메뉴 건너뛰기




Volumn 6, Issue 5, 2014, Pages 353-369

Boolean modeling: A logic-based dynamic approach for understanding signaling and regulatory networks and for making useful predictions

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOLOGICAL MODEL; BOOLEAN DYNAMIC MODEL; DOWNSTREAM PROCESSING; GENE REGULATORY NETWORK; HUMAN; HYBRID; KINETICS; MOLECULAR INTERACTION; NONHUMAN; PREDICTION; QUANTITATIVE ANALYSIS; SIGNAL TRANSDUCTION; FORECASTING; LOGIC; PHYSIOLOGY;

EID: 84906242439     PISSN: 19395094     EISSN: 1939005X     Source Type: Journal    
DOI: 10.1002/wsbm.1273     Document Type: Article
Times cited : (113)

References (125)
  • 1
    • 13444278821 scopus 로고    scopus 로고
    • Reconstruction of cellular signalling networks and analysis of their properties
    • Papin JA, Hunter T, Palsson BO, Subramaniam S. Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 2005, 6:99-111.
    • (2005) Nat Rev Mol Cell Biol , vol.6 , pp. 99-111
    • Papin, J.A.1    Hunter, T.2    Palsson, B.O.3    Subramaniam, S.4
  • 2
    • 77950651089 scopus 로고    scopus 로고
    • The edges of understanding
    • Lander AD. The edges of understanding. BMC Biol 2010, 8:40.
    • (2010) BMC Biol , vol.8 , pp. 40
    • Lander, A.D.1
  • 3
    • 0036013593 scopus 로고    scopus 로고
    • Statistical mechanics of complex networks
    • Albert R, Barabasi AL. Statistical mechanics of complex networks. Rev Mod Phys 2002, 74:47-97.
    • (2002) Rev Mod Phys , vol.74 , pp. 47-97
    • Albert, R.1    Barabasi, A.L.2
  • 4
    • 58149159905 scopus 로고    scopus 로고
    • Network modeling of signal transduction: establishing the global view
    • Kestler HA, Wawra C, Kracher B, Kuhl M. Network modeling of signal transduction: establishing the global view. Bioessays 2008, 30:1110-1125.
    • (2008) Bioessays , vol.30 , pp. 1110-1125
    • Kestler, H.A.1    Wawra, C.2    Kracher, B.3    Kuhl, M.4
  • 5
    • 52649087274 scopus 로고    scopus 로고
    • Modelling and analysis of gene regulatory networks
    • Karlebach G, Shamir R. Modelling and analysis of gene regulatory networks. Nat Rev Mol Cell Biol 2008, 9:770-780.
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 770-780
    • Karlebach, G.1    Shamir, R.2
  • 7
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • Kauffman SA. Metabolic stability and epigenesis in randomly constructed genetic nets. J Theor Biol 1969, 22:437-467.
    • (1969) J Theor Biol , vol.22 , pp. 437-467
    • Kauffman, S.A.1
  • 8
    • 0015823097 scopus 로고
    • Boolean formalization of genetic control circuits
    • Thomas R. Boolean formalization of genetic control circuits. J Theor Biol 1973, 42:563-585.
    • (1973) J Theor Biol , vol.42 , pp. 563-585
    • Thomas, R.1
  • 9
    • 73949091600 scopus 로고    scopus 로고
    • Discrete dynamic modeling with asynchronous update, or how to model complex systems in the absence of quantitative information
    • Assmann SM, Albert R. Discrete dynamic modeling with asynchronous update, or how to model complex systems in the absence of quantitative information. Methods Mol Biol 2009, 553:207-225.
    • (2009) Methods Mol Biol , vol.553 , pp. 207-225
    • Assmann, S.M.1    Albert, R.2
  • 10
    • 33746618913 scopus 로고    scopus 로고
    • Methods of robustness analysis for Boolean models of gene control networks
    • Chaves M, Sontag ED, Albert R. Methods of robustness analysis for Boolean models of gene control networks. Syst Biol (Stevenage) 2006, 153:154-167.
    • (2006) Syst Biol (Stevenage) , vol.153 , pp. 154-167
    • Chaves, M.1    Sontag, E.D.2    Albert, R.3
  • 11
    • 78049445384 scopus 로고    scopus 로고
    • A Boolean model of the gene regulatory network underlying Mammalian cortical area development
    • Giacomantonio CE, Goodhill GJ. A Boolean model of the gene regulatory network underlying Mammalian cortical area development. PLoS Comput Biol 2010, 6:e1000936.
