메뉴 건너뛰기




Volumn 42, Issue 6, 2004, Pages 1335-1343

A relative evaluation of multiclass image classification by support vector machines

Author keywords

Accuracy comparison; Remote sensing; Supervised classification; Support vector machine (SVM); Training set

Indexed keywords

ALGORITHMS; DATA ACQUISITION; DECISION THEORY; IMAGE PROCESSING; INFORMATION ANALYSIS; NEURAL NETWORKS; PARAMETER ESTIMATION; PROBLEM SOLVING;

EID: 3042654673     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2004.827257     Document Type: Article
Times cited : (909)

References (45)
  • 1
    • 0002702567 scopus 로고    scopus 로고
    • Classification algorithms - Where next?
    • E. Binaghi, P. A. Brivio, and A. Rampini, Eds, Singapore: World Scientific
    • G. G. Wilkinson, "Classification algorithms - Where next?," in Soft Computing in Remote Sensing Data Analysis, E. Binaghi, P. A. Brivio, and A. Rampini, Eds, Singapore: World Scientific, 1996, pp. 93-99.
    • (1996) Soft Computing in Remote Sensing Data Analysis , pp. 93-99
    • Wilkinson, G.G.1
  • 2
    • 0036213079 scopus 로고    scopus 로고
    • Status of land cover classification accuracy assessment
    • G. M. Foody, "Status of land cover classification accuracy assessment." Remote Sens. Environ., vol. 80, pp. 185-201, 2002.
    • (2002) Remote Sens. Environ. , vol.80 , pp. 185-201
    • Foody, G.M.1
  • 3
    • 0027009318 scopus 로고
    • Multisource evidential classification of surface cover and frozen ground
    • D. R. Peddle and S. E. Franklin, "Multisource evidential classification of surface cover and frozen ground," Int. 3. Remote Sens., vol. 13, pp. 3375-3380, 1992.
    • (1992) Int. 3. Remote Sens. , vol.13 , pp. 3375-3380
    • Peddle, D.R.1    Franklin, S.E.2
  • 4
    • 0025573015 scopus 로고
    • Evidential reasoning in a pixel classification hierarchy - A potential method for integrating image classifiers and expert system rules based on geographic context
    • G. G. Wilkinson and J. Megier, "Evidential reasoning in a pixel classification hierarchy - A potential method for integrating image classifiers and expert system rules based on geographic context." Int. J. Remote Sens., vol. 11, pp. 1963-1968, 1990.
    • (1990) Int. J. Remote Sens. , vol.11 , pp. 1963-1968
    • Wilkinson, G.G.1    Megier, J.2
  • 5
    • 0025453627 scopus 로고
    • Neural network approaches versus statistical-methods in classification of multisource remote-sensing data
    • July
    • J. A. Benediktsson, P. H. Swain, and O. K. Ersoy, "Neural network approaches versus statistical-methods in classification of multisource remote-sensing data," IEEE Trans. Geosci. Remote Sensing, vol. 28, pp. 540-552, July 1990.
    • (1990) IEEE Trans. Geosci. Remote Sensing , vol.28 , pp. 540-552
    • Benediktsson, J.A.1    Swain, P.H.2    Ersoy, O.K.3
  • 6
    • 0031106314 scopus 로고    scopus 로고
    • Strategies and best practice for neural network image classification
    • I. Kanellopoulos and G. G. Wilkinson, "Strategies and best practice for neural network image classification," Int. J. Remote Sens., vol. 18, pp. 711-725, 1997.
    • (1997) Int. J. Remote Sens. , vol.18 , pp. 711-725
    • Kanellopoulos, I.1    Wilkinson, G.G.2
  • 7
    • 0042427272 scopus 로고    scopus 로고
    • Comparison of neural networks and statistical methods in classification of ecological habitats using FIA data
    • C. M. Liu, L. J. Zhang, C. J. Davis, D. S. Solomon, T. B. Brann, and L. E. Caldwell, "Comparison of neural networks and statistical methods in classification of ecological habitats using FIA data," Forest Sci., vol. 49, pp. 619-631, 2003.
    • (2003) Forest Sci. , vol.49 , pp. 619-631
    • Liu, C.M.1    Zhang, L.J.2    Davis, C.J.3    Solomon, D.S.4    Brann, T.B.5    Caldwell, L.E.6
  • 8
    • 0037696635 scopus 로고    scopus 로고
    • Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of com
