메뉴 건너뛰기




Volumn 19, Issue 8, 2014, Pages 516-528

Polyploidy and small RNA regulation of cotton fiber development

Author keywords

Arabidopsis; Cotton; Epigenetics; Evolution; Fiber; MiRNA; Polyploidy; Silencing; SiRNA; Small RNA; Ta siRNA

Indexed keywords

ARABIDOPSIS; GOSSYPIUM HIRSUTUM;

EID: 84905166105     PISSN: 13601385     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tplants.2014.04.007     Document Type: Review
Times cited : (54)

References (170)
  • 2
    • 37249036997 scopus 로고    scopus 로고
    • Toward sequencing cotton (Gossypium) genomes
    • Chen Z.J., et al. Toward sequencing cotton (Gossypium) genomes. Plant Physiol. 2007, 145:1303-1310.
    • (2007) Plant Physiol. , vol.145 , pp. 1303-1310
    • Chen, Z.J.1
  • 3
    • 85047683189 scopus 로고    scopus 로고
    • Cotton fiber growth in planta and in vitro: models for plant cell elongation and cell wall biogenesis
    • Kim H.J., Triplett B.A. Cotton fiber growth in planta and in vitro: models for plant cell elongation and cell wall biogenesis. Plant Physiol. 2001, 127:1361-1366.
    • (2001) Plant Physiol. , vol.127 , pp. 1361-1366
    • Kim, H.J.1    Triplett, B.A.2
  • 4
    • 84886468671 scopus 로고    scopus 로고
    • Cotton fiber genomics
    • Wiley-Blackwell, P.W. Becraft (Ed.)
    • Guan X., Chen Z.J. Cotton fiber genomics. Seed Genomics 2013, 203-216. Wiley-Blackwell. P.W. Becraft (Ed.).
    • (2013) Seed Genomics , pp. 203-216
    • Guan, X.1    Chen, Z.J.2
  • 5
    • 36448974919 scopus 로고    scopus 로고
    • Gene expression changes and early events in cotton fibre development
    • Lee J.J., et al. Gene expression changes and early events in cotton fibre development. Ann. Bot. 2007, 100:1391-1401.
    • (2007) Ann. Bot. , vol.100 , pp. 1391-1401
    • Lee, J.J.1
  • 6
    • 36148975768 scopus 로고    scopus 로고
    • Polyploidy and the evolutionary history of cotton
    • Wendel J.F., Cronn R.C. Polyploidy and the evolutionary history of cotton. Adv. Agron. 2003, 78:139-186.
    • (2003) Adv. Agron. , vol.78 , pp. 139-186
    • Wendel, J.F.1    Cronn, R.C.2
  • 7
    • 70449588694 scopus 로고    scopus 로고
    • Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids
    • Ha M., et al. Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:17835-17840.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 17835-17840
    • Ha, M.1
  • 8
    • 79959845558 scopus 로고    scopus 로고
    • Cis- and trans-Regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids
    • Ng D.W., et al. cis- and trans-Regulation of miR163 and target genes confers natural variation of secondary metabolites in two Arabidopsis species and their allopolyploids. Plant Cell 2011, 23:1729-1740.
    • (2011) Plant Cell , vol.23 , pp. 1729-1740
    • Ng, D.W.1
  • 9
    • 79953296447 scopus 로고    scopus 로고
    • Coordinated histone modifications are associated with gene expression variation within and between species
    • Ha M., et al. Coordinated histone modifications are associated with gene expression variation within and between species. Genome Res. 2011, 21:590-598.
    • (2011) Genome Res. , vol.21 , pp. 590-598
    • Ha, M.1
  • 10
    • 0035810998 scopus 로고    scopus 로고
    • Protein-coding genes are epigenetically regulated in Arabidopsis polyploids
    • Lee H.S., Chen Z.J. Protein-coding genes are epigenetically regulated in Arabidopsis polyploids. Proc. Natl. Acad. Sci. U.S.A. 2001, 98:6753-6758.
    • (2001) Proc. Natl. Acad. Sci. U.S.A. , vol.98 , pp. 6753-6758
    • Lee, H.S.1    Chen, Z.J.2
  • 11
    • 0030799238 scopus 로고    scopus 로고
    • Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance
    • Chen Z.J., Pikaard C.S. Epigenetic silencing of RNA polymerase I transcription: a role for DNA methylation and histone modification in nucleolar dominance. Genes Dev. 1997, 11:2124-2136.
    • (1997) Genes Dev. , vol.11 , pp. 2124-2136
    • Chen, Z.J.1    Pikaard, C.S.2
  • 12
    • 1542285163 scopus 로고    scopus 로고
    • A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance
    • Lawrence R.J., et al. A concerted DNA methylation/histone methylation switch regulates rRNA gene dosage control and nucleolar dominance. Mol. Cell 2004, 13:599-609.
    • (2004) Mol. Cell , vol.13 , pp. 599-609
    • Lawrence, R.J.1
  • 13
    • 0029366126 scopus 로고
    • An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression
    • Wendel J.F., et al. An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol. Phylogenet. Evol. 1995, 4:298-313.
