메뉴 건너뛰기




Volumn 4, Issue , 2012, Pages 2825-2833

Learning with recursive perceptual representations

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFICATION TASKS; COMPACT REPRESENTATION; GENERALIZATION ABILITY; HIGH-DIMENSIONAL FEATURE SPACE; LINEAR SUPPORT VECTOR MACHINES; NONCONVEX OPTIMIZATION; NONLINEAR CLASSIFIERS; PERCEPTUAL REPRESENTATIONS;

EID: 84877777313     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (51)

References (26)
  • 1
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and gaussian complexities: Risk bounds and structural results
    • P L Bartlett and S Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. The Journal of Machine Learning Research, 3:463-482, 2003.
    • (2003) The Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.L.1    Mendelson, S.2
  • 2
    • 51949090223 scopus 로고    scopus 로고
    • Defense of nearest-neighbor based image classification
    • O Boiman, E Shechtman, and M Irani. In defense of nearest-neighbor based image classification. In CVPR, 2008.
    • (2008) CVPR
    • Boiman, O.1    Shechtman, E.2    Irani, M.3
  • 3
    • 80052912306 scopus 로고    scopus 로고
    • Detecting people using mutually consistent poselet activations
    • L Bourdev, S Maji, T Brox, and J Malik. Detecting people using mutually consistent poselet activations. In ECCV, 2010.
    • (2010) ECCV
    • Bourdev, L.1    Maji, S.2    Brox, T.3    Malik, J.4
  • 4
    • 80053442434 scopus 로고    scopus 로고
    • The importance of encoding versus training with sparse coding and vector quantization
    • A Coates and A Ng. The importance of encoding versus training with sparse coding and vector quantization. In ICML, 2011.
    • (2011) ICML
    • Coates, A.1    Ng, A.2
  • 7
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N Dalal. Histograms of oriented gradients for human detection. In CVPR, 2005.
    • (2005) CVPR
    • Dalal, N.1
  • 8
    • 0019053271 scopus 로고
    • Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences
    • S Davis and P Mermelstein. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. Acoustics, Speech and Signal Processing, IEEE Transactions on, 28(4):357-366, 1980.
    • (1980) Acoustics, Speech and Signal Processing, IEEE Transactions on , vol.28 , Issue.4 , pp. 357-366
    • Davis, S.1    Mermelstein, P.2
  • 10
    • 84865744273 scopus 로고    scopus 로고
    • Deep convex network: A scalable architecture for deep learning
    • L Deng and D Yu. Deep convex network: A scalable architecture for deep learning. In Interspeech, 2011.
    • (2011) Interspeech
    • Deng, L.1    Yu, D.2
  • 11
    • 84867614591 scopus 로고    scopus 로고
    • Scalable stacking and learning for building deep architectures
    • L Deng, D Yu, and J Platt. Scalable stacking and learning for building deep architectures. In ICASSP, 2012.
    • (2012) ICASSP
    • Deng, L.1    Yu, D.2    Platt, J.3
  • 12
    • 33745155436 scopus 로고    scopus 로고
    • A bayesian hierarchical model for learning natural scene categories
    • L Fei-Fei and P Perona. A bayesian hierarchical model for learning natural scene categories. In CVPR, 2005.
    • (2005) CVPR
    • Fei-Fei, L.1    Perona, P.2
  • 14
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G Hinton and R Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504
    • Hinton, G.1    Salakhutdinov, R.2
  • 15
    • 77953183471 scopus 로고    scopus 로고
    • What is the best multi-stage architecture for object recognition?
    • K Jarrett, K Kavukcuoglu, M A Ranzato, and Y LeCun. What is the best multi-stage architecture for object recognition? In ICCV, 2009.
    • (2009) ICCV
    • Jarrett, K.1    Kavukcuoglu, K.2    Ranzato, M.A.3    Lecun, Y.4
  • 18
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 2004.
    • (2004) IJCV
    • Lowe, D.1
  • 20
    • 79959840616 scopus 로고    scopus 로고
    • Investigation of full-sequence training of deep belief networks for speech recognition
    • A Mohamed, D Yu, and L Deng. Investigation of full-sequence training of deep belief networks for speech recognition. In Interspeech, 2010.
    • (2010) Interspeech
    • Mohamed, A.1    Yu, D.2    Deng, L.3
  • 21
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • B Olshausen and D J Field. Sparse coding with an overcomplete basis set: a strategy employed by V1? Vision research, 37(23):3311-3325, 1997.
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.1    Field, D.J.2
  • 22
    • 84878538214 scopus 로고    scopus 로고
    • Are sparse representations rich enough for acoustic modeling?
    • O Vinyals and L Deng. Are Sparse Representations Rich Enough for Acoustic Modeling? In Interspeech, 2012.
    • (2012) Interspeech
    • Vinyals, O.1    Deng, L.2
  • 23
    • 0026692226 scopus 로고
    • Stacked generalization
    • D H Wolpert. Stacked generalization. Neural networks, 5(2):241-259, 1992.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.H.1
  • 24
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification
    • J Yang, K Yu, and Y Gong. Linear spatial pyramid matching using sparse coding for image classification. In CVPR, 2009.
    • (2009) CVPR
    • Yang, J.1    Yu, K.2    Gong, Y.3
  • 25
    • 80052906448 scopus 로고    scopus 로고
    • Efficient highly over-complete sparse coding using a mixture model
    • J Yang, K Yu, and T Huang. Efficient highly over-complete sparse coding using a mixture model. In ECCV, 2010.
    • (2010) ECCV
    • Yang, J.1    Yu, K.2    Huang, T.3
  • 26
    • 77956510751 scopus 로고    scopus 로고
    • Improved local coordinate coding using local tangents
    • K Yu and T Zhang. Improved Local Coordinate Coding using Local Tangents. In ICML, 2010.
    • (2010) ICML
    • Yu, K.1    Zhang, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.