    • P. K. Goel, S. O. Prasher, R. M. Patel, J. A. Landry, R. B. Bonnell, and A. A. Viau, "Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of com," Comput. Electron. Agricult., vol. 39, pp. 67-93, 2003.
    • (2003) Comput. Electron. Agricult. , vol.39 , pp. 67-93
    • Goel, P.K.1    Prasher, S.O.2    Patel, R.M.3    Landry, J.A.4    Bonnell, R.B.5    Viau, A.A.6
  • 9
    • 0036327090 scopus 로고    scopus 로고
    • Using prior probabilities in decision-tree classification of remotely sensed data
    • D. K. McIver and M. A. Friedl, "Using prior probabilities in decision-tree classification of remotely sensed data," Remote Sens. Environ., vol. 81, pp. 253-261, 2002.
    • (2002) Remote Sens. Environ. , vol.81 , pp. 253-261
    • McIver, D.K.1    Friedl, M.A.2
  • 10
    • 0344972104 scopus 로고    scopus 로고
    • Decision tree classification of land cover from remotely sensed data
    • M. A. Friedl and C. E. Brodley, "Decision tree classification of land cover from remotely sensed data," Remote Sens. 'Environ., vol. 61, pp. 399-409, 1997.
    • (1997) Remote Sens. 'Environ. , vol.61 , pp. 399-409
    • Friedl, M.A.1    Brodley, C.E.2
  • 11
    • 0028740098 scopus 로고
    • Multisource image classification II: An empirical comparison of evidential reasoning and neural network approaches
    • D. R. Peddle, G. M. Foody, A. Zhang, S. E. Franklin, and E. F. LeDrew, "Multisource image classification II: An empirical comparison of evidential reasoning and neural network approaches," Can. J. Remote Sens., vol. 20, pp. 396-407, 1994.
    • (1994) Can. J. Remote Sens. , vol.20 , pp. 396-407
    • Peddle, D.R.1    Foody, G.M.2    Zhang, A.3    Franklin, S.E.4    Ledrew, E.F.5
  • 12
    • 0036221284 scopus 로고    scopus 로고
    • A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery
    • J. Rogan, J. Franklin, and D. A. Roberts, "A comparison of methods for monitoring multitemporal vegetation change using Thematic Mapper imagery," Remote Sens. Environ., vol. 80, pp. 143-156, 2002.
    • (2002) Remote Sens. Environ. , vol.80 , pp. 143-156
    • Rogan, J.1    Franklin, J.2    Roberts, D.A.3
  • 13
    • 0037546937 scopus 로고    scopus 로고
    • Comparison of neural and statistical algorithms for supervised classification of multi-dimensional data
    • T. S. Li, C. Y. Chen, and C. T. Su, "Comparison of neural and statistical algorithms for supervised classification of multi-dimensional data," Int. J. Indus. Eng - Theory Appl. Pract., vol. 10, pp. 73-81, 2003.
    • (2003) Int. J. Indus. Eng - Theory Appl. Pract. , vol.10 , pp. 73-81
    • Li, T.S.1    Chen, C.Y.2    Su, C.T.3
  • 14
    • 0141569007 scopus 로고    scopus 로고
    • An assessment of the effectiveness of decision tree methods for land cover classification
    • M. Pal and P. M. Mather, "An assessment of the effectiveness of decision tree methods for land cover classification," Remote Sens. Environ., vol. 86, pp. 554-565, 2003.
    • (2003) Remote Sens. Environ. , vol.86 , pp. 554-565
    • Pal, M.1    Mather, P.M.2
  • 15
    • 0037138473 scopus 로고    scopus 로고
    • An assessment of support vector machines for land cover classification
    • C. Huang, L. S. Davis, and J. R. G. Townshend, "An assessment of support vector machines for land cover classification," Int. J. Remote Sens., vol. 23, pp. 725-749, 2002.
    • (2002) Int. J. Remote Sens. , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 16
    • 0033578380 scopus 로고    scopus 로고
    • Support vector machines for optimal classification and spectral unmixing
    • M. Brown, S. R. Gunn, and H. G. Lewis, "Support vector machines for optimal classification and spectral unmixing," Ecol. Mod., vol. 120, pp. 167-179, 1999.
    • (1999) Ecol. Mod. , vol.120 , pp. 167-179
    • Brown, M.1    Gunn, S.R.2    Lewis, H.G.3
  • 17
    • 0242541845 scopus 로고    scopus 로고
    • Support vector machines in multisource classification
    • Toulouse, France, July 21-25
    • G. H. Halldorsson, J. A. Benediktsson, and J. R. Sveinsson, "Support vector machines in multisource classification," in Proc. IGARSS, Toulouse, France, July 21-25, 2003.