    • (1995) Mol. Phylogenet. Evol. , vol.4 , pp. 298-313
    • Wendel, J.F.1
  • 14
    • 0001632947 scopus 로고
    • New World tetraploid cottons contain Old World cytoplasm
    • Wendel J.F. New World tetraploid cottons contain Old World cytoplasm. Proc. Natl. Acad. Sci. U.S.A. 1989, 86:4132-4136.
    • (1989) Proc. Natl. Acad. Sci. U.S.A. , vol.86 , pp. 4132-4136
    • Wendel, J.F.1
  • 15
    • 0002456670 scopus 로고    scopus 로고
    • Taxonomy and germplasm resources
    • John Wiley & Sons, C.W. Smith, J.T. Cothren (Eds.)
    • Percival A.E., et al. Taxonomy and germplasm resources. Cotton: Origin, History, Technology, and Production 1999, 33-63. John Wiley & Sons. C.W. Smith, J.T. Cothren (Eds.).
    • (1999) Cotton: Origin, History, Technology, and Production , pp. 33-63
    • Percival, A.E.1
  • 16
    • 0035125079 scopus 로고    scopus 로고
    • Comparative development of fiber in wild and cultivated cotton
    • Applequist W.L., et al. Comparative development of fiber in wild and cultivated cotton. Evol. Dev. 2001, 3:3-17.
    • (2001) Evol. Dev. , vol.3 , pp. 3-17
    • Applequist, W.L.1
  • 17
    • 23244455953 scopus 로고    scopus 로고
    • Estimation of the nuclear DNA content of Gossypium species
    • Hendrix B., Stewart J.M. Estimation of the nuclear DNA content of Gossypium species. Ann. Bot. 2005, 95:789-797.
    • (2005) Ann. Bot. , vol.95 , pp. 789-797
    • Hendrix, B.1    Stewart, J.M.2
  • 18
    • 84871428041 scopus 로고    scopus 로고
    • Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres
    • Paterson A.H., et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 2012, 492:423-427.
    • (2012) Nature , vol.492 , pp. 423-427
    • Paterson, A.H.1
  • 19
    • 33749389724 scopus 로고    scopus 로고
    • Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium
    • Hawkins J.S., et al. Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res. 2006, 16:1252-1261.
    • (2006) Genome Res. , vol.16 , pp. 1252-1261
    • Hawkins, J.S.1
  • 20
    • 42549129942 scopus 로고    scopus 로고
    • Genomic plasticity and the diversity of polyploid plants
    • Leitch A.R., Leitch I.J. Genomic plasticity and the diversity of polyploid plants. Science 2008, 320:481-483.
    • (2008) Science , vol.320 , pp. 481-483
    • Leitch, A.R.1    Leitch, I.J.2
  • 21
    • 0002420554 scopus 로고
    • Development of the cotton fiber
    • Basra A., Malik C.P. Development of the cotton fiber. Int. Rev. Cytol. 1984, 89:65-113.
    • (1984) Int. Rev. Cytol. , vol.89 , pp. 65-113
    • Basra, A.1    Malik, C.P.2
  • 22
    • 0028885371 scopus 로고
    • Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism
    • Tiwari S.C., Wilkins T.A. Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Can. J. Bot. 1995, 73:746-757.
    • (1995) Can. J. Bot. , vol.73 , pp. 746-757
    • Tiwari, S.C.1    Wilkins, T.A.2
  • 23
    • 33644647628 scopus 로고    scopus 로고
    • Developmental and gene expression analyses of a cotton naked seed mutant
    • Lee J.J., et al. Developmental and gene expression analyses of a cotton naked seed mutant. Planta 2006, 223:418-432.
    • (2006) Planta , vol.223 , pp. 418-432
    • Lee, J.J.1
  • 24
    • 0033499327 scopus 로고    scopus 로고
    • Cellulose biosynthesis: exciting times for a difficult field of study
    • Delmer D.P. Cellulose biosynthesis: exciting times for a difficult field of study. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50:245-276.
    • (1999) Annu. Rev. Plant Physiol. Plant Mol. Biol. , vol.50 , pp. 245-276
    • Delmer, D.P.1
  • 25
    • 34248596789 scopus 로고    scopus 로고
    • Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis
    • Gou J.Y., et al. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res. 2007, 17:422-434.
    • (2007) Cell Res. , vol.17 , pp. 422-434
    • Gou, J.Y.1
  • 26
    • 0035108526 scopus 로고    scopus 로고
    • The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and k(+) transporters and expansin
    • Ruan Y., et al. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and k(+) transporters and expansin. Plant Cell 2001, 13:47-60.
    • (2001) Plant Cell , vol.13 , pp. 47-60
    • Ruan, Y.1
  • 27
    • 0037394417 scopus 로고    scopus 로고
    • Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development
    • Ruan Y.L., et al. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 2003, 15:952-964.
