메뉴 건너뛰기




Volumn 13, Issue 5, 2009, Pages 481-495

A neuro-coevolutionary genetic fuzzy system to design soft sensors

Author keywords

Coevolution; Genetic algorithms; Industrial dynamical processes; Kohonen maps; Soft sensing; Takagi Sugeno Kang fuzzy models

Indexed keywords

BENCHMARKING; CONFORMAL MAPPING; CORRELATION METHODS; DATA STRUCTURES; DIESEL ENGINES; FEEDBACK CONTROL; FUZZY INFERENCE; FUZZY SYSTEMS; GENETIC ALGORITHMS; INDUSTRIAL APPLICATIONS; KNOWLEDGE BASED SYSTEMS; MATHEMATICAL MODELS; MEMBERSHIP FUNCTIONS; OPTICAL PROJECTORS; PETROLEUM REFINING; SENSORS; SOFT COMPUTING;

EID: 58049194220     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-008-0363-3     Document Type: Article
Times cited : (22)

References (28)
  • 4
    • 0012076984 scopus 로고    scopus 로고
    • Optimal parameterization of evolutionary Takagi-Sugeno fuzzy systems
    • Delgado MR, Zuben FV, Gomide F (2000) Optimal parameterization of evolutionary Takagi-Sugeno fuzzy systems. In: Proceedings of 8th IPMU00, pp 650-657
    • (2000) Proceedings of 8th IPMU00 , pp. 650-657
    • Delgado, M.R.1    Zuben, F.V.2    Gomide, F.3
  • 5
    • 0346151192 scopus 로고    scopus 로고
    • Coevolutionary genetic fuzzy systems: A hierarchical collaborative approach
    • Delgado MR, Zuben FV, Gomide F (2004) Coevolutionary genetic fuzzy systems: A hierarchical collaborative approach. Fuzzy Sets Syst 141:89-106
    • (2004) Fuzzy Sets Syst , vol.141 , pp. 89-106
    • Delgado, M.R.1    Zuben, F.V.2    Gomide, F.3
  • 6
    • 0012582658 scopus 로고    scopus 로고
    • Industrial applications of soft computing: A review
    • Dote Y, Ovaska SJ (2001) Industrial applications of soft computing: A review. Proc IEEE 89:1243-1265
    • (2001) Proc IEEE , vol.89 , pp. 1243-1265
    • Dote, Y.1    Ovaska, S.J.2
  • 7
    • 0034297775 scopus 로고    scopus 로고
    • Constructing fuzzy models with linguistic integrity from numerical data-afreli algorithm
    • Espinosa J, Vandewalle J (2000) Constructing fuzzy models with linguistic integrity from numerical data-afreli algorithm. IEEE Trans Fuzzy Syst 8:591-600
    • (2000) IEEE Trans Fuzzy Syst , vol.8 , pp. 591-600
    • Espinosa, J.1    Vandewalle, J.2
  • 8
    • 27844511420 scopus 로고    scopus 로고
    • Startup of a distillation column using intelligent control techniques
    • Fabro JA, Arruda LVR, Neves-Jr F (2005) Startup of a distillation column using intelligent control techniques. Comput Chem Eng 30:309-320
    • (2005) Comput Chem Eng , vol.30 , pp. 309-320
    • Fabro, J.A.1    Arruda, L.V.R.2    Neves-Jr, F.3
  • 11
    • 0032069167 scopus 로고    scopus 로고
    • Completeness and consistency conditions for learning fuzzy rules
    • Gonzales A, Perez R (1998) Completeness and consistency conditions for learning fuzzy rules. Fuzzy Sets Syst 96:37-51
    • (1998) Fuzzy Sets Syst , vol.96 , pp. 37-51
    • Gonzales, A.1    Perez, R.2
  • 12
    • 0033281044 scopus 로고    scopus 로고
    • Genetic-algorithm-based approach to linguistic approximation of nonlinear functions with many input variables
    • In: Seoul, Korea
    • Ishibuchi H, Nakashima T (1999) Genetic-algorithm-based approach to linguistic approximation of nonlinear functions with many input variables. In: Proceedings of FUZZ-IEEE'99, Seoul, Korea, 779-784
