G.; Hinton, G.E.; Roweis, S.:Modeling human motion using binary latent variables, in Proc. NIPS, 2007.
-
(2007)
Proc. NIPS
-
-
Taylor, G.1
Hinton, G.E.2
Roweis, S.3
-
86
-
-
84866842186
-
Learning continuous phrase representations and syntactic parsing with recursive neural networks
-
Socher, R.; Lin, C.; Ng, A.; Manning, C.: Learning continuous phrase representations and syntactic parsing with recursive neural networks, in Proc. ICML, 2011.
-
(2011)
Proc. ICML
-
-
Socher, R.1
Lin, C.2
Ng, A.3
Manning, C.4
-
87
-
-
0031139839
-
Minimum classification error rate methods for speech recognition
-
Juang, B.-H., Chou, W.; Lee, C.-H.: Minimum classification error rate methods for speech recognition. IEEE Trans. Speech Audio Process., 5 (1997), 257-265.
-
(1997)
IEEE Trans. Speech Audio Process.
, vol.5
, pp. 257-265
-
-
Juang, B.-H.1
Chou, W.2
Lee, C.-H.3
-
88
-
-
0032206267
-
Speech trajectory discrimination using the minimum classification error learning
-
Chengalvarayan, R.; Deng, L.: Speech trajectory discrimination using the minimum classification error learning. IEEETrans. Speech Audio Process., 6 (6) (1998), 505-515.
-
(1998)
IEEETrans. Speech Audio Process.
, vol.6
, Issue.6
, pp. 505-515
-
-
Chengalvarayan, R.1
Deng, L.2
-
89
-
-
0036296863
-
Minimumphone error and i-smoothing for improved discriminative training
-
Povey, D.;Woodland, P.:Minimumphone error and i-smoothing for improved discriminative training, in Proc. ICASSP, 2002, 105-108.
-
(2002)
Proc. ICASSP
, pp. 105-108
-
-
Povey, D.1
Woodland, P.2
-
90
-
-
85032750905
-
Discriminative learning in sequential pattern recognition - A unifying review for optimization-oriented speech recognition
-
He, X.; Deng, L.; Chou, W.: Discriminative learning in sequential pattern recognition - A unifying review for optimization-oriented speech recognition. IEEE Signal Process. Mag., 25 (2008), 14-36.
-
(2008)
IEEE Signal Process. Mag.
, vol.25
, pp. 14-36
-
-
He, X.1
Deng, L.2
Chou, W.3
-
91
-
-
85032751120
-
Parameter estimation of statistical models using convex optimization: An advanced method of discriminative training for speech and language processing
-
Jiang, H.; Li, X.: Parameter estimation of statistical models using convex optimization: An advanced method of discriminative training for speech and language processing. IEEE Signal Process. Mag., 27 (3) (2010), 115-127.
-
(2010)
IEEE Signal Process. Mag.
, vol.27
, Issue.3
, pp. 115-127
-
-
Jiang, H.1
Li, X.2
-
92
-
-
34547526577
-
Large-margin minimum classification error training for large-scale speech recognition tasks
-
Yu, D.; Deng, L.; He, X.; Acero, X.: Large-margin minimum classification error training for large-scale speech recognition tasks, in Proc. ICASSP, 2007.
-
(2007)
Proc. ICASSP
-
-
Yu, D.1
Deng, L.2
He, X.3
Acero, X.4
-
93
-
-
85032751865
-
A geometric perspective of large-margin training of Gaussian models
-
Xiao, L.; Deng, L.: A geometric perspective of large-margin training of Gaussian models. IEEE Signal Process. Mag., 27 (6) (2010), 118- 123.
-
(2010)
IEEE Signal Process. Mag.
, vol.27
, Issue.6
, pp. 118-123
-
-
Xiao, L.1
Deng, L.2
-
94
-
-
77955783938
-
Error approximation and minimum phone error acoustic model estimation
-
Gibson, M.; Hain, T.: Error approximation and minimum phone error acoustic model estimation. IEEE Trans. Audio Speech, Lang. Process., 18 (6) (2010), 1269-1279.
-
(2010)
IEEE Trans. Audio Speech, Lang. Process.
, vol.18
, Issue.6
, pp. 1269-1279
-
-
Gibson, M.1
Hain, T.2
-
95
-
-
84866881711
-
Combining a two-step CRF model and a joint source channel model for machine transliteration
-
Uppsala, Sweden
-
Yang, D.; Furui, S.: Combining a two-step CRF model and a joint source channel model for machine transliteration, in Proc. ACL, Uppsala, Sweden, 2010, 275-280.
-
(2010)
Proc. ACL
, pp. 275-280
-
-
Yang, D.1
Furui, S.2
-
96
-
-
78649308591
-
Sequential labeling using deep-structured conditional random fields
-
Yu, D.;Wang, S.;Deng, L.: Sequential labeling using deep-structured conditional randomfields. J. Sel. Top. Signal Process., 4 (2010), 965- 973.
-
(2010)
J. Sel. Top. Signal Process.
, vol.4
, pp. 965-973
-
-
Yu, D.1
Wang, S.2
Deng, L.3
-
97
-
-
70350435251
-
Speech recognition using augmented conditional random fields
-
Hifny, Y.; Renals, S.: Speech recognition using augmented conditional random fields. IEEE Trans. Audio Speech Lang. Process., 17 (2) (2009), 354-365.
-
(2009)
IEEE Trans. Audio Speech Lang. Process.
, vol.17
, Issue.2
, pp. 354-365
-
-
Hifny, Y.1
Renals, S.2
-
98
-
-
69249105007
-
Discriminative input stream combination for conditional random field phone recognition
-
Heintz, I.; Fosler-Lussier, E.; Brew, C.: Discriminative input stream combination for conditional random field phone recognition. IEEE Trans. Audio Speech Lang. Process., 17 (8) (2009), 1533-1546.
-
(2009)
IEEE Trans. Audio Speech Lang. Process.
, vol.17
, Issue.8
, pp. 1533-1546
-
-
Heintz, I.1
Fosler-Lussier, E.2
Brew, C.3
-
99
-
-
77949370075
-
A segmental CRF approach to large vocabulary continuous speech recognition
-
Zweig, G.; Nguyen, P.: A segmental CRF approach to large vocabulary continuous speech recognition, in Proc. ASRU, 2009.
-
(2009)
Proc. ASRU
-
-
Zweig, G.1
Nguyen, P.2
-
101
-
-
85008035419
-
Equivalence of generative and log-liner models
-
Heigold, G.; Ney, H.; Lehnen, P.; Gass, T.; Schluter, R.: Equivalence of generative and log-liner models. IEEE Trans. Audio Speech Lang. Process., 19 (5) (2011), 1138-1148.