    • (2010) PLoS Comput Biol , vol.6
    • Giacomantonio, C.E.1    Goodhill, G.J.2
  • 12
    • 0032555224 scopus 로고    scopus 로고
    • Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis
    • Mendoza L, Alvarez-Buylla ER. Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis. J Theor Biol 1998, 193:307-319.
    • (1998) J Theor Biol , vol.193 , pp. 307-319
    • Mendoza, L.1    Alvarez-Buylla, E.R.2
  • 13
  • 16
    • 84857475189 scopus 로고    scopus 로고
    • Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth
    • Thakar J, Pathak AK, Murphy L, Albert R, Cattadori IM. Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth. PLoS Comput Biol 2012, 8:e1002345.
    • (2012) PLoS Comput Biol , vol.8
    • Thakar, J.1    Pathak, A.K.2    Murphy, L.3    Albert, R.4    Cattadori, I.M.5
  • 17
    • 79952749924 scopus 로고    scopus 로고
    • Computational and experimental analysis reveals a requirement for eosinophil-derived IL-13 for the development of allergic airway responses in C57BL/6 mice
    • Walsh ER, Thakar J, Stokes K, Huang F, Albert R, August A. Computational and experimental analysis reveals a requirement for eosinophil-derived IL-13 for the development of allergic airway responses in C57BL/6 mice. J Immunol 2011, 186:2936-2949.
    • (2011) J Immunol , vol.186 , pp. 2936-2949
    • Walsh, E.R.1    Thakar, J.2    Stokes, K.3    Huang, F.4    Albert, R.5    August, A.6
  • 18
  • 19
    • 45849093636 scopus 로고    scopus 로고
    • Boolean network model predicts cell cycle sequence of fission yeast
    • Davidich MI, Bornholdt S. Boolean network model predicts cell cycle sequence of fission yeast. PLoS One 2008, 3:e1672.
    • (2008) PLoS One , vol.3
    • Davidich, M.I.1    Bornholdt, S.2
  • 21
    • 63649099433 scopus 로고    scopus 로고
    • Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae
    • Christensen TS, Oliveira AP, Nielsen J. Reconstruction and logical modeling of glucose repression signaling pathways in Saccharomyces cerevisiae. BMC Syst Biol 2009, 3:7.
    • (2009) BMC Syst Biol , vol.3 , pp. 7
    • Christensen, T.S.1    Oliveira, A.P.2    Nielsen, J.3
  • 22
    • 0034616621 scopus 로고    scopus 로고
    • Genetic regulation of root hair development in Arabidopsis thaliana: a network model
    • Mendoza L, Alvarez-Buylla ER. Genetic regulation of root hair development in Arabidopsis thaliana: a network model. J Theor Biol 2000, 204:311-326.
    • (2000) J Theor Biol , vol.204 , pp. 311-326
    • Mendoza, L.1    Alvarez-Buylla, E.R.2
  • 23
    • 33750270802 scopus 로고    scopus 로고
    • Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling
    • Li S, Assmann SM, Albert R. Predicting essential components of signal transduction networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 2006, 4:e312.
    • (2006) PLoS Biol , vol.4
    • Li, S.1    Assmann, S.M.2    Albert, R.3
  • 25
    • 46249115881 scopus 로고    scopus 로고
    • Studying the effect of cell division on expression patterns of the segment polarity genes
    • Chaves M, Albert R. Studying the effect of cell division on expression patterns of the segment polarity genes. J R Soc Interface 2008, 5(Suppl 1):S71-S84.
    • (2008) J R Soc Interface , vol.5 , Issue.SUPPL 1
    • Chaves, M.1    Albert, R.2
  • 27
    • 81355154050 scopus 로고    scopus 로고
    • Dynamical and structural analysis of a T cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte leukemia
    • Saadatpour A, Wang RS, Liao A, Liu X, Loughran TP, Albert I, Albert R. Dynamical and structural analysis of a T cell survival network identifies novel candidate therapeutic targets for large granular lymphocyte leukemia. PLoS Comput Biol 2011, 7:e1002267.