    • (1999) Proceedings of FUZZ-IEEE'99 , pp. 779-784
    • Ishibuchi, H.1    Nakashima, T.2
  • 13
    • 0027601884 scopus 로고
    • Anfis: Adaptive-network-based fuzzy inference system
    • Jang JSR (1993) Anfis: Adaptive-network-based fuzzy inference system. IEEE Trans Syst Man Cybern 23:665-684
    • (1993) IEEE Trans Syst Man Cybern , vol.23 , pp. 665-684
    • Jang, J.S.R.1
  • 14
    • 0033704546 scopus 로고    scopus 로고
    • Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement
    • Jin Y (2000) Fuzzy modeling of high-dimensional systems: Complexity reduction and interpretability improvement. IEEE Trans Fuzzy Syst 8:212-221
    • (2000) IEEE Trans Fuzzy Syst , vol.8 , pp. 212-221
    • Jin, Y.1
  • 15
    • 84902156599 scopus 로고    scopus 로고
    • Comparing self-organizing maps
    • In: Bochum, Germany
    • Kaski S, Lagus K (1996) Comparing self-organizing maps. In: Proceedings of ICANN96, Bochum, Germany, pp 809-814
    • (1996) Proceedings of ICANN96 , pp. 809-814
    • Kaski, S.1    Lagus, K.2
  • 17
    • 27744448720 scopus 로고    scopus 로고
    • Developing soft sensors using hybrid soft computing methodology: A neurofuzzy system based on rough set theory and genetic algorithms
    • Luo JX, Shao HH (2006) Developing soft sensors using hybrid soft computing methodology: A neurofuzzy system based on rough set theory and genetic algorithms. Soft Comput 10:54-60
    • (2006) Soft Comput , vol.10 , pp. 54-60
    • Luo, J.X.1    Shao, H.H.2
  • 19
    • 10444270597 scopus 로고    scopus 로고
    • Forming neural networks through efficient and adaptive coevolution
    • Moriarty D, Miikkulainen R (1997) Forming neural networks through efficient and adaptive coevolution. Evol Comput 5:373-399
    • (1997) Evol Comput , vol.5 , pp. 373-399
    • Moriarty, D.1    Miikkulainen, R.2
  • 20
    • 58049191456 scopus 로고    scopus 로고
    • Automatic identification of inferential fuzzy models
    • (in portuguese). PhD thesis, Federal University of Techonology-Parana
    • Nagai EY (2006) Automatic identification of inferential fuzzy models (in portuguese). PhD thesis, Federal University of Techonology-Parana
    • (2006)
    • Nagai, E.Y.1
  • 23
    • 0034153728 scopus 로고    scopus 로고
    • Cooperative coevolution: An architecture for evolving coadapted subcomponents
    • Potter M, Jong KD (2000) Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evol Comput 8:1-29
    • (2000) Evol Comput , vol.8 , pp. 1-29
    • Potter, M.1    Jong, K.D.2
  • 26
    • 0037114379 scopus 로고    scopus 로고
    • Neural virtual sensor for the inferential prediction of product quality from process variable sensor for the inferential prediction of product quality from process variables
    • Rallo R, Ferre-Gine J, Arenas A, Giralt F (2002) Neural virtual sensor for the inferential prediction of product quality from process variables. ensor for the inferential prediction of product quality from process variables. Comput Chem Eng 26:1735-1754
    • (2002) Comput Chem Eng , vol.26 , pp. 1735-1754
    • Rallo, R.1    Ferre-Gine, J.2    Arenas, A.3    Giralt, F.4
  • 28
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh L (1965) Fuzzy sets. Inf Control 8:338-352
    • (1965) Inf Control , vol.8 , pp. 338-352
    • Zadeh, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.