-
(2011)
IEEE Trans. Audio Speech Lang. Process.
, vol.19
, Issue.5
, pp. 1138-1148
-
-
Heigold, G.1
Ney, H.2
Lehnen, P.3
Gass, T.4
Schluter, R.5
-
102
-
-
79959828814
-
Deep-structured hidden conditional random fields for phonetic recognition
-
September
-
Yu, D.; Deng, L.: Deep-structured hidden conditional randomfields for phonetic recognition, in Proc. Interspeech, September. 2010.
-
(2010)
Proc. Inter speech
-
-
Yu, D.1
Deng, L.2
-
103
-
-
78049409409
-
Language recognition using deep-structured conditional random fields
-
Yu, D.; Wang, S.; Karam, Z.; Deng, L.: Language recognition using deep-structured conditional random fields, in Proc. ICASSP, 2010, 5030-5033.
-
(2010)
Proc. ICASSP
, pp. 5030-5033
-
-
Yu, D.1
Wang, S.2
Karam, Z.3
Deng, L.4
-
104
-
-
78049251448
-
Analysis of MLP-based hierarchical phone posterior probability estimators
-
Pinto, J.; Garimella, S.; Magimai-Doss, M.; Hermansky, H.; Bourlard, H.: Analysis of MLP-based hierarchical phone posterior probability estimators. IEEE Trans. Audio Speech Lang. Process., 19 (2) (2011), 225-241.
-
(2011)
IEEE Trans. Audio Speech Lang. Process.
, vol.19
, Issue.2
, pp. 225-241
-
-
Pinto, J.1
Garimella, S.2
Magimai-Doss, M.3
Hermansky, H.4
Bourlard, H.5
-
105
-
-
77955803591
-
Enhanced phone posteriors for improving speech recognition systems
-
Ketabdar, H.; Bourlard, H.: Enhanced phone posteriors for improving speech recognition systems. IEEE Trans. Audio Speech Lang. Process., 18 (6) (2010), 1094-1106.
-
(2010)
IEEE Trans. Audio Speech Lang. Process.
, vol.18
, Issue.6
, pp. 1094-1106
-
-
Ketabdar, H.1
Bourlard, H.2
-
106
-
-
85032751546
-
Pushing the envelope - Aside [speech recognition]
-
Morgan, N. et al.: Pushing the envelope - Aside [speech recognition]. IEEE Signal Process. Mag., 22 (5) (2005), 81-88.
-
(2005)
IEEE Signal Process. Mag.
, vol.22
, Issue.5
, pp. 81-88
-
-
Morgan, N.1
-
107
-
-
84865768819
-
Deep Convex Network: A scalable architecture for speech pattern classification
-
Deng, L.; Yu, D.: Deep Convex Network: A scalable architecture for speech pattern classification, in Proc. Inter speech, 2011.
-
(2011)
Proc. Inter Speech
-
-
Deng, L.1
Yu, D.2
-
108
-
-
84867614591
-
Scalable stacking and learning for building deep architectures
-
Deng, L.; Yu, D.; Platt, J.: Scalable stacking and learning for building deep architectures, in Proc. ICASSP, 2012.
-
(2012)
Proc. ICASSP
-
-
Deng, L.1
Yu, D.2
Platt, J.3
-
109
-
-
84867605416
-
Towards deep understanding: Deep convex networks for semantic utterance classification
-
Tur, G.; Deng, L.; Hakkani-Tür, D.; He, X.: Towards deep understanding: deep convex networks for semantic utterance classification, in Proc. ICASSP, 2012.
-
(2012)
Proc. ICASSP
-
-
Tur, G.1
Deng, L.2
Hakkani-Tür, D.3
He, X.4
-
110
-
-
84877785043
-
Deep spatiotemporal architectures and learning for protein structure prediction
-
Lena, P.; Nagata, K.; Baldi, P.: Deep spatiotemporal architectures and learning for protein structure prediction, in Proc. NIPS, 2012.
-
(2012)
Proc. NIPS
-
-
Lena, P.1
Nagata, K.2
Baldi, P.3
-
111
-
-
84867606917
-
A deep architecture with bilinear modeling of hidden representations: Applications to phonetic recognition
-
Hutchinson, B.; Deng, L.; Yu, D.: A deep architecture with bilinear modeling of hidden representations: Applications to phonetic recognition, in Proc. ICASSP, 2012.
-
(2012)
Proc. ICASSP
-
-
Hutchinson, B.1
Deng, L.2
Yu, D.3
-
112
-
-
84879301618
-
Tensor deep stacking networks
-
Hutchinson, B.; Deng, L.; Yu, D.: Tensor deep stacking networks, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013), 1944- 1957.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, pp. 1944-1957
-
-
Hutchinson, B.1
Deng, L.2
Yu, D.3
-
113
-
-
0028256706
-
Analysis of correlation structure for a neural predictive model with application to speech recognition
-
Deng, L.; Hassanein, K.; Elmasry, M.: Analysis of correlation structure for a neural predictive model with application to speech recognition. Neural Netw., 7 (2) (1994a), 331-339.
-
(1994)
Neural Netw.
, vol.7
, Issue.2
, pp. 331-339
-
-
Deng, L.1
Hassanein, K.2
Elmasry, M.3
-
114
-
-
0028392167
-
An application of recurrent nets to phone probability estimation
-
Robinson, A.: An application of recurrent nets to phone probability estimation. IEEE Trans. Neural Netw., 5 (1994), 298-305.
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, pp. 298-305
-
-
Robinson, A.1
-
115
-
-
33749259827
-
Connectionist temporal classification: Labeling un segmented sequence data with recurrent neural networks
-
Graves, A.; Fernandez, S.; Gomez, F.; Schmidhuber, J.: Connectionist temporal classification: labeling unsegmented sequence data with recurrent neural networks, in Proc. ICML, 2006.
-
(2006)
Proc. ICML
-
-
Graves, A.1
Fernandez, S.2
Gomez, F.3
Schmidhuber, J.4
-
116
-
-
84890543083
-
Speech recognition with deep recurrent neural networks
-
Graves, A.; Mahamed, A.; Hinton, G.: Speech recognition with deep recurrent neural networks, in Proc. ICASSP, 2013.
-
(2013)
Proc. ICASSP
-
-
Graves, A.1
Mahamed, A.2
Hinton, G.3
-
118
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE, 86 (1998), 2278- 2324.
-
(1998)
Proc. IEEE
, vol.86
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
119
-
-
84877789057
-
Deep neural networks segment neuronal membranes in electron microscopy images
-
Ciresan, D.; Giusti, A.; Gambardella, L.; Schidhuber, J.: Deep neural networks segment neuronal membranes in electron microscopy images, in Proc. NIPS, 2012.
