메뉴 건너뛰기




Volumn 38, Issue 2, 2012, Pages 139-156

Simultaneous feature selection and SVM parameter determination in classification of hyperspectral imagery using Ant Colony Optimization

Author keywords

[No Author keywords available]

Indexed keywords

ANT COLONY OPTIMIZATION (ACO); CLASSIFICATION ACCURACY; CLASSIFICATION PROCESS; DATA SETS; FEATURE SUBSET; GEOGRAPHICAL AREA; HIGH DIMENSIONAL SPACES; HYPERSPECTRAL; HYPERSPECTRAL IMAGERY; HYPERSPECTRAL REMOTE SENSING; INPUT FEATURES; LAND COVER CLASSIFICATION; LOCAL OPTIMA; METAHEURISTIC; OPTIMIZATION ALGORITHMS; OPTIMUM SOLUTION; PARAMETER DETERMINATION; REDUNDANT FEATURES; SEARCH SPACES; SPECTRAL INFORMATION;

EID: 84865742501     PISSN: 07038992     EISSN: 17127971     Source Type: Journal    
DOI: 10.5589/m12-022     Document Type: Article
Times cited : (56)

References (48)
  • 1
    • 58349085948 scopus 로고    scopus 로고
    • Text feature selection using ant colony optimization
    • doi: 10.1016/j.eswa.2008.08.022
    • Aghdam, M.H., Ghasem-Aghaee, N., and Basiri, M.E. 2009. Text feature selection using ant colony optimization. Expert Systems with Applications, Vol. 36, No. 3, pp. 6843-6853. doi: 10.1016/j.eswa.2008.08.022.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 6843-6853
    • Aghdam, M.H.1    Ghasem-Aghaee, N.2    Basiri, M.E.3
  • 2
    • 77956649096 scopus 로고    scopus 로고
    • A survey of cross-validation procedures for model selection
    • doi: 10.1214/09-SS054
    • Arlot, S., and Celisse, A. 2010. A survey of cross-validation procedures for model selection. Statistics Surveys, Vol. 4, pp. 40-79. doi: 10.1214/09-SS054.
    • (2010) Statistics Surveys , vol.4 , pp. 40-79
    • Arlot, S.1    Celisse, A.2
  • 3
    • 71349083973 scopus 로고    scopus 로고
    • A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine
    • doi: 10.1016/j.eswa.2009.09.064
    • Babaoglu I. findik, O., and Ulker, E. 2010. A comparison of feature selection models utilizing binary particle swarm optimization and genetic algorithm in determining coronary artery disease using support vector machine. Expert Systems with Applications, Vol. 37, No. 4, pp. 3177-3183. doi: 10.1016/j.eswa.2009.09.064.
    • (2010) Expert Systems with Applications , vol.37 , Issue.4 , pp. 3177-3183
    • Babaoglu, I.1    Findik, O.2    Ulker, E.3
  • 4
  • 5
    • 33750798496 scopus 로고    scopus 로고
    • Toward an optimal SVM classification system for hyperspectral remote sensing images
    • DOI 10.1109/TGRS.2006.880628, 1717732
    • Bazi, Y., and Melgani, F. 2006. Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, Vol. 44, No. 11, pp. 3374-3385. doi: 10.1109/TGRS.2006. 880628. (Pubitemid 44711679)
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3374-3385
    • Bazi, Y.1    Melgani, F.2
  • 6
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • Camps-Valls, G., and Bruzzone, L. 2005. Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 6, pp. 1351-1362. doi: 10.1109/TGRS.2005.846154. (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 12
    • 52249114305 scopus 로고    scopus 로고
    • ANN classification of OMIS hyperspectral remotely sensed imagery: Experiments and analysis
    • IEEE Computer Society
    • Du, P., Tan, K., Zhang, W., and Yan, Z. 2008. ANN classification of OMIS hyperspectral remotely sensed imagery: Experiments and analysis. IEEE Computer Society, Congress on Image and Signal Processing, pp. 692-696.
    • (2008) Congress on Image and Signal Processing , pp. 692-696
    • Du, P.1    Tan, K.2    Zhang, W.3    Yan, Z.4
  • 15
    • 41849112041 scopus 로고    scopus 로고
    • Customizing Kernel functions for SVM-based hyperspectral image classification
    • DOI 10.1109/TIP.2008.918955
    • Guo, B., Gunn, S.R., Damper, R.I., and Nelson, J.D.B. 2008. Customizing kernel functions for SVM-based hyperspectral image classification. IEEE Transactions on Image Processing, Vol. 17, No. 4, pp. 622-629. doi: 10.1109/TIP.2008.918955. (Pubitemid 351493884)