    • (2011) PLoS Comput Biol , vol.7
    • Saadatpour, A.1    Wang, R.S.2    Liao, A.3    Liu, X.4    Loughran, T.P.5    Albert, I.6    Albert, R.7
  • 29
    • 84869799148 scopus 로고    scopus 로고
    • Attractor landscape analysis reveals feedback loops in the p53 network that control the cellular response to DNA damage
    • Choi M, Shi J, Jung SH, Chen X, Cho KH. Attractor landscape analysis reveals feedback loops in the p53 network that control the cellular response to DNA damage. Sci Signal 2012, 5:ra83.
    • (2012) Sci Signal , vol.5
    • Choi, M.1    Shi, J.2    Jung, S.H.3    Chen, X.4    Cho, K.H.5
  • 35
    • 79953668247 scopus 로고    scopus 로고
    • Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli
    • Morris MK, Saez-Rodriguez J, Clarke DC, Sorger PK, Lauffenburger DA. Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli. PLoS Comput Biol 2011, 7:e1001099.
    • (2011) PLoS Comput Biol , vol.7
    • Morris, M.K.1    Saez-Rodriguez, J.2    Clarke, D.C.3    Sorger, P.K.4    Lauffenburger, D.A.5
  • 36
    • 34548302044 scopus 로고    scopus 로고
    • Petri net modelling of biological networks
    • Chaouiya C. Petri net modelling of biological networks. Brief Bioinform 2007, 8:210-219.
    • (2007) Brief Bioinform , vol.8 , pp. 210-219
    • Chaouiya, C.1
  • 37
    • 40149110854 scopus 로고    scopus 로고
    • The signaling Petri net-based simulator: a non-parametric strategy for characterizing the dynamics of cell-specific signaling networks
    • Ruths D, Muller M, Tseng JT, Nakhleh L, Ram PT. The signaling Petri net-based simulator: a non-parametric strategy for characterizing the dynamics of cell-specific signaling networks. PLoS Comput Biol 2008, 4:e1000005.
    • (2008) PLoS Comput Biol , vol.4
    • Ruths, D.1    Muller, M.2    Tseng, J.T.3    Nakhleh, L.4    Ram, P.T.5
  • 40
    • 55549143637 scopus 로고    scopus 로고
    • The transition from differential equations to Boolean networks: a case study in modeling regulatory networks
    • Davidich M, Bornholdt S. The transition from differential equations to Boolean networks: a case study in modeling regulatory networks. J Theor Biol 2008, 225:269-277.
    • (2008) J Theor Biol , vol.225 , pp. 269-277
    • Davidich, M.1    Bornholdt, S.2
  • 41
    • 0034644270 scopus 로고    scopus 로고
    • The segment polarity network is a robust developmental module
    • von Dassow G, Meir E, Munro EM, Odell GM. The segment polarity network is a robust developmental module. Nature 2000, 406:188-192.
    • (2000) Nature , vol.406 , pp. 188-192
    • von Dassow, G.1    Meir, E.2    Munro, E.M.3    Odell, G.M.4
  • 42
    • 0015609281 scopus 로고
    • Logical analysis of continuous, nonlinear biochemical control networks
    • Glass L, Kauffman SA. Logical analysis of continuous, nonlinear biochemical control networks. J Theor Biol 1973, 39:103-129.
    • (1973) J Theor Biol , vol.39 , pp. 103-129
    • Glass, L.1    Kauffman, S.A.2
  • 43
    • 18144408736 scopus 로고    scopus 로고
    • Cell fates as high-dimensional attractor states of a complex gene regulatory network
    • Huang S, Eichler G, Bar-Yam Y, Ingber DE. Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys Rev Lett 2005, 94:128701.
    • (2005) Phys Rev Lett , vol.94 , pp. 128701
    • Huang, S.1    Eichler, G.2    Bar-Yam, Y.3    Ingber, D.E.4
  • 44
    • 77955496931 scopus 로고    scopus 로고
    • Attractor analysis of asynchronous Boolean models of signal transduction networks
    • Saadatpour A, Albert I, Albert R. Attractor analysis of asynchronous Boolean models of signal transduction networks. J Theor Biol 2010, 4:641-656.
    • (2010) J Theor Biol , vol.4 , pp. 641-656
    • Saadatpour, A.1    Albert, I.2    Albert, R.3
  • 45
    • 0037376655 scopus 로고    scopus 로고
    • Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell
    • Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 2003, 15:221-231.