-
(2012)
Proc. NIPS
-
-
Ciresan, D.1
Giusti, A.2
Gambardella, L.3
Schidhuber, J.4
-
120
-
-
84877760312
-
Large scale distributed deep networks
-
Dean, J. et al.: Large scale distributed deep networks, in Proc. NIPS, 2012.
-
(2012)
Proc. NIPS
-
-
Dean, J.1
-
121
-
-
84876231242
-
Image net classification with deep con volutional neural Networks
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.: ImageNet classification with deep convolutional neural Networks, in Proc. NIPS, 2012.
-
(2012)
Proc. NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
122
-
-
84867605836
-
Applying convolutional neural networks concepts to hybridNN-HMMmodel for speech recognition
-
Abdel-Hamid, O.; Mohamed, A.; Jiang, H.; Penn, G.: Applying convolutional neural networks concepts to hybridNN-HMMmodel for speech recognition. in ICASSP, 2012.
-
(2012)
ICASSP
-
-
Abdel-Hamid, O.1
Mohamed, A.2
Jiang, H.3
Penn, G.4
-
123
-
-
84906214784
-
Exploring con volutional neural network structures and optimization for speech recognition
-
Abdel-Hamid, O.; Deng, L.; Yu, D.: Exploring convolutional neural network structures and optimization for speech recognition. in Proc. Inter speech, 2013.
-
(2013)
Proc. Inter Speech
-
-
Abdel-Hamid, O.1
Deng, L.2
Yu, D.3
-
124
-
-
84906282118
-
Deep segmental neural networks for speech recognition
-
Abdel-Hamid, O.; Deng, L.; Yu, D.; Jiang, H.: Deep segmental neural networks for speech recognition, in Proc. Interspeech, 2013a.
-
(2013)
Proc. Inter speech
-
-
Abdel-Hamid, O.1
Deng, L.2
Yu, D.3
Jiang, H.4
-
125
-
-
84890525984
-
Convolutional neural networks for LVCSR
-
Sainath, T.; Mohamed, A.; Kingsbury, B.; Ramabhadran, B.: Convolutional neural networks for LVCSR, in Proc. ICASSP, 2013.
-
(2013)
Proc. ICASSP
-
-
Sainath, T.1
Mohamed, A.2
Kingsbury, B.3
Ramabhadran, B.4
-
126
-
-
84890545163
-
Adeep convolutional neural network using heterogeneous pooling for trading acoustic invariance with phonetic confusion
-
Deng, L.; Abdel-Hamid, O.; Yu, D.:Adeep convolutional neural network using heterogeneous pooling for trading acoustic invariance with phonetic confusion, in Proc. ICASSP, 2013.
-
(2013)
Proc. ICASSP
-
-
Deng, L.1
Abdel-Hamid, O.2
Yu, D.3
-
127
-
-
0025254722
-
A time-delay neural network architecture for isolated word recognition
-
Lang, K.;Waibel, A.;Hinton, G.: A time-delay neural network architecture for isolated word recognition. Neural Netw., 3 (1) (1990), 23-43.
-
(1990)
Neural Netw.
, vol.3
, Issue.1
, pp. 23-43
-
-
Lang, K.1
Waibel, A.2
Hinton, G.3
-
128
-
-
84875923598
-
On Intelligence: How a New Understanding of the Brain will lead to the Creation of Truly Intelligent Machines
-
New York
-
Hawkins, J.; Blakeslee, S.: On Intelligence: How a New Understanding of the Brain will lead to the Creation of Truly Intelligent Machines, Times Books, New York, 2004.
-
(2004)
Times Books
-
-
Hawkins, J.1
Blakeslee, S.2
-
129
-
-
0024634603
-
Phoneme recognition using time-delay neural networks
-
Waibel, A.; Hanazawa, T.; Hinton, G.; Shikano, K.; Lang, K.: Phoneme recognition using time-delay neural networks. IEEE Trans. ASSP, 37 (3) (1989), 328-339.
-
(1989)
IEEE Trans. ASSP
, vol.37
, Issue.3
, pp. 328-339
-
-
Waibel, A.1
Hanazawa, T.2
Hinton, G.3
Shikano, K.4
Lang, K.5
-
130
-
-
84855358050
-
Hierarchical temporal memory including HTM cortical learning algorithms
-
December 10
-
Hawkins, G.; Ahmad, S.; Dubinsky, D.: Hierarchical Temporal Memory including HTM Cortical Learning Algorithms. Numenta Technical Report, December 10, 2010.
-
(2010)
Numenta Technical Report
-
-
Hawkins, G.1
Ahmad, S.2
Dubinsky, D.3
-
131
-
-
33744917190
-
From knowledge-ignorant to knowledge-rich modeling: A new speech research paradigm for next-generation automatic speech recognition
-
Lee, C.-H.: From knowledge-ignorant to knowledge-rich modeling: A new speech research paradigm for next-generation automatic speech recognition, in Proc. ICSLP, 2004, 109-111.
-
(2004)
Proc. ICSLP
, pp. 109-111
-
-
Lee, C.-H.1
-
132
-
-
84867329143
-
Boosting attribute and phone estimation accuracies with deep neural networks for detectionbased speech recognition
-
Yu, D.; Siniscalchi, S.;Deng, L.;Lee, C.: Boosting attribute andphone estimation accuracies with deep neural networks for detectionbased speech recognition, in Proc. ICASSP, 2012.
-
(2012)
Proc. ICASSP
-
-
Yu, D.1
Siniscalchi, S.2
Deng, L.3
Lee, C.4
-
133
-
-
84875405186
-
Exploiting deep neural networks for detection-based speech recognition
-
Siniscalchi, M.; Yu, D.; Deng, L.; Lee, C.-H.: Exploiting deep neural networks for detection-based speech recognition. Neuro computing, 106 (2013), 148-157.
-
(2013)
Neuro Computing
, vol.106
, pp. 148-157
-
-
Siniscalchi, M.1
Yu, D.2
Deng, L.3
Lee, C.-H.4
-
134
-
-
84872967500
-
A bottom-up modular search approach to large vocabulary continuous speech recognition
-
Siniscalchi, M.; Svendsen, T.; Lee, C.-H.: A bottom-up modular search approach to large vocabulary continuous speech recognition. IEEE Trans. Audio Speech, Lang. Process., 21 (2013), 786-797.
-
(2013)
IEEE Trans. Audio Speech, Lang. Process.