    • (2003) Proc. IGARSS
    • Halldorsson, G.H.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 18
    • 0242712308 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral image classification with spectral-based kernels
    • Toulouse, France, July 21-25
    • G. Mercier and M. Lennon, "Support vector machines for hyperspectral image classification with spectral-based kernels," in Proc. IGARSS, Toulouse, France, July 21-25, 2003.
    • (2003) Proc. IGARSS
    • Mercier, G.1    Lennon, M.2
  • 19
    • 0037191113 scopus 로고    scopus 로고
    • A flexible classification approach with optimal generalization performance: Support vector machines
    • A. I. Belousov, S. A. Verzakov, and J. von Frese, "A flexible classification approach with optimal generalization performance: Support vector machines," Chemometr. Intell Lab. Syst., vol. 64, pp. 15-25, 2002.
    • (2002) Chemometr. Intell Lab. Syst. , vol.64 , pp. 15-25
    • Belousov, A.I.1    Verzakov, S.A.2    Von Frese, J.3
  • 21
    • 0242383466 scopus 로고    scopus 로고
    • K-SVCR. A support vector machine for multi-class classification
    • C. Angulo, X. Parra, and A. Catala, "K-SVCR. A support vector machine for multi-class classification," Neurocomput., vol. 55, pp. 57-77, 2003.
    • (2003) Neurocomput. , vol.55 , pp. 57-77
    • Angulo, C.1    Parra, X.2    Catala, A.3
  • 22
    • 0038729565 scopus 로고    scopus 로고
    • Classification of multiple cancer types by tip multicategory support vector machines using gene expression data
    • Y. Lee and C. K. Lee, "Classification of multiple cancer types by tip multicategory support vector machines using gene expression data," Bioinformatics, vol. 19, pp. 1132-1139, 2003.
    • (2003) Bioinformatics , vol.19 , pp. 1132-1139
    • Lee, Y.1    Lee, C.K.2
  • 24
    • 8344289122 scopus 로고    scopus 로고
    • Sphere-structured support vector machines for multi-class pattern recognition
    • M. L. Zhu, Y. Wang, S. F. Chen, and X. D. Liu, "Sphere-structured support vector machines for multi-class pattern recognition," Lecture Notes in Artificial Intelligence, vol. 2639, pp. 589-593, 2003.
    • (2003) Lecture Notes in Artificial Intelligence , vol.2639 , pp. 589-593
    • Zhu, M.L.1    Wang, Y.2    Chen, S.F.3    Liu, X.D.4
  • 25
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multiclass support vector machines
    • Mar.
    • C.-W. Hsu and C.-J. Lin, "A comparison of methods for multiclass support vector machines," IEEE Trans. Neural Networks, vol. 13, pp. 415-425, Mar. 2002.
    • (2002) IEEE Trans. Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 26
    • 0034270699 scopus 로고    scopus 로고
    • Linear spectral mixture models and support vector machines for remote sensing
    • Sept.
    • M. Brown, H. G. Lewis, and S. R. Gunn, "Linear spectral mixture models and support vector machines for remote sensing," IEEE Trans. Geosci. Remote Sensing, vol. 38, pp. 2346-2360, Sept. 2000.
    • (2000) IEEE Trans. Geosci. Remote Sensing , vol.38 , pp. 2346-2360
    • Brown, M.1    Lewis, H.G.2    Gunn, S.R.3
  • 30
    • 0032636659 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral remote sensing classification
    • Oct. 14-16
    • J. A. Gualtieri and R. F. Cromp, "Support vector machines for hyperspectral remote sensing classification," Proc. SPIE, vol. 3584, pp. 221-232, Oct. 14-16, 1998.
    • (1998) Proc. SPIE , vol.3584 , pp. 221-232
    • Gualtieri, J.A.1    Cromp, R.F.2
  • 31
    • 0031106423 scopus 로고    scopus 로고
    • Log-linear modeling for the evaluation of the variables affecting the accuracy of probabilistic, fuzzy and neural network classifications
    • M. K. Arora and G. M. Foody, "Log-linear modeling for the evaluation of the variables affecting the accuracy of probabilistic, fuzzy and neural network classifications," Int. J. Remote Sens., vol. 18, pp. 785-798, 1997.
    • (1997) Int. J. Remote Sens. , vol.18 , pp. 785-798