    • (2003) Curr Opin Cell Biol , vol.15 , pp. 221-231
    • Tyson, J.J.1    Chen, K.C.2    Novak, B.3
  • 46
    • 77953671724 scopus 로고    scopus 로고
    • On the dynamics of random Boolean networks subject to noise: attractors, ergodic sets and cell types
    • Serra R, Villani M, Barbieri A, Kauffman SA, Colacci A. On the dynamics of random Boolean networks subject to noise: attractors, ergodic sets and cell types. J Theor Biol 2010, 265:185-193.
    • (2010) J Theor Biol , vol.265 , pp. 185-193
    • Serra, R.1    Villani, M.2    Barbieri, A.3    Kauffman, S.A.4    Colacci, A.5
  • 47
    • 0037686112 scopus 로고    scopus 로고
    • The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster
    • Albert R, Othmer HG. The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol 2003, 223:1-18.
    • (2003) J Theor Biol , vol.223 , pp. 1-18
    • Albert, R.1    Othmer, H.G.2
  • 48
    • 33646345600 scopus 로고    scopus 로고
    • A network model for the control of the differentiation process in Th cells
    • Mendoza L. A network model for the control of the differentiation process in Th cells. Biosystems 2006, 84:101-114.
    • (2006) Biosystems , vol.84 , pp. 101-114
    • Mendoza, L.1
  • 49
    • 78149362061 scopus 로고    scopus 로고
    • A robust model to describe the differentiation of T-helper cells
    • Mendoza L, Pardo F. A robust model to describe the differentiation of T-helper cells. Theory Biosci 2010, 129:283-293.
    • (2010) Theory Biosci , vol.129 , pp. 283-293
    • Mendoza, L.1    Pardo, F.2
  • 50
    • 0037074012 scopus 로고    scopus 로고
    • Molecular and functional profiling of memory CD8 T cell differentiation
    • Kaech SM, Hemby S, Kersh E, Ahmed R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 2002, 111:837-851.
    • (2002) Cell , vol.111 , pp. 837-851
    • Kaech, S.M.1    Hemby, S.2    Kersh, E.3    Ahmed, R.4
  • 53
    • 73949091600 scopus 로고    scopus 로고
    • Discrete dynamic modeling with asynchronous update or, how to model complex systems in the absence of quantitative information
    • Belostotsky D, Totowa NJ, eds. New York: Humana Press;
    • Albert R, Assmann SM. Discrete dynamic modeling with asynchronous update or, how to model complex systems in the absence of quantitative information. In: Belostotsky D, Totowa NJ, eds. Plant Systems Biology, vol. 553. New York: Humana Press; 2009, 207-225.
    • (2009) Plant Systems Biology , vol.553 , pp. 207-225
    • Albert, R.1    Assmann, S.M.2
  • 56
  • 57
    • 0038048325 scopus 로고    scopus 로고
    • Inferring genetic networks and identifying compound mode of action via expression profiling
    • Gardner TS, di Bernardo D, Lorenz D, Collins JJ. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 2003, 301:102-105.
    • (2003) Science , vol.301 , pp. 102-105
    • Gardner, T.S.1    di Bernardo, D.2    Lorenz, D.3    Collins, J.J.4
  • 58
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Akutsu T, Miyano S, Kuhara S. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pac Symp Biocomput 1999, 4:17-28.
    • (1999) Pac Symp Biocomput , vol.4 , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 59
    • 0033642067 scopus 로고    scopus 로고
    • Discovery of regulatory interactions through perturbation: inference and experimental design
    • Ideker TE, Thorsson V, Karp RM. Discovery of regulatory interactions through perturbation: inference and experimental design. Pac Symp Biocomput 2000, 5:305-316.
    • (2000) Pac Symp Biocomput , vol.5 , pp. 305-316
    • Ideker, T.E.1    Thorsson, V.2    Karp, R.M.3
  • 60
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks
    • Shmulevich I, Dougherty ER, Kim S, Zhang W. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 2002, 18:261-274.
    • (2002) Bioinformatics , vol.18 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 61
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • Kim SY, Imoto S, Miyano S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform 2003, 4:228-235.
    • (2003) Brief Bioinform , vol.4 , pp. 228-235
    • Kim, S.Y.1    Imoto, S.2    Miyano, S.3
  • 62
    • 38349131656 scopus 로고    scopus 로고
    • NET-SYNTHESIS: a software for synthesis, inference and simplification of signal transduction networks
    • Kachalo S, Zhang R, Sontag E, Albert R, DasGupta B. NET-SYNTHESIS: a software for synthesis, inference and simplification of signal transduction networks. Bioinformatics 2008, 24:293-295.