, vol.21
, pp. 786-797
-
-
Siniscalchi, M.1
Svendsen, T.2
Lee, C.-H.3
-
135
-
-
84867606668
-
Exploiting sparseness in deep neural networks for large vocabulary speech recognition
-
Yu, D.; Seide, F.; Li, G.; Deng, L.: Exploiting sparseness in deep neural networks for large vocabulary speech recognition, in Proc. ICASSP, 2012.
-
(2012)
Proc. ICASSP
-
-
Yu, D.1
Seide, F.2
Li, G.3
Deng, L.4
-
136
-
-
0028234947
-
A statistical approach to automatic speech recognition using the atomic speech units constructed from overlapping articulatory features
-
Deng, L.; Sun, D.: A statistical approach to automatic speech recognition using the atomic speech units constructed from overlapping articulatory features. J. Acoust. Soc. Am., 85 (5) (1994), 2702-2719.
-
(1994)
J. Acoust. Soc. Am.
, vol.85
, Issue.5
, pp. 2702-2719
-
-
Deng, L.1
Sun, D.2
-
137
-
-
0036165806
-
An overlapping-feature based phonological model incorporating linguistic constraints: Applications to speech recognition
-
Sun, J.; Deng, L.: An overlapping-feature based phonological model incorporating linguistic constraints: Applications to speech recognition. J. Acoust. Soc. Am., 111 (2) (2002), 1086-1101.
-
(2002)
J. Acoust. Soc. Am.
, vol.111
, Issue.2
, pp. 1086-1101
-
-
Sun, J.1
Deng, L.2
-
138
-
-
84886806651
-
Improving training time of deep belief networks through hybrid pre-training and larger batch sizes
-
December
-
Sainath, T.; Kingsbury, B.; Ramabhadran, B.: Improving training time of deep belief networks through hybrid pre-training and larger batch sizes, in Proc. NIPS Workshop on Log-linearModels, December 2012.
-
(2012)
Proc. NIPS Workshop on Log-linear Models
-
-
Sainath, T.1
Kingsbury, B.2
Ramabhadran, B.3
-
139
-
-
77949522811
-
Why does unsupervised pre-training help deep learning?
-
Erhan, D.; Bengio, Y.; Courvelle, A.; Manzagol, P.; Vencent, P.; Bengio, S.:Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res., 11, (2010), 625-660.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 625-660
-
-
Erhan, D.1
Bengio, Y.2
Courvelle, A.3
Manzagol, P.4
Vencent, P.5
Bengio, S.6
-
140
-
-
70349213445
-
Lattice-based optimization of sequence classification criteria for neural-network acoustic modeling
-
Kingsbury, B.: Lattice-based optimization of sequence classification criteria for neural-network acousticmodeling, in Proc. ICASSP, 2009.
-
(2009)
Proc. ICASSP
-
-
Kingsbury, B.1
-
141
-
-
84878379108
-
Scalable minimum Bayes risk training of deep neural network acoustic models using distributed Hessian-free optimization
-
Kingsbury, B.; Sainath, T.; Soltau, H.: Scalable minimum Bayes risk training of deep neural network acoustic models using distributed Hessian-free optimization, in Proc. Interspeech, 2012.
-
(2012)
Proc. Inter speech
-
-
Kingsbury, B.1
Sainath, T.2
Soltau, H.3
-
142
-
-
56449110012
-
Classification using discriminative restricted Boltzmann machines
-
Larochelle, H.; Bengio, Y.: Classification using discriminative restricted Boltzmann machines, in Proc. ICML, 2008.
-
(2008)
Proc. ICML
-
-
Larochelle, H.1
Bengio, Y.2
-
143
-
-
80053540444
-
Unsupervised learning of hierarchical representations with convolutional deep belief networks
-
October
-
Lee, H.; Grosse, R.; Ranganath, R.; and Ng, A.: Unsupervised learning of hierarchical representations with convolutional deep belief networks, Communications of the ACM, Vol. 54, No. 10, October, 2011, pp. 95-103.
-
(2011)
Communications of the ACM
, vol.54
, Issue.10
, pp. 95-103
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.4
-
144
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
Lee, H.; Grosse, R.; Ranganath, R.; Ng, A.: Convolutional Deep Belief Networks for Scalable Unsupervised Learning ofHierarchical Representations, Proc. ICML, 2009.
-
(2009)
Proc. ICML
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.4
-
145
-
-
77956502334
-
Unsupervised feature learning for audio classification using convolutional deep belief networks
-
Lee, H.; Largman, Y.; Pham, P.; Ng, A.: Unsupervised feature learning for audio classification using convolutional deep belief networks, Proc. NIPS, 2010.
-
(2010)
Proc. NIPS
-
-
Lee, H.1
Largman, Y.2
Pham, P.3
Ng, A.4
-
146
-
-
80052877144
-
On deep generative models with applications to recognition
-
Ranzato, M.; Susskind, J.; Mnih, V.; Hinton, G.: On deep generative models with applications to recognition, in Proc. CVPR, 2011.
-
(2011)
Proc. CVPR
-
-
Ranzato, M.1
Susskind, J.2
Mnih, V.3
Hinton, G.4
-
147
-
-
0032654483
-
Speech translation: Coupling of recognition and translation
-
Ney, H.: Speech translation: coupling of recognition and translation, in Proc. ICASSP, 1999.
-
(1999)
Proc. ICASSP
-
-
Ney, H.1
-
148
-
-
85032751114
-
Speech recognition, machine translation, and speech translation - A unifying discriminative framework
-
He, X.; Deng, L.: Speech recognition, machine translation, and speech translation - A unifying discriminative framework. IEEE Signal Process. Mag., 28 (2011), 126-133.
-
(2011)
IEEE Signal Process. Mag.
, vol.28
, pp. 126-133
-
-
He, X.1
Deng, L.2
-
149
-
-
66149085249
-
An integrative and discriminative technique for spoken utterance classification
-
Yamin, S.; Deng, L.; Wang, Y.; Acero, A.: An integrative and discriminative technique for spoken utterance classification. IEEE Trans. Audio Speech Lang. Process., 16 (2008), 1207-1214.
-
(2008)
IEEE Trans. Audio Speech Lang. Process.
, vol.16
, pp. 1207-1214
-
-
Yamin, S.1
Deng, L.2
Wang, Y.3
Acero, A.4
-
150
-
-
84867608216
-
Optimization in speech-centric information processing: Criteria and techniques
-
He, X.; Deng, L.: Optimization in speech-centric information processing: criteria and techniques, in Proc. ICASSP, 2012.
-
(2012)
Proc. ICASSP
-
-
He, X.1
Deng, L.2
-
151
-
-
84876669905
-
Speech-centric information processing: An optimization-oriented approach
-
He, X.; Deng, L.: Speech-centric information processing: An optimization-oriented approach, in Proc. IEEE, 2013.