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.4 , pp. 622-629
    • Guo, B.1    Gunn, S.R.2    Damper, R.I.3    Nelson, J.D.B.4
  • 16
    • 37349044334 scopus 로고    scopus 로고
    • Research into a Feature Selection Method for Hyperspectral Imagery Using PSO and SVM
    • DOI 10.1016/S1006-1266(07)60128-X, PII S100612660760128X
    • H-c. Yan, S.-b.Z., K-z. Deng, P-j. Du. 2007. Research into a Feature Selection Method for Hyperspectral Imagery Using PSO and SVM. Journal of China University of Mining & Technology, Vol. 17, pp. 0473-0478. doi: 10.1016/S1006-1266(07)60128-X. (Pubitemid 350286769)
    • (2007) Journal of China University of Mining and Technology , vol.17 , Issue.4 , pp. 473-478
    • Yang, H.-C.1    Zhang, S.-B.2    Deng, K.-z.3    Du, P.-J.4
  • 17
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • DOI 10.1109/TGRS.2004.842481
    • Ham, J., Chen, Y., Crawford, M.M., and Ghosh, J. 2005. Investigation of the random forest framework for classification of hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 3, pp. 492-501. doi: 10.1109/TGRS.2004.842481. (Pubitemid 40320271)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 20
    • 70350705845 scopus 로고    scopus 로고
    • ACO-based hybrid classification system with feature subset selection and model parameters optimization
    • doi: 10.1016/j.neucom.2009.07.014
    • Huang, C.L. 2009. ACO-based hybrid classification system with feature subset selection and model parameters optimization. Neurocomputing, Vol. 73, No. 1-3, pp. 438-448. doi: 10.1016/j.neucom.2009.07.014.
    • (2009) Neurocomputing , vol.73 , Issue.1-3 , pp. 438-448
    • Huang, C.L.1
  • 21
    • 33748076461 scopus 로고    scopus 로고
    • A GA-based feature selection and parameters optimizationfor support vector machines
    • DOI 10.1016/j.eswa.2005.09.024, PII S0957417405002083
    • Huang, C.L., and Wang, C.J. 2006. A GA-based feature selection and parameters optimizationfor support vector machines. Expert Systems with Applications, Vol. 31, No. 2, pp. 231-240. doi: 10.1016/j.eswa.2005.09.024. (Pubitemid 44294444)
    • (2006) Expert Systems with Applications , vol.31 , Issue.2 , pp. 231-240
    • Huang, C.-L.1    Wang, C.-J.2
  • 22
    • 0000012317 scopus 로고    scopus 로고
    • Toward optimal feature selection
    • Koller, D., and Sahami, M. 1996. Toward optimal feature selection. Citeseer, pp. 284-292.
    • (1996) Citeseer , pp. 284-292
    • Koller, D.1    Sahami, M.2
  • 23
    • 84865728467 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral remotely sensed data using NSGA- II
    • Kumar, M. 2004. Feature selection for classification of hyperspectral remotely sensed data using NSGA- II. Citeseer.
    • (2004) Citeseer
    • Kumar, M.1
  • 24
    • 67349231310 scopus 로고    scopus 로고
    • Using support vector machine with a hybrid feature selection method to the stock trend prediction
    • doi: 10.1016/j.eswa.2009.02.038
    • Lee, M.C. 2009. Using support vector machine with a hybrid feature selection method to the stock trend prediction. Expert Systems with Applications, Vol. 36, No. 8, pp. 10896-10904. doi: 10.1016/j.eswa.2009.02.038.
    • (2009) Expert Systems with Applications , vol.36 , Issue.8 , pp. 10896-10904
    • Lee, M.C.1
  • 25
    • 50149095980 scopus 로고    scopus 로고
    • Parameter determination of support vector machine and feature selection using simulated annealing approach
    • doi: 10.1016/j.asoc.2007.10.012
    • Lin, S.W., Lee, Z.J., Chen, S.C., and Tseng, T.Y. 2008. Parameter determination of support vector machine and feature selection using simulated annealing approach. Applied soft computing, Vol. 8, No. 4, pp. 1505-1512. doi: 10.1016/j.asoc.2007.10.012.
    • (2008) Applied Soft Computing , vol.8 , Issue.4 , pp. 1505-1512
    • Lin, S.W.1    Lee, Z.J.2    Chen, S.C.3    Tseng, T.Y.4
  • 26
    • 48749109333 scopus 로고    scopus 로고