    • (2008) Bioinformatics , vol.24 , pp. 293-295
    • Kachalo, S.1    Zhang, R.2    Sontag, E.3    Albert, R.4    DasGupta, B.5
  • 63
    • 84906247998 scopus 로고    scopus 로고
    • yEd Graph Editor. Available at:
    • yEd Graph Editor. Available at: http://www.yworks.com/en/products_yed_about.html.
  • 65
    • 79551587720 scopus 로고    scopus 로고
    • Cytoscape 2.8: new features for data integration and network visualization
    • Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011, 27:431-432.
    • (2011) Bioinformatics , vol.27 , pp. 431-432
    • Smoot, M.E.1    Ono, K.2    Ruscheinski, J.3    Wang, P.L.4    Ideker, T.5
  • 66
    • 34447551397 scopus 로고    scopus 로고
    • Structural and functional analysis of cellular networks with CellNetAnalyzer
    • Klamt S, Saez-Rodriguez J, Gilles ED. Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol 2007, 1:2.
    • (2007) BMC Syst Biol , vol.1 , pp. 2
    • Klamt, S.1    Saez-Rodriguez, J.2    Gilles, E.D.3
  • 68
    • 67249148362 scopus 로고    scopus 로고
    • Exploring network structure, dynamics, and function using NetworkX
    • Proceedings of the 7th Python in Science Conference (SciPy 2008), Pasadena, CA
    • Hagberg A, Schult D, Swart P. Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference (SciPy 2008), Pasadena, CA, 2008.
    • (2008)
    • Hagberg, A.1    Schult, D.2    Swart, P.3
  • 69
    • 2542529262 scopus 로고    scopus 로고
    • Pajek - analysis and visualization of large networks
    • Jünger M, Mutzel P, eds. Berlin: Springer;
    • Batagelj V, Mrvar A. Pajek - analysis and visualization of large networks. In: Jünger M, Mutzel P, eds. Graph Drawing Software. Berlin: Springer; 2003, 77-103.
    • (2003) Graph Drawing Software , pp. 77-103
    • Batagelj, V.1    Mrvar, A.2
  • 70
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological changes
    • Luscombe NM, Babu MM, Yu H, Snyder M, Teichmann SA, Gerstein M. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 2004, 431:308-312.
    • (2004) Nature , vol.431 , pp. 308-312
    • Luscombe, N.M.1    Babu, M.M.2    Yu, H.3    Snyder, M.4    Teichmann, S.A.5    Gerstein, M.6
  • 72
    • 33845875196 scopus 로고    scopus 로고
    • Relating three-dimensional structures to protein networks provides evolutionary insights
    • Kim PM, Lu LJ, Xia Y, Gerstein MB. Relating three-dimensional structures to protein networks provides evolutionary insights. Science 2006, 314:1938-1941.
    • (2006) Science , vol.314 , pp. 1938-1941
    • Kim, P.M.1    Lu, L.J.2    Xia, Y.3    Gerstein, M.B.4
  • 73
    • 13244264814 scopus 로고    scopus 로고
    • Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach
    • Ma HW, Buer J, Zeng AP. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach. BMC Bioinformatics 2004, 5:199.
    • (2004) BMC Bioinformatics , vol.5 , pp. 199
    • Ma, H.W.1    Buer, J.2    Zeng, A.P.3
  • 75
    • 0042093610 scopus 로고    scopus 로고
    • The connectivity structure, giant strong component and centrality of metabolic networks
    • Ma HW, Zeng AP. The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 2003, 19:1423-1430.
    • (2003) Bioinformatics , vol.19 , pp. 1423-1430
    • Ma, H.W.1    Zeng, A.P.2
  • 78
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of Escherichia coli
    • Shen-Orr SS, Milo R, Mangan S, Alon U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet 2002, 31:64-68.
    • (2002) Nat Genet , vol.31 , pp. 64-68
    • Shen-Orr, S.S.1    Milo, R.2    Mangan, S.3    Alon, U.4
  • 80
    • 47749136194 scopus 로고    scopus 로고
    • The effect of negative feedback loops on the dynamics of Boolean networks
    • Sontag E, Veliz-Cuba A, Laubenbacher R, Jarrah AS. The effect of negative feedback loops on the dynamics of Boolean networks. Biophys J 2008, 95:518-526.