-
(2013)
Proc. IEEE
-
-
He, X.1
Deng, L.2
-
152
-
-
84890494546
-
Deep stacking networks for information retrieval
-
Deng, L.; He, X.; Gao, J.: Deep stacking networks for information retrieval, in Proc. ICASSP, 2013a.
-
(2013)
Proc. ICASSP
-
-
Deng, L.1
He, X.2
Gao, J.3
-
153
-
-
84890486619
-
Multi-style adaptive training for robust cross-lingual spoken language understanding
-
He, X.; Deng, L.; Tur, G.; Hakkani-Tur, D.: Multi-style adaptive training for robust cross-lingual spoken language understanding, in Proc. ICASSP, 2013.
-
(2013)
Proc. ICASSP
-
-
He, X.1
Deng, L.2
Tur, G.3
Hakkani-Tur, D.4
-
154
-
-
84867135575
-
Building high-level features using large scale unsupervised learning
-
Le, Q.; Ranzato, M.; Monga, R.; Devin, M.; Corrado, G.; Chen, K.; Dean, J.; Ng, A: Building high-level features using large scale unsupervised learning, in Proc. ICML, 2012.
-
(2012)
Proc. ICML
-
-
Le, Q.1
Ranzato, M.2
Monga, R.3
Devin, M.4
Corrado, G.5
Chen, K.6
Dean, J.7
Ng, A.8
-
155
-
-
84865801985
-
Conversational speech transcription using context-dependent deep neural networks
-
Seide, F.; Li, G.; Yu, D.: Conversational speech transcription using context-dependent deep neural networks. Proc. Interspeech, (2011), 437-440.
-
(2011)
Proc. Inter speech
, pp. 437-440
-
-
Seide, F.1
Li, G.2
Yu, D.3
-
156
-
-
84906225757
-
A scalable approach to using DNN-derived features in GMM-HMM based acoustic modeling for LVCSR
-
Yan, Z.; Huo, Q.; Xu, J.: A scalable approach to using DNN-derived features in GMM-HMM based acoustic modeling for LVCSR, in Proc. Inter speech, 2013.
-
(2013)
Proc. Inter Speech
-
-
Yan, Z.1
Huo, Q.2
Xu, J.3
-
157
-
-
84899000641
-
Exponential family harmoniums with an application to information retrieval
-
Welling, M.; Rosen-Zvi, M.; Hinton, G.: Exponential family harmoniums with an application to information retrieval. Proc. NIPS, vol. 20 (2005).
-
(2005)
Proc. NIPS
, vol.20
-
-
Welling, M.1
Rosen-Zvi, M.2
Hinton, G.3
-
158
-
-
78650474133
-
A practical guide to training restricted boltzmann machines
-
University of Toronto, August
-
Hinton, G.: A practical guide to training restricted Boltzmann machines. UTML Technical Report 2010-003, University of Toronto, August 2010.
-
(2010)
UTML Technical Report 2010-003
-
-
Hinton, G.1
-
159
-
-
0026692226
-
Stacked generalization
-
Wolpert, D.: Stacked generalization. Neural Netw., 5 (2) (1992), 241- 259.
-
(1992)
Neural Netw.
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.1
-
161
-
-
77953183471
-
What is the best multistage architecture for object recognition?
-
Jarrett, K.; Kavukcuoglu, K.; LeCun, Y.: What is the best multistage architecture for object recognition?, in Proc. Int. Conf. Computer Vision, 2009, 2146-2153.
-
(2009)
Proc. Int. Conf. Computer Vision
, pp. 2146-2153
-
-
Jarrett, K.1
Kavukcuoglu, K.2
LeCun, Y.3
-
162
-
-
84897497795
-
On the difficulty of training recurrent neural networks
-
Pascanu, R.; Mikolov, T.; Bengio, Y.: On the difficulty of training recurrent neural networks, in Proc. ICML, 2013.
-
(2013)
Proc. ICML
-
-
Pascanu, R.1
Mikolov, T.2
Bengio, Y.3
-
163
-
-
0033623527
-
Spontaneous speech recognition using a statistical coarticulatory model for the vocal tract resonance dynamics
-
Deng, L.; Ma, J.: Spontaneous speech recognition using a statistical coarticulatory model for the vocal tract resonance dynamics. J. Acoust. Soc. Am., 108 (2000), 3036-3048.
-
(2000)
J. Acoust. Soc. Am.
, vol.108
, pp. 3036-3048
-
-
Deng, L.1
Ma, J.2
-
164
-
-
0344443787
-
Joint state and parameter estimation for a target-directed nonlinear dynamic system model
-
Togneri, R.; Deng, L.: Joint state and parameter estimation for a target-directed nonlinear dynamic system model. IEEE Trans. Signal Process., 51 (12) (2003), 3061-3070.
-
(2003)
IEEE Trans. Signal Process.
, vol.51
, Issue.12
, pp. 3061-3070
-
-
Togneri, R.1
Deng, L.2
-
167
-
-
84878534913
-
Integrating deep neural networks into structural classification approach based on weight finite-state transducers
-
Kubo, Y.; Hori, T.; Nakamura, A.: Integrating deep neural networks into structural classification approach based on weight finite-state transducers, in Proc. Interspeech, 2012.
-
(2012)
Proc. Inter speech
-
-
Kubo, Y.1
Hori, T.2
Nakamura, A.3
-
168
-
-
84890491198
-
Recent advances in deep learning for speech research at Microsoft
-
Deng, L. et al.: Recent advances in deep learning for speech research at Microsoft, in Proc. ICASSP, 2013.
-
(2013)
Proc. ICASSP
-
-
Deng, L.1
-
169
-
-
84890526837
-
New types of deep neural network learning for speech recognition and related applications: An overview
-
Deng, L.; Hinton, G.; Kingsbury, B.: New types of deep neural network learning for speech recognition and related applications: An overview, in Proc. ICASSP, 2013.
-
(2013)
Proc. ICASSP
-
-
Deng, L.1
Hinton, G.2
Kingsbury, B.3
-
170
-
-
0022691022
-
Maximumlikelihood estimation formultivariate mixture observations of Markov chains
-
Juang, B.; Levinson, S.; Sondhi, M.: Maximumlikelihood estimation formultivariatemixture observations ofMarkov chains. IEEE Trans. Inf. Theory, 32 (1986), 307-309.
