메뉴 건너뛰기




Volumn 51, Issue 2, 2013, Pages 844-856

Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning

Author keywords

Active learning (AL); Discriminative random fields (DRFs); Hyperspectral image classification; Loopy belief propagation (LBP); Markov random fields (MRFs); Spectral spatial analysis

Indexed keywords

ACTIVE LEARNING; HYPERSPECTRAL IMAGE CLASSIFICATION; LOOPY BELIEF PROPAGATION; MARKOV RANDOM FIELD; RANDOM FIELDS; SPECTRAL-SPATIAL ANALYSIS;

EID: 84872922940     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2012.2205263     Document Type: Article
Times cited : (341)

References (36)
  • 2
    • 0021892045 scopus 로고
    • Imaging spectrometry for Earth remote sensing
    • A. F. Goetz, G. Vane, J. E. Solomon, and B. N. Rock, "Imaging spectrometry for Earth remote sensing," Science, vol. 228, no. 4704, pp. 1147-1153, 1985.
    • (1985) Science , vol.228 , Issue.4704 , pp. 1147-1153
    • Goetz, A.F.1    Vane, G.2    Solomon, J.E.3    Rock, B.N.4
  • 4
    • 85032751238 scopus 로고    scopus 로고
    • Signal processing for hyperspectral image exploitation
    • DOI 10.1109/79.974715
    • G. Shaw and D. Manolakis, "Signal processing for hyperspectral image exploitation," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 12-16, Jan. 2002. (Pubitemid 34237204)
    • (2002) IEEE Signal Processing Magazine , vol.19 , Issue.1 , pp. 12-16
    • Shaw, G.1    Manolakis, D.2
  • 7
    • 79957639950 scopus 로고    scopus 로고
    • Bayesian hyperspectral image segmentation with discriminative class learning
    • Jun
    • J. S. Borges, J. M. Bioucas-Dias, and A. R. S. Marcal, "Bayesian hyperspectral image segmentation with discriminative class learning," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2151-2164, Jun. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.6 , pp. 2151-2164
    • Borges, J.S.1    Bioucas-Dias, J.M.2    Marcal, A.R.S.3
  • 8
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan
    • G. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 9
    • 85032751896 scopus 로고    scopus 로고
    • Hyperspectral image data analysis as a high dimensional signal processing problems
    • Jan
    • D. Landgrebe, "Hyperspectral image data analysis as a high dimensional signal processing problems," IEEE Signal Process. Mag., vol. 19, no. 1, pp. 17-28, Jan. 2002.
    • (2002) IEEE Signal Process. Mag. , vol.19 , Issue.1 , pp. 17-28
    • Landgrebe, D.1
  • 10
    • 41549147912 scopus 로고    scopus 로고
    • An active learning approach to hyperspectral data classification
    • DOI 10.1109/TGRS.2007.910220, 4469868
    • S. Rajan, J. Ghosh, and M. M. Crawford, "An active learning approach to hyperspectral data classification," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 4, pp. 1231-1242, Apr. 2008. (Pubitemid 351459470)
    • (2008) IEEE Transactions on Geoscience and Remote Sensing , vol.46 , Issue.4 , pp. 1231-1242
    • Rajan, S.1    Ghosh, J.2    Crawford, M.M.3
  • 12
    • 67649763976 scopus 로고    scopus 로고
    • An efficient active learning algorithm with knowledge transfer for hyperspectral data analysis
    • G. Jun and J. Ghosh, "An efficient active learning algorithm with knowledge transfer for hyperspectral data analysis," in Proc. Int. Geosci. Remote Sens. Symp., 2008, pp. I-52-I-55.
    • (2008) Proc. Int. Geosci. Remote Sens. Symp.
    • Jun, G.1    Ghosh, J.2
  • 13
    • 78649738931 scopus 로고    scopus 로고
    • Unbiased query-by-bagging active learning for VHR image classification
    • L. Copa, D. Tuia, M. Volpi, andM. Kaneski, "Unbiased query-by-bagging active learning for VHR image classification," in Proc. SPIE Eur. Remote Sens., 2010, pp. 78300K-1-78300K-8.
    • (2010) Proc. SPIE Eur. Remote Sens.
    • Copa, L.1    Tuia, D.2    Volpi, M.3    Kaneski, M.4
  • 14
    • 79952041537 scopus 로고    scopus 로고
    • Batch-mode active-learning methods for the interactive classification of remote sensing images
    • Mar
    • B. Demir, C. Persello, and L. Bruzzone, "Batch-mode active-learning methods for the interactive classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 3, pp. 1014-1031, Mar. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.3 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 15
    • 79955632976 scopus 로고    scopus 로고
    • A fast cluster-assumption based active-learning technique for classification of remote sensing images
    • May
    • S. Patra and L. Bruzzone, "A fast cluster-assumption based active-learning technique for classification of remote sensing images," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 5, pp. 1617-1626, May 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.5 , pp. 1617-1626
    • Patra, S.1    Bruzzone, L.2
  • 16
    • 79957458331 scopus 로고    scopus 로고
    • Active learning via multi-view and local proximity co-regularization for hyperspectral image classification
    • Jun
    • W. Di and M. M. Crawford, "Active learning via multi-view and local proximity co-regularization for hyperspectral image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 618-628, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 618-628
    • Di, W.1    Crawford, M.M.2
  • 17