    • (2008) Biophys J , vol.95 , pp. 518-526
    • Sontag, E.1    Veliz-Cuba, A.2    Laubenbacher, R.3    Jarrah, A.S.4
  • 81
    • 46249112705 scopus 로고    scopus 로고
    • Boolean network models of cellular regulation: prospects and limitations
    • Bornholdt S. Boolean network models of cellular regulation: prospects and limitations. J R Soc Interface 2008, 5(Suppl 1):S85-S94.
    • (2008) J R Soc Interface , vol.5 , Issue.SUPPL 1
    • Bornholdt, S.1
  • 83
    • 84879267479 scopus 로고    scopus 로고
    • An evaluation of methods for inferring Boolean networks from time-series data
    • Berestovsky N, Nakhleh L. An evaluation of methods for inferring Boolean networks from time-series data. PLoS One 2013, 8:e66031.
    • (2013) PLoS One , vol.8
    • Berestovsky, N.1    Nakhleh, L.2
  • 84
    • 84871301410 scopus 로고    scopus 로고
    • Autonomous Boolean modelling of developmental gene regulatory networks
    • Cheng X, Sun M, Socolar JE. Autonomous Boolean modelling of developmental gene regulatory networks. J R Soc Interface 2013, 10:20120574.
    • (2013) J R Soc Interface , vol.10 , pp. 20120574
    • Cheng, X.1    Sun, M.2    Socolar, J.E.3
  • 86
    • 18844380444 scopus 로고    scopus 로고
    • Robustness and fragility of Boolean models for genetic regulatory networks
    • Chaves M, Albert R, Sontag ED. Robustness and fragility of Boolean models for genetic regulatory networks. J Theor Biol 2005, 235:431-449.
    • (2005) J Theor Biol , vol.235 , pp. 431-449
    • Chaves, M.1    Albert, R.2    Sontag, E.D.3
  • 87
    • 0005126318 scopus 로고    scopus 로고
    • Time out of joint: attractors in asynchronous random Boolean networks
    • Proceedings of the Fourth European Conference on Artificial Life, Cambridge, UK
    • Harvey I, Bossomaier T. Time out of joint: attractors in asynchronous random Boolean networks. In: Proceedings of the Fourth European Conference on Artificial Life, Cambridge, UK, 1997.
    • (1997)
    • Harvey, I.1    Bossomaier, T.2
  • 88
    • 33747874092 scopus 로고    scopus 로고
    • Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle
    • Faure A, Naldi A, Chaouiya C, Thieffry D. Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 2006, 22:e124-e131.
    • (2006) Bioinformatics , vol.22
    • Faure, A.1    Naldi, A.2    Chaouiya, C.3    Thieffry, D.4
  • 89
    • 68949178676 scopus 로고    scopus 로고
    • Uncovering operational interactions in genetic networks using asynchronous Boolean dynamics
    • Tournier L, Chaves M. Uncovering operational interactions in genetic networks using asynchronous Boolean dynamics. J Theor Biol 2009, 260:196-209.
    • (2009) J Theor Biol , vol.260 , pp. 196-209
    • Tournier, L.1    Chaves, M.2
  • 90
  • 92
    • 77952851181 scopus 로고    scopus 로고
    • BoolNet-an R package for generation, reconstruction and analysis of Boolean networks
    • Mussel C, Hopfensitz M, Kestler HA. BoolNet-an R package for generation, reconstruction and analysis of Boolean networks. Bioinformatics 2010, 26:1378-1380.
    • (2010) Bioinformatics , vol.26 , pp. 1378-1380
    • Mussel, C.1    Hopfensitz, M.2    Kestler, H.A.3
  • 93
    • 79960906495 scopus 로고    scopus 로고
    • A SAT-based algorithm for finding attractors in synchronous Boolean networks
    • Dubrova E, Teslenko M. A SAT-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM Trans Comput Biol Bioinform 2011, 8:1393-1399.
    • (2011) IEEE/ACM Trans Comput Biol Bioinform , vol.8 , pp. 1393-1399
    • Dubrova, E.1    Teslenko, M.2
  • 94
    • 79959799569 scopus 로고    scopus 로고
    • Finding attractors in asynchronous Boolean dynamics
    • Skodawessely T, Klemm K. Finding attractors in asynchronous Boolean dynamics. Adv Complex Syst 2011, 14:439-449.