-
(1986)
IEEE Trans. Inf. Theory
, vol.32
, pp. 307-309
-
-
Juang, B.1
Levinson, S.2
Sondhi, M.3
-
171
-
-
10244257175
-
Large vocabulary word recognition using context-dependent allophonic hidden markov models
-
Deng, L.; Lennig, M.; Seitz, F.; Mermelstein, P.: Large vocabulary word recognition using context-dependent allophonic hidden Markov models. Comput. Speech Lang., 4 (4) (1990), 345-357.
-
(1990)
Comput. Speech Lang.
, vol.4
, Issue.4
, pp. 345-357
-
-
Deng, L.1
Lennig, M.2
Seitz, F.3
Mermelstein, P.4
-
172
-
-
0026189555
-
Phonemic hidden Markov models with continuous mixture output densities for large vocabulary word recognition
-
Deng, L.; Kenny, P.; Lennig, M.; Gupta, V.; Seitz, F.;Mermelstein, P.: Phonemic hidden Markov models with continuous mixture output densities for large vocabulary word recognition. IEEE Trans. Signal Process, 39 (7) (1991), 1677-1681.
-
(1991)
IEEE Trans. Signal Process
, vol.39
, Issue.7
, pp. 1677-1681
-
-
Deng, L.1
Kenny, P.2
Lennig, M.3
Gupta, V.4
Seitz, F.5
Mermelstein, P.6
-
173
-
-
0028195651
-
Waveform-based speech recognition using hidden filter models: Parameter selection and sensitivity to power normalization
-
Sheikhzadeh, H.; Deng, L.: Waveform-based speech recognition using hidden filter models: parameter selection and sensitivity to power normalization. IEEE Trans. Speech Audio Process., 2 (1994), 80-91.
-
(1994)
IEEE Trans. Speech Audio Process.
, vol.2
, pp. 80-91
-
-
Sheikhzadeh, H.1
Deng, L.2
-
174
-
-
80051609011
-
Learning a better representation of speech sound waves using restricted Boltzmann machines
-
Jaitly, N.; Hinton, G.: Learning a better representation of speech sound waves using restricted Boltzmann machines, in Proc. ICASSP, 2011.
-
(2011)
Proc. ICASSP
-
-
Jaitly, N.1
Hinton, G.2
-
175
-
-
84858972572
-
Making deep belief networks effective for large vocabulary continuous speech recognition
-
Sainath, T.; Kingbury, B.; Ramabhadran, B.; Novak, P.; Mohamed, A.: Making deep belief networks effective for large vocabulary continuous speech recognition, in Proc. IEEE ASRU, 2011.
-
(2011)
Proc. IEEE ASRU
-
-
Sainath, T.1
Kingbury, B.2
Ramabhadran, B.3
Novak, P.4
Mohamed, A.5
-
176
-
-
84878539964
-
Application of pre-trained deep neural networks to large vocabulary speech recognition
-
Jaitly, N.; Nguyen, P.; Vanhoucke, V.: Application of pre-trained deep neural networks to large vocabulary speech recognition, in Proc. Interspeech, 2012.
-
(2012)
Proc. Interspeech
-
-
Jaitly, N.1
Nguyen, P.2
Vanhoucke, V.3
-
177
-
-
84906865453
-
-
arXiv: 1207.0580
-
Hinton, G.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv: 1207.0580 v1, 2012.
-
(2012)
Improving Neural Networks by Preventing Co-adaptation of Feature Detectors
, vol.1
-
-
Hinton, G.1
Srivastava, N.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
178
-
-
84055163920
-
Roles of pre-training and fine-tuning in context-dependent DBN-HMMs for real-world speech recognition
-
Yu, D.; Deng, L.; Dahl, G.: Roles of pre-training and fine-tuning in context-dependent DBN-HMMs for real-world speech recognition, in Proc. NIPSWorkshop, 2010.
-
(2010)
Proc. NIPS Workshop
-
-
Yu, D.1
Deng, L.2
Dahl, G.3
-
179
-
-
85008521116
-
Calibration of confidence measures in speech recognition
-
Yu, D.; Li, J.-Y.; Deng, L.: Calibration of confidence measures in speech recognition. IEEE Trans. Audio Speech Lang., 19 (2010), 2461-2473.
-
(2010)
IEEE Trans. Audio Speech Lang.
, vol.19
, pp. 2461-2473
-
-
Yu, D.1
Li, J.-Y.2
Deng, L.3
-
180
-
-
84878409063
-
Recurrent neural networks for noise reduction in robust ASR
-
Maas, A.; Le, Q.; O'Neil, R.; Vinyals, O.; Nguyen, P.; Ng, Y.: Recurrent neural networks for noise reduction in robust ASR, in Proc. Interspeech, 2012.
-
(2012)
Proc. Inter speech
-
-
Maas, A.1
Le, Q.2
O'Neil, R.3
Vinyals, O.4
Nguyen, P.5
Ng, Y.6
-
181
-
-
84901237776
-
Modeling spectral envelopes using restricted Boltzmann machines and deep belief networks for statistical parametric speech synthesis
-
Ling, Z.; Deng, L.; Yu, D.: Modeling spectral envelopes using restricted Boltzmann machines and deep belief networks for statistical parametric speech synthesis. IEEE Trans. Audio Speech Lang. Process., 21 (10) (2013), 2129-2139.
-
(2013)
IEEE Trans. Audio Speech Lang. Process.
, vol.21
, Issue.10
, pp. 2129-2139
-
-
Ling, Z.1
Deng, L.2
Yu, D.3
-
182
-
-
84890527090
-
Multi-distribution deep belief network for speech synthesis
-
Kang, S.;Qian, X.;Meng, H.: Multi-distribution deep belief network for speech synthesis, in Proc. ICASSP, 2013, 8012-8016.
-
(2013)
Proc. ICASSP
, pp. 8012-8016
-
-
Kang, S.1
Qian, X.2
Meng, H.3
-
183
-
-
84890490547
-
Statistical parametric speech synthesis using deep neural networks
-
Zen, H.; Senior, A.; Schuster, M.: Statistical parametric speech synthesis using deep neural networks, in Proc. ICASSP, 2013, 7962- 7966.
-
(2013)
Proc. ICASSP
, pp. 7962-7966
-
-
Zen, H.1
Senior, A.2
Schuster, M.3
-
184
-
-
84890522099
-
F0 contour prediction with a deep belief network-Gaussian process hybrid model
-
Fernandez, R.; Rendel, A.; Ramabhadran, B.; Hoory, R.: F0 contour prediction with a deep belief network-Gaussian process hybrid Model, in Proc. ICASSP, 2013, 6885-6889.