    • Arora, M.K.1    Foody, G.M.2
  • 34
    • 0029473455 scopus 로고
    • The effect of training set size and composition on artificial neural network classification
    • G. M. Foody, M. B. McCulloch, and W. B. Yates, "The effect of training set size and composition on artificial neural network classification," Int. J. Remote Sens., vol. 16, pp. 1707-1723, 1995.
    • (1995) Int. J. Remote Sens. , vol.16 , pp. 1707-1723
    • Foody, G.M.1    McCulloch, M.B.2    Yates, W.B.3
  • 35
    • 0041646441 scopus 로고    scopus 로고
    • The influence of relative sample size in training artificial neural networks
    • P. A. Blamire, "The influence of relative sample size in training artificial neural networks," Int. J. Remote Sens., vol. 17, pp. 223-230, 1996.
    • (1996) Int. J. Remote Sens. , vol.17 , pp. 223-230
    • Blamire, P.A.1
  • 37
    • 0033372875 scopus 로고    scopus 로고
    • The significance of border training patterns in classification by a feedforward neural network using backpropagatior. Learning
    • G. M. Foody, "The significance of border training patterns in classification by a feedforward neural network using backpropagatior. learning," Int. J. Remote Sens., vol. 20, pp. 3549-3562, 1999.
    • (1999) Int. J. Remote Sens. , vol.20 , pp. 3549-3562
    • Foody, G.M.1
  • 38
    • 0035509996 scopus 로고    scopus 로고
    • The effect of classifier agreement on the accuracy of the combined classifier in decision level fusion
    • Nov.
    • M. Petrakos, J. A. Benediktsson, and I. Kanellopoulos, "The effect of classifier agreement on the accuracy of the combined classifier in decision level fusion." IEEE Trans. Geosci. Remote Sensing, vol. 39, pp. 2539-2546, Nov. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sensing , vol.39 , pp. 2539-2546
    • Petrakos, M.1    Benediktsson, J.A.2    Kanellopoulos, I.3
  • 39
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification purposes
    • G. Giacinto and F. Roli, "Design of effective neural network ensembles for image classification purposes," Image Vis. Comput., vol. 19, pp. 699-707, 2001.
    • (2001) Image Vis. Comput. , vol.19 , pp. 699-707
    • Giacinto, G.1    Roli, F.2
  • 41
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification purposes
    • G. Giacinto and F. Roli, "Design of effective neural network ensembles for image classification purposes," Image Vis. Comput., vol. 19, pp. 699-707, 2001.
    • (2001) Image Vis. Comput. , vol.19 , pp. 699-707
    • Giacinto, G.1    Roli, F.2
  • 42
    • 0022927129 scopus 로고
    • A measure of agreement as a measure of thematic classification accuracy
    • G. H. Rosenfield and K. Fitzpatrick-Lins, "A measure of agreement as a measure of thematic classification accuracy," Photogramm. Eng. Remote Sens., vol. 52, pp. 223-227, 1986.
    • (1986) Photogramm. Eng. Remote Sens. , vol.52 , pp. 223-227
    • Rosenfield, G.H.1    Fitzpatrick-Lins, K.2
  • 43
    • 0031255580 scopus 로고    scopus 로고
    • Selecting and interpreting measures of thematic classification accuracy
    • S. V. Stehman, "Selecting and interpreting measures of thematic classification accuracy," Remote Sens. Environ., vol. 62, pp. 77-89, 1997.
    • (1997) Remote Sens. Environ. , vol.62 , pp. 77-89
    • Stehman, S.V.1
  • 44
    • 0000866729 scopus 로고
    • On the compensation for chance agreement in image classification accuracy assessment
    • G. M. Foody, "On the compensation for chance agreement in image classification accuracy assessment," Photogramm. Eng. Remote Sens., vol. 58, pp. 1459-1460, 1992.
    • (1992) Photogramm. Eng. Remote Sens. , vol.58 , pp. 1459-1460
    • Foody, G.M.1
  • 45
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • G. M. Foody, "Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy," Photogramm. Eng. Remote Sens., vol. 70, pp. 627-633, 2004.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , pp. 627-633
    • Foody, G.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.