    • 84858080696 scopus 로고    scopus 로고
    • A batch-mode active learning technique based on multiple uncertainty for SVM classifier
    • May
    • S. Patra and L. Bruzzone, "A batch-mode active learning technique based on multiple uncertainty for SVM classifier," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 3, pp. 497-501, May 2012.
    • (2012) IEEE Geosci. Remote Sens. Lett. , vol.9 , Issue.3 , pp. 497-501
    • Patra, S.1    Bruzzone, L.2
  • 18
    • 79957456032 scopus 로고    scopus 로고
    • A survey of active learning algorithms for supervised remote sensing image classification
    • Jun
    • D. Tuia, M. Volpi, L. Copa, M. Kanevski, and J. Munoz-Mari, "A survey of active learning algorithms for supervised remote sensing image classification," IEEE J. Sel. Topics Signal Process., vol. 5, no. 3, pp. 606-617, Jun. 2011.
    • (2011) IEEE J. Sel. Topics Signal Process. , vol.5 , Issue.3 , pp. 606-617
    • Tuia, D.1    Volpi, M.2    Copa, L.3    Kanevski, M.4    Munoz-Mari, J.5
  • 19
    • 33646590894 scopus 로고    scopus 로고
    • Discriminative random fields
    • DOI 10.1159/000093916
    • S. Kumar and M. Hebert, "Discriminative random fields," Int. J. Comput. Vis., vol. 68, no. 1, pp. 179-201, Jun. 2006. (Pubitemid 43724245)
    • (2006) International Journal of Computer Vision , vol.68 , Issue.2 , pp. 179-201
    • Kumar, S.1    Hebert, M.2
  • 20
    • 0040528764 scopus 로고
    • Multinomial logistic regression algorithm
    • Mar
    • D. Böhning, "Multinomial logistic regression algorithm," Ann. Inst. Stat. Math., vol. 44, no. 1, pp. 197-200, Mar. 1992.
    • (1992) Ann. Inst. Stat. Math. , vol.44 , Issue.1 , pp. 197-200
    • Böhning, D.1
  • 22
    • 70350451999 scopus 로고    scopus 로고
    • Logistic regression via variable splitting and augmented Lagrangian tools
    • TU, Lisbon, Portugal, Tech. Rep.
    • J. M. Bioucas-Dias and M. Figueiredo, "Logistic regression via variable splitting and augmented Lagrangian tools," Inst. Superior Técnico, TU, Lisbon, Portugal, 2009, Tech. Rep.
    • (2009) Inst. Superior Técnico
    • Bioucas-Dias, J.M.1    Figueiredo, M.2
  • 24
    • 78049282844 scopus 로고    scopus 로고
    • Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning
    • Nov
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4085-4098, Nov. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.11 , pp. 4085-4098
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 26
    • 23744513375 scopus 로고    scopus 로고
    • Constructing free-energy approximations and generalized belief propagation algorithms
    • DOI 10.1109/TIT.2005.850085
    • J. S. Yedidia, W. T. Freeman, and Y. Weiss, "Constructing free energy approximations and generalized belief propagation algorithms," IEEE Trans. Inf. Theory, vol. 51, no. 7, pp. 2282-2312, Jul. 2005. (Pubitemid 41136394)
    • (2005) IEEE Transactions on Information Theory , vol.51 , Issue.7 , pp. 2282-2312
    • Yedidia, J.S.1    Freeman, W.T.2    Weiss, Y.3
  • 27
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • DOI 10.1109/TGRS.2005.846154
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005. (Pubitemid 40811944)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 28
    • 0344120654 scopus 로고    scopus 로고
    • Discriminative random fields: A discriminative framework for contextual interaction in classification
    • S. Kumar and M. Hebert, "Discriminative random fields: A discriminative framework for contextual interaction in classification," in Proc. 9th IEEE Int. Conf. Comput. Vis., 2003, pp. 1150-1157.
    • (2003) Proc. 9th IEEE Int. Conf. Comput. Vis. , pp. 1150-1157
    • Kumar, S.1    Hebert, M.2
  • 29
    • 80053562930 scopus 로고    scopus 로고
    • Hyperspectral image segmentation using a new Bayesian approach with active learning
    • Oct
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Hyperspectral image segmentation using a new Bayesian approach with active learning," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3947-3960, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3947-3960
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 30
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
    • S. Geman and D. Geman, "Stochastic relaxation, Gibbs distribution, and the Bayesian restoration of images," IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-6, no. 6, pp. 721-741, Nov. 1984. (Pubitemid 15453722)
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-6 , Issue.6 , pp. 721-741
    • Geman Stuart1    Geman Donald2
  • 32
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • Jul
    • D. Mackay, "Information-based objective functions for active data selection," Neural Comput., vol. 4, no. 4, pp. 590-604, Jul. 1992.
    • (1992) Neural Comput. , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.1
  • 35
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 36
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Jul.
    • Y. Tarabalka, J. Chanussot, and J. Benediktsson, "Segmentation and classification of hyperspectral images using watershed transformation," Pattern Recognit., vol. 43, no. 7, pp. 2367-2379, Jul. 2010.
    • (2010) Pattern Recognit. , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.