-
(2013)
Proc. ICASSP
, pp. 6885-6889
-
-
Fernandez, R.1
Rendel, A.2
Ramabhadran, B.3
Hoory, R.4
-
185
-
-
84873453413
-
Moving beyond feature design: Deep architectures and automatic feature learning in music informatics
-
Humphrey, E.; Bello, J.; LeCun, Y.: Moving beyond feature design: deep architectures and automatic feature learning in music informatics, in Proc. ISMIR, 2012.
-
(2012)
Proc. ISMIR
-
-
Humphrey, E.1
Bello, J.2
LeCun, Y.3
-
186
-
-
84873426072
-
Analyzing drum patterns using conditional deep belief networks
-
Batternberg, E.;Wessel, D.: Analyzing drum patterns using conditional deep belief networks, in Proc. ISMIR, 2012.
-
(2012)
Proc. ISMIR
-
-
Batternberg, E.1
Wessel, D.2
-
188
-
-
78149306047
-
3-d object recognition with deep belief nets
-
Nair, V.; Hinton, G.: 3-d object recognition with deep belief nets, in Proc. NIPS, 2009.
-
(2009)
Proc. NIPS
-
-
Nair, V.1
Hinton, G.2
-
189
-
-
0002263996
-
Convolutional networks for images, speech, and time series
-
(M. A. Arbib, ed.), MIT Press, Cambridge, Massachusetts
-
LeCun, Y.; Bengio, Y.: Convolutional networks for images, speech, and time series, in The Handbook of Brain Theory and Neural Networks (M. A. Arbib, ed.), 255-258, MIT Press, Cambridge, Massachusetts, 1995.
-
(1995)
The Handbook of Brain Theory and Neural Networks
, pp. 255-258
-
-
LeCun, Y.1
Bengio, Y.2
-
190
-
-
85162460675
-
Learning convolutional feature hierarchies for visual recognition
-
Kavukcuoglu, K.; Sermanet, P.; Boureau, Y.; Gregor, K.; Mathieu, M.; LeCun, Y.: Learning convolutional feature hierarchies for visual recognition, in Proc. NIPS, 2010.
-
(2010)
Proc. NIPS
-
-
Kavukcuoglu, K.1
Sermanet, P.2
Boureau, Y.3
Gregor, K.4
Mathieu, M.5
LeCun, Y.6
-
191
-
-
85083954484
-
Stochastic pooling for regularization of deep convolutional neural networks
-
Zeiler, M.; Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks, in Proc. ICLR, 2013.
-
(2013)
Proc. ICLR
-
-
Zeiler, M.1
Fergus, R.2
-
192
-
-
84873600957
-
Learning invariant feature hierarchies
-
LeCun, Y.: Learning invariant feature hierarchies, in Proc. ECCV, 2012.
-
(2012)
Proc. ECCV
-
-
LeCun, Y.1
-
193
-
-
84894294885
-
Deep learning with cots hpc
-
Coates, A.; Huval, B.;Wang, T.;Wu, D.; Ng, A.; Catanzaro, B.: Deep learning with COTS HPC, in Proc. ICML, 2013.
-
(2013)
Proc. ICML
-
-
Coates, A.1
Huval, B.2
Wang, T.3
Wu, D.4
Ng, A.5
Catanzaro, B.6
-
194
-
-
69849103259
-
Adaptive multimodal fusion by uncertainty compensation with application to audiovisual speech recognition
-
Papandreou, G.; Katsamanis, A.; Pitsikalis, V.;Maragos, P.: Adaptive multimodal fusion by uncertainty compensation with application to audiovisual speech recognition. IEEE Trans. Audio Speech Lang. Process., 17 (3) (2009), 423-435.
-
(2009)
IEEE Trans. Audio Speech Lang. Process.
, vol.17
, Issue.3
, pp. 423-435
-
-
Papandreou, G.1
Katsamanis, A.2
Pitsikalis, V.3
Maragos, P.4
-
195
-
-
18744401086
-
Dynamic compensation of HMM variances using the feature enhancement uncertainty computed from a parametric model of speech distortion
-
Deng, L.; Wu, J.; Droppo, J.; Acero, A.: Dynamic compensation of HMM variances using the feature enhancement uncertainty computed from a parametric model of speech distortion. IEEE Trans. Speech Audio Process., 13 (3) (2005), 412-421.
-
(2005)
IEEE Trans. Speech Audio Process.
, vol.13
, Issue.3
, pp. 412-421
-
-
Deng, L.1
Wu, J.2
Droppo, J.3
Acero, A.4
-
196
-
-
0009577944
-
A neural probabilistic language model
-
Bengio, Y.; Ducharme, R.; Vincent, P.; Jauvin, C.: A neural probabilistic language model, in Proc. NIPS, 2000, 933-938.
-
(2000)
Proc. NIPS
, pp. 933-938
-
-
Bengio, Y.1
Ducharme, R.2
Vincent, P.3
Jauvin, C.4
-
197
-
-
84866855842
-
Fast evaluation of connectionist language models
-
Zamora-Martínez, F.; Castro-Bleda, M.; España-Boquera, S.: Fast evaluation of connectionist language models, in Int. Conf. Artificial Neural Networks, 2009, 144-151.
-
(2009)
Int. Conf. Artificial Neural Networks
, pp. 144-151
-
-
Zamora-Martínez, F.1
Castro-Bleda, M.2
España-Boquera, S.3
-
198
-
-
34547970628
-
Three new graphical models for statistical language modeling
-
Mnih, A.; Hinton, G.: Three new graphical models for statistical language modeling, in Proc. ICML, 2007, 641-648.
-
(2007)
Proc. ICML
, pp. 641-648
-
-
Mnih, A.1
Hinton, G.2
-
199
-
-
84858779990
-
A scalable hierarchical distributed language model
-
Mnih, A.; Hinton, G.: A scalable hierarchical distributed language model, in Proc. NIPS, 2008, 1081-1088.
-
(2008)
Proc. NIPS
, pp. 1081-1088
-
-
Mnih, A.1
Hinton, G.2
-
200
-
-
80053276362
-
Training continuous space language models: Some practical issues
-
Le, H.; Allauzen, A.; Wisniewski, G.; Yvon, F.: Training continuous space languagemodels: some practical issues, in Proc.EMNLP, 2010, 778-788.
-
(2010)
Proc.EMNLP
, pp. 778-788
-
-
Le, H.1
Allauzen, A.2
Wisniewski, G.3
Yvon, F.4
-
201
-
-
80051619076
-
Structured output layer neural network language model
-
Le, H.; Oparin, I.; Allauzen, A.; Gauvain, J.; Yvon, F.: Structured output layer neural network language model, in Proc. ICASSP, 2011.