    • Particle swarm optimization for parameter determination and feature selection of support vector machines
    • doi: 10.1016/j.eswa.2007.08.088
    • Lin, S.W., Ying, K.C., Chen, S.C., and Lee, Z.J. 2008. Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications, Vol. 35, No. 4, pp. 1817-1824. doi: 10.1016/j.eswa.2007.08.088.
    • (2008) Expert Systems with Applications , vol.35 , Issue.4 , pp. 1817-1824
    • Lin, S.W.1    Ying, K.C.2    Chen, S.C.3    Lee, Z.J.4
  • 27
    • 56549085451 scopus 로고    scopus 로고
    • Evolutionary tuning of SVM parameter values in multiclass problems
    • doi: 10.1016/j.neucom.2008.01.031
    • Lorena, A.C., and de Carvalho, A.C. 2008. Evolutionary tuning of SVM parameter values in multiclass problems. Neurocomputing, Vol. 71, Nos. 16-18, pp. 3326-3334. doi: 10.1016/j.neucom.2008.01.031.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3326-3334
    • Lorena, A.C.1    De Carvalho, A.C.2
  • 28
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • doi: 10.1109/TGRS.2004.831865
    • Melgani, F., and Bruzzone, L. 2004. Classification of hyperspectral remote sensing images with support vector machines. IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, No. 8, pp. 1778-1790. doi: 10.1109/TGRS.2004.831865.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 30
    • 57649213892 scopus 로고    scopus 로고
    • Simultaneous feature selection and parameter optimisation using an artificial ant colony: Case study of melting point prediction
    • doi: 10.1186/1752-153X-2-21
    • O'Boyle, N.M., Palmer, D.S., Nigsch, F., and Mitchell, J.B.O. 2008. Simultaneous feature selection and parameter optimisation using an artificial ant colony: case study of melting point prediction. Chemistry Central Journal, Vol. 2, pp. 21-25. doi: 10.1186/1752-153X-2-21.
    • (2008) Chemistry Central Journal , vol.2 , pp. 21-25
    • O'boyle, N.M.1    Palmer, D.S.2    Nigsch, F.3    Mitchell, J.B.O.4
  • 32
    • 34548758629 scopus 로고    scopus 로고
    • A genetic algorithm-based method for feature subset selection
    • DOI 10.1007/s00500-007-0193-8
    • Tan, F., Fu, X., Zhang, Y., and Bourgeois, A.G. 2008. A genetic algorithmbased method for feature subset selection. Soft Computing-A Fusion of Foundations. Methodologies and Applications, Vol. 12, No. 2, pp. 111-120. (Pubitemid 47421541)
    • (2008) Soft Computing , vol.12 , Issue.2 , pp. 111-120
    • Tan, T.1    Fu, X.2    Zhang, Y.3    Bourgeois, A.G.4
  • 34
    • 33746878883 scopus 로고    scopus 로고
    • Measuring performance in precision agriculture: CART-A decision tree approach
    • DOI 10.1016/j.agwat.2005.12.003, PII S0378377405003860
    • Waheed, T., Bonnell, R.B., Prasher, S.O., and Paulet, E. 2006. Measuring performance in precision agriculture: CART-A decision tree approach. Agricultural water management, Vol. 84, Nos. 1-2, pp. 173-185. doi: 10.1016/j.agwat.2005.12.003. (Pubitemid 44192459)
    • (2006) Agricultural Water Management , vol.84 , Issue.1-2 , pp. 173-185
    • Waheed, T.1    Bonnell, R.B.2    Prasher, S.O.3    Paulet, E.4
  • 36
    • 63149191148 scopus 로고    scopus 로고
    • Feature selection using tabu search with long-term memories and probabilistic neural networks
    • doi: 10.1016/j.patrec.2009.02.001
    • Wang, Y., Li, L., Ni, J., and Huang, S. 2009. Feature selection using tabu search with long-term memories and probabilistic neural networks. Pattern Recognition Letters, Vol. 30, No. 7, pp. 661-670. doi: 10.1016/j.patrec.2009.02. 001.
    • (2009) Pattern Recognition Letters , vol.30 , Issue.7 , pp. 661-670
    • Wang, Y.1    Li, L.2    Ni, J.3    Huang, S.4
  • 37
    • 84869043828 scopus 로고    scopus 로고
    • Hyperspectral image classification using support vector machines: A comparison with decision tree and neural network classifiers
    • Baltimore, Maryland