    • (2011) Adv Complex Syst , vol.14 , pp. 439-449
    • Skodawessely, T.1    Klemm, K.2
  • 96
    • 41349121540 scopus 로고    scopus 로고
    • Stability of the Kauffman model
    • Bilke S, Sjunnesson F. Stability of the Kauffman model. Phys Rev E 2002, 65:016129.
    • (2002) Phys Rev E , vol.65 , pp. 016129
    • Bilke, S.1    Sjunnesson, F.2
  • 97
    • 79953226975 scopus 로고    scopus 로고
    • Dynamically consistent reduction of logical regulatory graphs
    • Naldi A, Remy E, Thieffry D, Chaouiya C. Dynamically consistent reduction of logical regulatory graphs. Theor Comput Sci 2011, 412:2207-2218.
    • (2011) Theor Comput Sci , vol.412 , pp. 2207-2218
    • Naldi, A.1    Remy, E.2    Thieffry, D.3    Chaouiya, C.4
  • 98
    • 30344432380 scopus 로고    scopus 로고
    • Simplifying Boolean networks
    • Richardson KA. Simplifying Boolean networks. Adv Complex Syst 2005, 8:365-381.
    • (2005) Adv Complex Syst , vol.8 , pp. 365-381
    • Richardson, K.A.1
  • 99
    • 80052739325 scopus 로고    scopus 로고
    • Reduction of Boolean network models
    • Veliz-Cuba A. Reduction of Boolean network models. J Theor Biol 2011, 289:167-172.
    • (2011) J Theor Biol , vol.289 , pp. 167-172
    • Veliz-Cuba, A.1
  • 100
    • 84891462796 scopus 로고    scopus 로고
    • A reduction method for Boolean network models proven to conserve attractors
    • Saadatpour A, Albert R, Reluga TC. A reduction method for Boolean network models proven to conserve attractors. SIAM J Appl Dyn Syst 2013, 12:1997-2011.
    • (2013) SIAM J Appl Dyn Syst , vol.12 , pp. 1997-2011
    • Saadatpour, A.1    Albert, R.2    Reluga, T.C.3
  • 101
    • 70349330663 scopus 로고    scopus 로고
    • Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective
    • Huang S, Ernberg I, Kauffman S. Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol 2009, 20:869-876.
    • (2009) Semin Cell Dev Biol , vol.20 , pp. 869-876
    • Huang, S.1    Ernberg, I.2    Kauffman, S.3
  • 102
    • 70049118296 scopus 로고    scopus 로고
    • Dynamics of unperturbed and noisy generalized Boolean networks
    • Darabos C, Tomassini M, Giacobini M. Dynamics of unperturbed and noisy generalized Boolean networks. J Theor Biol 2009, 260:531-544.
    • (2009) J Theor Biol , vol.260 , pp. 531-544
    • Darabos, C.1    Tomassini, M.2    Giacobini, M.3
  • 103
    • 77149160061 scopus 로고    scopus 로고
    • Computing combinatorial intervention strategies and failure modes in signaling networks
    • Samaga R, Von Kamp A, Klamt S. Computing combinatorial intervention strategies and failure modes in signaling networks. J Comput Biol 2010, 17:39-53.
    • (2010) J Comput Biol , vol.17 , pp. 39-53
    • Samaga, R.1    Von Kamp, A.2    Klamt, S.3
  • 104
    • 79953109968 scopus 로고    scopus 로고
    • Elementary signaling modes predict the essentiality of signal transduction network components
    • Wang RS, Albert R. Elementary signaling modes predict the essentiality of signal transduction network components. BMC Syst Biol 2011, 5:44.
    • (2011) BMC Syst Biol , vol.5 , pp. 44
    • Wang, R.S.1    Albert, R.2
  • 106
    • 84880350921 scopus 로고    scopus 로고
    • An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks
    • Zanudo JG, Albert R. An effective network reduction approach to find the dynamical repertoire of discrete dynamic networks. Chaos 2013, 23:025111.
    • (2013) Chaos , vol.23 , pp. 025111
    • Zanudo, J.G.1    Albert, R.2
  • 107
  • 109
    • 0345269975 scopus 로고    scopus 로고
    • Genetic network analyzer: qualitative simulation of genetic regulatory networks
    • de Jong H, Geiselmann J, Hernandez C, Page M. Genetic network analyzer: qualitative simulation of genetic regulatory networks. Bioinformatics 2003, 19:336-344.