-
(2011)
Proc. ICASSP
-
-
Le, H.1
Oparin, I.2
Allauzen, A.3
Gauvain, J.4
Yvon, F.5
-
202
-
-
84858966958
-
Strategies for training large scale neural network languagemodels
-
Mikolov, T.; Deoras, A.; Povey, D.; Burget, L.; Cernocky, J.: Strategies for training large scale neural network languagemodels, in Proc. IEEE ASRU, 2011.
-
(2011)
Proc. IEEE ASRU
-
-
Mikolov, T.1
Deoras, A.2
Povey, D.3
Burget, L.4
Cernocky, J.5
-
204
-
-
77956280276
-
Hierarchical Bayesian language models for conversational speech recognition
-
Huang, S.; Renals, S.: Hierarchical Bayesian language models for conversational speech recognition. IEEE Trans. Audio Speech Lang. Process., 18 (8) (2010), 1941-1954.
-
(2010)
IEEE Trans. Audio Speech Lang. Process.
, vol.18
, Issue.8
, pp. 1941-1954
-
-
Huang, S.1
Renals, S.2
-
205
-
-
56449095373
-
A unified architecture for natural language processing: Deep neural networks with multitask learning
-
Collobert, R.;Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning, in Proc. ICML, 2008.
-
(2008)
Proc. ICML
-
-
Collobert, R.1
Weston, J.2
-
207
-
-
80053558787
-
Natural language processing (almost) from scratch
-
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.; Kavukcuoglu, K.; Kuksa, P.: Natural language processing (almost) from scratch. J. Mach. Learn. Res., 12 (2011), 2493-2537.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 2493-2537
-
-
Collobert, R.1
Weston, J.2
Bottou, L.3
Karlen, M.4
Kavukcuoglu, K.5
Kuksa, P.6
-
209
-
-
84878180089
-
Improving word representations via global context and multiple word prototypes
-
Huang, E.; Socher, R.; Manning, C.; Ng, A.: Improving word representations via global context and multiple word prototypes, in Proc. ACL, 2012.
-
(2012)
Proc. ACL
-
-
Huang, E.1
Socher, R.2
Manning, C.3
Ng, A.4
-
210
-
-
84926285904
-
Bilingual word embeddings for phrase-based machine translation
-
Zou, W.; Socher, R.; Cer, D.; Manning, C.: Bilingual word embeddings for phrase-based machine translation, in Proc. EMNLP, 2013.
-
(2013)
Proc. EMNLP
-
-
Zou, W.1
Socher, R.2
Cer, D.3
Manning, C.4
-
211
-
-
84903689430
-
-
MSR-TR-2013-88, September
-
Gao, J.; He, X.; Yih, W.; Deng, L.: Learning semantic representations for the phrase translationmodel.MSR-TR-2013-88, September 2013.
-
(2013)
Learning Semantic Representations for the Phrase Translationmodel
-
-
Gao, J.1
He, X.2
Yih, W.3
Deng, L.4
-
212
-
-
80053261327
-
Semisupervised recursive autoencoders for predicting sentiment distributions
-
Socher, R.; Pennington, J.; Huang, E.; Ng, A.; Manning, C.: Semisupervised recursive autoencoders for predicting sentiment distributions, in Proc. EMNLP, 2011.
-
(2011)
Proc. EMNLP
-
-
Socher, R.1
Pennington, J.2
Huang, E.3
Ng, A.4
Manning, C.5
-
213
-
-
85162476102
-
Dynamic pooling and unfolding recursive auto encoders for paraphrase detection
-
Socher, R.; Pennington, J.;Huang, E.;Ng, A.;Manning, C.:Dynamic pooling and unfolding recursive autoencoders for paraphrase detection, in Proc. NIPS, 2011.
-
(2011)
Proc. NIPS
-
-
Socher, R.1
Pennington, J.2
Huang, E.3
Ng, A.4
Manning, C.5
-
214
-
-
84926358845
-
Recursive deepmodels for semantic compositionality over a sentiment treebank
-
Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning, C.; Ng, A.; Potts, C.: Recursive deepmodels for semantic compositionality over a sentiment treebank, in Proc. EMNLP, 2013.
-
(2013)
Proc. EMNLP
-
-
Socher, R.1
Perelygin, A.2
Wu, J.3
Chuang, J.4
Manning, C.5
Ng, A.6
Potts, C.7
-
215
-
-
84871387302
-
The deep tensor neural network with applications to large vocabulary speech recognition
-
Yu, D.; Deng, L.; Seide, F.: The deep tensor neural network with applications to large vocabulary speech recognition. IEEE Trans. Audio Speech Lang. Process., 21 (2013), 388-396.
-
(2013)
IEEE Trans. Audio Speech Lang. Process.
, vol.21
, pp. 388-396
-
-
Yu, D.1
Deng, L.2
Seide, F.3
-
217
-
-
79961245273
-
Discovering binary codes for documents by learning deep generative models
-
Hinton, G.; Salakhutdinov, R.: Discovering binary codes for documents by learning deep generativemodels. Top. Cognit. Sci., (2010), 1-18.
-
(2010)
Top. Cognit. Sci.
, pp. 1-18
-
-
Hinton, G.1
Salakhutdinov, R.2
-
218
-
-
84889566627
-
Learning deep structured semantic models for web search using clickthrough data
-
Huang, P.; He, X.; Gao, J.; Deng, L.; Acero, A.; Heck, L.: Learning deep structured semantic models for web search using clickthrough data, in ACM Int. Conf. Information and Knowledge Management (CIKM), 2013.
-
(2013)
ACM Int. Conf. Information and Knowledge Management(CIKM)
-
-
Huang, P.1
He, X.2
Gao, J.3
Deng, L.4
Acero, A.5
Heck, L.6
-
219
-
-
80053437034
-
On optimization methods for deep learning
-
Le, Q.; Ngiam, J.; Coates, A.; Lahiri, A.; Prochnow, B.; Ng, A.: On optimization methods for deep learning, in Proc. ICML, 2011.
-
(2011)
Proc. ICML
-
-
Le, Q.1
Ngiam, J.2
Coates, A.3
Lahiri, A.4
Prochnow, B.5
Ng, A.6
-
221
-
-
84857855190
-
Random search for hyper-parameter optimization
-
Bergstra, J.; Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res., 3 (2012), 281-305.
-
(2012)
J. Mach. Learn. Res.
, vol.3
, pp. 281-305
-
-
Bergstra, J.1
Bengio, Y.2
-
222
-
-
84869201485
-
Practical Bayesian optimization of machine learning algorithms
-
Snoek, J.; Larochelle, H.; Adams, R.: Practical Bayesian optimization of machine learning algorithms, in Proc. NIPS, 2012.
-
(2012)
Proc. NIPS
-
-
Snoek, J.1
Larochelle, H.2
Adams, R.3
|