메뉴 건너뛰기




Volumn 21, Issue 9, 2014, Pages 1159-1163

Learning discriminative hierarchical features for object recognition

Author keywords

Discriminant analysis; hierarchical feature learning; object recognition; patch to class distance

Indexed keywords

DISCRIMINANT ANALYSIS; IMAGE CLASSIFICATION; LEARNING SYSTEMS;

EID: 84902133494     PISSN: 10709908     EISSN: None     Source Type: Journal    
DOI: 10.1109/LSP.2014.2298888     Document Type: Article
Times cited : (21)

References (18)
  • 1
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. G. Lowe, "Distinctive image features from scale-invariant keypoints," Int. J. Comput. Vis., vol. 60, no. 2, pp. 91-110, 2004.
    • (2004) Int. J. Comput. Vis. , vol.60 , Issue.2 , pp. 91-110
    • Lowe, D.G.1
  • 2
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in CVPR, 2005, vol. 1, pp. 886-893, IEEE.
    • (2005) CVPR , vol.1 , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 3
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks," Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 4
    • 80052874098 scopus 로고    scopus 로고
    • Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis
    • IEEE
    • Q. V. Le,W. Y. Zou, S. Y. Yeung, and A. Y. Ng, "Learning hierarchical invariant spatio-temporal features for action recognition with independent subspace analysis," in CVPR, 2011, pp. 3361-3368, IEEE.
    • (2011) CVPR , pp. 3361-3368
    • Le, Q.V.1    Zou, W.Y.2    Yeung, S.Y.3    Ng, A.Y.4
  • 5
    • 51949090223 scopus 로고    scopus 로고
    • In defense of nearestneighbor based image classification
    • IEEE
    • O. Boiman, E. Shechtman, and M. Irani, "In defense of nearestneighbor based image classification," in CVPR, 2008, pp. 1-8, IEEE.
    • (2008) CVPR , pp. 1-8
    • Boiman, O.1    Shechtman, E.2    Irani, M.3
  • 6
    • 84877777295 scopus 로고    scopus 로고
    • Deep learning of invariant features via simulated fixations in video
    • W. Y. Zou, S. Y. Zhu, A. Y. Ng, and K. Yu, "Deep learning of invariant features via simulated fixations in video," in NIPS, 2012, pp. 3212-3220.
    • (2012) NIPS , pp. 3212-3220
    • Zou, W.Y.1    Zhu, S.Y.2    Ng, A.Y.3    Yu, K.4
  • 7
    • 85162310599 scopus 로고    scopus 로고
    • Ica with reconstruction cost for efficient overcomplete feature learning
    • Q. V. Le, A. Karpenko, J. Ngiam, and A. Y. Ng, "Ica with reconstruction cost for efficient overcomplete feature learning," in NIPS, 2011, pp. 1017-1025.
    • (2011) NIPS , pp. 1017-1025
    • Le, Q.V.1    Karpenko, A.2    Ngiam, J.3    Ng, A.Y.4
  • 8
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • ACM
    • H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, "Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations," in ICML, 2009, pp. 609-616, ACM.
    • (2009) ICML , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 10
    • 70349675925 scopus 로고    scopus 로고
    • Fast approximate nearest neighbors with automatic algorithm configuration
    • M. Muja and D. G. Lowe, "Fast approximate nearest neighbors with automatic algorithm configuration," in VISSAPP, 2009, pp. 331-340.
    • (2009) VISSAPP , pp. 331-340
    • Muja, M.1    Lowe, D.G.2
  • 11
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • IEEE
    • S. Lazebnik, C. Schmid, and J. Ponce, "Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories," in CVPR, 2006, vol. 2, pp. 2169-2178, IEEE.
    • (2006) CVPR , vol.2 , pp. 2169-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 12
    • 34047174674 scopus 로고    scopus 로고
    • Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories
    • L. Fei-Fei, R. Fergus, and P. Perona, "Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories," Comput. Vis. Image Understand., vol. 106, no. 1, pp. 59-70, 2007.
    • (2007) Comput. Vis. Image Understand. , vol.106 , Issue.1 , pp. 59-70
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 14
    • 84866648984 scopus 로고    scopus 로고
    • Local naive bayes nearest neighbor for image classification
    • IEEE
    • S. McCann and D. G. Lowe, "Local naive bayes nearest neighbor for image classification," in CVPR, 2012, pp. 3650-3656, IEEE.
    • (2012) CVPR , pp. 3650-3656
    • McCann, S.1    Lowe, D.G.2
  • 15
    • 77955996870 scopus 로고    scopus 로고
    • Localityconstrained linear coding for image classification
    • IEEE
    • J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, "Localityconstrained linear coding for image classification," in CVPR, 2010, pp. 3360-3367, IEEE.
    • (2010) CVPR , pp. 3360-3367
    • Wang, J.1    Yang, J.2    Yu, K.3    Lv, F.4    Huang, T.5    Gong, Y.6
  • 16
    • 80052889296 scopus 로고    scopus 로고
    • Learning image representations from the pixel level via hierarchical sparse coding
    • IEEE
    • K. Yu, Y. Lin, and J. Lafferty, "Learning image representations from the pixel level via hierarchical sparse coding," in CVPR, 2011, pp. 1713-1720, IEEE.
    • (2011) CVPR , pp. 1713-1720
    • Yu, K.1    Lin, Y.2    Lafferty, J.3
  • 17
    • 84863049755 scopus 로고    scopus 로고
    • Efficient learning of sparse, distributed, convolutional feature representations for object recognition
    • IEEE
    • K. Sohn, D. Y. Jung, H. Lee, and A. O. Hero, "Efficient learning of sparse, distributed, convolutional feature representations for object recognition," in ICCV, 2011, pp. 2643-2650, IEEE.
    • (2011) ICCV , pp. 2643-2650
    • Sohn, K.1    Jung, D.Y.2    Lee, H.3    Hero, A.O.4
  • 18
    • 84877731706 scopus 로고    scopus 로고
    • Discriminative learning of sum-product networks
    • R. Gens and P. Domingos, "Discriminative learning of sum-product networks," in NIPS, 2012, pp. 3248-3256.
    • (2012) NIPS , pp. 3248-3256
    • Gens, R.1    Domingos, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.