-
1
-
-
84873591302
-
Music emotion recognition: A state of the art review
-
Y. E. Kim, E. M. Schmidt, R. Migneco, B. G. Morton, P. Richardson, J. Scott, J. A. Speck, and D. Turnbull, "Music emotion recognition: A state of the art review," in ISMIR, Utrecht, Netherlands, 2010.
-
ISMIR, Utrecht, Netherlands, 2010
-
-
Kim, Y.E.1
Schmidt, E.M.2
Migneco, R.3
Morton, B.G.4
Richardson, P.5
Scott, J.6
Speck, J.A.7
Turnbull, D.8
-
2
-
-
33644513420
-
Efficient auditory coding
-
February
-
E. C. Smith and M. S. Lewicki, "Efficient auditory coding,"Nature, vol. 439, no. 7079, pp. 978-982, February 2006.
-
(2006)
Nature
, vol.439
, Issue.7079
, pp. 978-982
-
-
Smith, E.C.1
Lewicki, M.S.2
-
3
-
-
77952382770
-
Feature selection for content-based, time-varying musical emotion regression
-
E. M. Schmidt, D. Turnbull, and Y. E. Kim, "Feature selection for content-based, time-varying musical emotion regression,"in ACM MIR, Philadelphia, PA, 2010.
-
ACM MIR, Philadelphia, PA, 2010
-
-
Schmidt, E.M.1
Turnbull, D.2
Kim, Y.E.3
-
4
-
-
84555174290
-
Prediction of time-varying musical mood distributions from audio
-
E. M. Schmidt and Y. E. Kim, "Prediction of time-varying musical mood distributions from audio," in ISMIR, Utrecht, Netherlands, 2010.
-
ISMIR, Utrecht, Netherlands, 2010
-
-
Schmidt, E.M.1
Kim, Y.E.2
-
6
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
July
-
G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, July 2006.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
7
-
-
33745805403
-
A fast learning algorithm for deep belief nets
-
DOI 10.1162/neco.2006.18.7.1527
-
G. E. Hinton, S. Osindero, and Y. Teh, "A fast learning algorithm for deep belief nets," Neural Computation, vol. 18, no. 7, pp. 1527-1554, 2006. (Pubitemid 44024729)
-
(2006)
Neural Computation
, vol.18
, Issue.7
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
8
-
-
84864073449
-
Greedy layer-wise training of deep networks
-
MIT Press
-
Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, "Greedy layer-wise training of deep networks," in NIPS. MIT Press, 2007.
-
(2007)
NIPS
-
-
Bengio, Y.1
Lamblin, P.2
Popovici, D.3
Larochelle, H.4
-
9
-
-
84863380535
-
Unsupervised feature learning for audio classification using convolutional deep belief networks
-
MIT Press
-
H. Lee, Y. Largman, P. Pham, and A. Y. Ng, "Unsupervised feature learning for audio classification using convolutional deep belief networks," in NIPS. MIT Press, 2009.
-
(2009)
NIPS
-
-
Lee, H.1
Largman, Y.2
Pham, P.3
Ng, A.Y.4
-
10
-
-
84873584268
-
Learning features from music audio with deep belief networks
-
P. Hamel and D. Eck, "Learning features from music audio with deep belief networks," in ISMIR, Utrecht, Netherlands, 2010.
-
ISMIR, Utrecht, Netherlands, 2010
-
-
Hamel, P.1
Eck, D.2
-
11
-
-
84873445412
-
MoodSwings: A collaborative game for music mood label collection
-
Y. E. Kim, E. Schmidt, and L. Emelle, "MoodSwings: A collaborative game for music mood label collection," in ISMIR, Philadelphia, PA, September 2008.
-
ISMIR, Philadelphia, PA, September 2008
-
-
Kim, Y.E.1
Schmidt, E.2
Emelle, L.3
-
12
-
-
79952403274
-
Prediction of time-varying musical mood distributions using Kalman filtering
-
E. M. Schmidt and Y. E. Kim, "Prediction of time-varying musical mood distributions using Kalman filtering," in Proc. of the 9th IEEE Intl. Conf. on Machine Learning and Applications (ICMLA), Washington, D.C., 2010.
-
Proc. of the 9th IEEE Intl. Conf. on Machine Learning and Applications (ICMLA), Washington, D.C., 2010
-
-
Schmidt, E.M.1
Kim, Y.E.2
|