    • (2003) Bioinformatics , vol.19 , pp. 336-344
    • de Jong, H.1    Geiselmann, J.2    Hernandez, C.3    Page, M.4
  • 112
    • 32544443964 scopus 로고    scopus 로고
    • Systems biology toolbox for MATLAB: a computational platform for research in systems biology
    • Schmidt H, Jirstrand M. Systems biology toolbox for MATLAB: a computational platform for research in systems biology. Bioinformatics 2006, 22:514-515.
    • (2006) Bioinformatics , vol.22 , pp. 514-515
    • Schmidt, H.1    Jirstrand, M.2
  • 113
    • 0025948178 scopus 로고
    • Regulatory networks seen as asynchronous automata-a logical description
    • Thomas R. Regulatory networks seen as asynchronous automata-a logical description. J Theor Biol 1991, 153:1-23.
    • (1991) J Theor Biol , vol.153 , pp. 1-23
    • Thomas, R.1
  • 115
    • 77954191450 scopus 로고    scopus 로고
    • Polynomial algebra of discrete models in systems biology
    • Veliz-Cuba A, Jarrah AS, Laubenbacher R. Polynomial algebra of discrete models in systems biology. Bioinformatics 2010, 26:1637-1643.
    • (2010) Bioinformatics , vol.26 , pp. 1637-1643
    • Veliz-Cuba, A.1    Jarrah, A.S.2    Laubenbacher, R.3
  • 117
    • 0003100554 scopus 로고
    • Robustness in the strategy of scientific model building
    • Launer RL, Wilkinson GN, eds. New York: Academic Press;
    • Box GEP. Robustness in the strategy of scientific model building. In: Launer RL, Wilkinson GN, eds. Robustness in Statistics. New York: Academic Press; 1979, 201-236.
    • (1979) Robustness in Statistics , pp. 201-236
    • Box, G.E.P.1
  • 118
    • 84879543682 scopus 로고    scopus 로고
    • Constraint and contingency in multifunctional gene regulatory circuits
    • Payne JL, Wagner A. Constraint and contingency in multifunctional gene regulatory circuits. PLoS Comput Biol 2013, 9:e1003071.
    • (2013) PLoS Comput Biol , vol.9
    • Payne, J.L.1    Wagner, A.2
  • 119
    • 33746778773 scopus 로고    scopus 로고
    • Effects of topology on network evolution
    • Oikonomou P, Cluzel P. Effects of topology on network evolution. Nat Phys 2006, 2:532-536.
    • (2006) Nat Phys , vol.2 , pp. 532-536
    • Oikonomou, P.1    Cluzel, P.2
  • 121
    • 84880388275 scopus 로고    scopus 로고
    • Hierarchy of models: From qualitative to quantitative analysis of circadian rhythms in cyanobacteria
    • Chaves M, Preto M. Hierarchy of models: From qualitative to quantitative analysis of circadian rhythms in cyanobacteria. Chaos 2013, 23:025113.
    • (2013) Chaos , vol.23 , pp. 025113
    • Chaves, M.1    Preto, M.2
  • 122
    • 84880366252 scopus 로고    scopus 로고
    • Causal structure of oscillations in gene regulatory networks: Boolean analysis of ordinary differential equation attractors
    • Sun MY, Cheng XR, Socolar JES. Causal structure of oscillations in gene regulatory networks: Boolean analysis of ordinary differential equation attractors. Chaos 2013, 23.
    • (2013) Chaos , vol.23
    • Sun, M.Y.1    Cheng, X.R.2    Socolar, J.E.S.3
  • 124
    • 84874413738 scopus 로고    scopus 로고
    • Logic-based models in systems biology: a predictive and parameter-free network analysis method
    • Wynn ML, Consul N, Merajver SD, Schnell S. Logic-based models in systems biology: a predictive and parameter-free network analysis method. Integr Biol 2012, 4:1323-1337.
    • (2012) Integr Biol , vol.4 , pp. 1323-1337
    • Wynn, M.L.1    Consul, N.2    Merajver, S.D.3    Schnell, S.4
  • 125
    • 77952888422 scopus 로고    scopus 로고
    • Boolean models of within-host immune interactions
    • Thakar J, Albert R. Boolean models of within-host immune interactions. Curr Opin Microbiol 2010, 13:377-381.
    • (2010) Curr Opin Microbiol , vol.13 , pp. 377-381
    • Thakar, J.1    Albert, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.