    • Watanachaturaporn, P., Arora, M.K., and Varshney, P.K. 2006. Hyperspectral image classification using support vector machines: A comparison with decision tree and neural network classifiers. ASPRS, Annual Conference, Baltimore, Maryland.
    • (2006) ASPRS, Annual Conference
    • Watanachaturaporn, P.1    Arora, M.K.2    Varshney, P.K.3
  • 38
    • 33751068050 scopus 로고    scopus 로고
    • A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy
    • DOI 10.1016/j.eswa.2005.12.008, PII S0957417405003490
    • Wu, C.H., Tzeng, G.H., Goo, Y.J., and Fang, W.C. 2007. A real-valued genetic algorithm to optimize the parameters of support vector machine for predicting bankruptcy. Expert Systems with Applications, Vol. 32, No. 2, pp. 397-408. doi: 10.1016/j.eswa.2005.12.008. (Pubitemid 44754927)
    • (2007) Expert Systems with Applications , vol.32 , Issue.2 , pp. 397-408
    • Wu, C.-H.1    Tzeng, G.-H.2    Goo, Y.-J.3    Fang, W.-C.4
  • 41
    • 76749153275 scopus 로고    scopus 로고
    • A modified ant colony optimization algorithm for tumor marker gene selection
    • doi: 10.1016/S1672-0229(08)60050-9
    • Yu, H., Gu, G., Liu, H., Shen, J., and Zhao, J. 2009. A modified ant colony optimization algorithm for tumor marker gene selection. Genomics Proteomics Bioinformatic, Vol. 7, No. 4, pp. 200-208. doi: 10.1016/S1672- 0229(08)60050-9.
    • (2009) Genomics Proteomics Bioinformatic , vol.7 , Issue.4 , pp. 200-208
    • Yu, H.1    Gu, G.2    Liu, H.3    Shen, J.4    Zhao, J.5
  • 42
    • 77957602079 scopus 로고    scopus 로고
    • An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition
    • doi: 10.1179/174313110X12771950995716
    • Yuen, P.W.T., and Richardson, M. 2010. An introduction to hyperspectral imaging and its application for security, surveillance and target acquisition. Imaging Science Journal, Vol. 58, No. 5, pp. 241-253. doi: 10.1179/ 174313110X12771950995716.
    • (2010) Imaging Science Journal , vol.58 , Issue.5 , pp. 241-253
    • Yuen, P.W.T.1    Richardson, M.2
  • 44
    • 78650195131 scopus 로고    scopus 로고
    • An ACO-based algorithm for parameter optimization of support vector machines
    • doi: 10.1016/j.eswa.2010.03.067
    • Zhang, X.L., Chen, X.F., and He, Z.J. 2010. An ACO-based algorithm for parameter optimization of support vector machines. Expert Systems with Applications, Vol. 37, pp. 6618-6628. doi: 10.1016/j.eswa.2010.03.067.
    • (2010) Expert Systems with Applications , vol.37 , pp. 6618-6628
    • Zhang, X.L.1    Chen, X.F.2    He, Z.J.3
  • 45
    • 57649129953 scopus 로고    scopus 로고
    • Evolutionary computation based automatic SVM model selection
    • IEEE Computer Society Washington, D.C.
    • Zhang, Y. 2008. Evolutionary Computation Based Automatic SVM Model Selection. Fourth Conference on Natural Computation, pp. 66-70. IEEE Computer Society Washington, D.C.
    • (2008) Fourth Conference on Natural Computation , pp. 66-70
    • Zhang, Y.1
  • 46
    • 70350542853 scopus 로고    scopus 로고
    • Design and application of support vector regression algorithm based on ant colony optimization
    • IEEE Computer Society Washington, D.C
    • Zhen-yu, H., Ming, L., and Hong-ya, F. 2009. Design and application of support vector regression algorithm based on ant colony optimization. International Conference on Computational Intelligence and Natural Computing, pp. 182-185. IEEE Computer Society Washington, D.C.
    • (2009) International Conference on Computational Intelligence and Natural Computing , pp. 182-185
    • Zhen-Yu, H.1    Ming, L.2    Hong-Ya, F.3
  • 47
    • 57649120313 scopus 로고    scopus 로고
    • Support vector regression and ant colony optimization for combustion performance of boilers
    • Zheng, L., Yu, M., and Yu, S. 2008. Support vector regression and ant colony optimization for combustion performance of boilers. Fourth Conference on Natural Computation, pp. 178-182.
    • (2008) Fourth Conference on Natural Computation , pp. 178-182
    • Zheng, L.1    Yu, M.2    Yu, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.