    • (2003) Plant Cell , vol.15 , pp. 952-964
    • Ruan, Y.L.1
  • 28
    • 16644380199 scopus 로고    scopus 로고
    • Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover
    • Ruan Y.L., et al. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiol. 2004, 136:4104-4113.
    • (2004) Plant Physiol. , vol.136 , pp. 4104-4113
    • Ruan, Y.L.1
  • 29
    • 77957732552 scopus 로고    scopus 로고
    • Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively
    • Wang L., et al. Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively. Plant Physiol. 2010, 154:744-756.
    • (2010) Plant Physiol. , vol.154 , pp. 744-756
    • Wang, L.1
  • 30
    • 84880300220 scopus 로고    scopus 로고
    • Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development
    • Li D.D., et al. Cotton plasma membrane intrinsic protein 2s (PIP2s) selectively interact to regulate their water channel activities and are required for fibre development. New Phytol. 2013, 199:695-707.
    • (2013) New Phytol. , vol.199 , pp. 695-707
    • Li, D.D.1
  • 31
    • 84871436735 scopus 로고    scopus 로고
    • Cotton fiber: a powerful single-cell model for cell wall and cellulose research
    • Haigler C.H., et al. Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front. Plant Sci. 2012, 3:104.
    • (2012) Front. Plant Sci. , vol.3 , pp. 104
    • Haigler, C.H.1
  • 32
    • 0036383493 scopus 로고    scopus 로고
    • Characterisation of six alpha-expansin genes in Gossypium hirsutum (upland cotton)
    • Harmer S.E., et al. Characterisation of six alpha-expansin genes in Gossypium hirsutum (upland cotton). Mol. Genet. Genomics 2002, 268:1-9.
    • (2002) Mol. Genet. Genomics , vol.268 , pp. 1-9
    • Harmer, S.E.1
  • 33
    • 35248812911 scopus 로고    scopus 로고
    • Transcriptome profiling, sequence characterization, and SNP-based chromosomal assignment of the EXPANSIN genes in cotton
    • An C., et al. Transcriptome profiling, sequence characterization, and SNP-based chromosomal assignment of the EXPANSIN genes in cotton. Mol. Genet. Genomics 2007, 278:539-553.
    • (2007) Mol. Genet. Genomics , vol.278 , pp. 539-553
    • An, C.1
  • 34
    • 84878284628 scopus 로고    scopus 로고
    • A cotton BURP domain protein interacts with alpha-expansin and their co-expression promotes plant growth and fruit production
    • Xu B., et al. A cotton BURP domain protein interacts with alpha-expansin and their co-expression promotes plant growth and fruit production. Mol. Plant 2013, 6:945-958.
    • (2013) Mol. Plant , vol.6 , pp. 945-958
    • Xu, B.1
  • 35
    • 84891506918 scopus 로고    scopus 로고
    • The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers
    • Han L.B., et al. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers. Plant Cell 2013, 25:4421-4438.
    • (2013) Plant Cell , vol.25 , pp. 4421-4438
    • Han, L.B.1
  • 36
    • 84878659402 scopus 로고    scopus 로고
    • A cotton annexin protein AnxGb6 regulates fiber elongation through its interaction with actin 1
    • Huang Y., et al. A cotton annexin protein AnxGb6 regulates fiber elongation through its interaction with actin 1. PLoS ONE 2013, 8:e66160.
    • (2013) PLoS ONE , vol.8
    • Huang, Y.1
  • 37
    • 33745654570 scopus 로고    scopus 로고
    • Control of plant development by reactive oxygen species
    • Gapper C., Dolan L. Control of plant development by reactive oxygen species. Plant Physiol. 2006, 141:341-345.
    • (2006) Plant Physiol. , vol.141 , pp. 341-345
    • Gapper, C.1    Dolan, L.2
  • 38
    • 84863024557 scopus 로고    scopus 로고
    • GbPDF1 is involved in cotton fiber initiation via the core cis-element HDZIP2ATATHB2
    • Deng F., et al. GbPDF1 is involved in cotton fiber initiation via the core cis-element HDZIP2ATATHB2. Plant Physiol. 2012, 158:890-904.
    • (2012) Plant Physiol. , vol.158 , pp. 890-904
    • Deng, F.1
  • 39
    • 77955887702 scopus 로고    scopus 로고
    • An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development
    • Zhang F., et al. An L1 box binding protein, GbML1, interacts with GbMYB25 to control cotton fibre development. J. Exp. Bot. 2010, 61:3599-3613.
    • (2010) J. Exp. Bot. , vol.61 , pp. 3599-3613
    • Zhang, F.1
  • 40
    • 84896549470 scopus 로고    scopus 로고
    • The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production
    • Tang W., et al. The calcium sensor GhCaM7 promotes cotton fiber elongation by modulating reactive oxygen species (ROS) production. New Phytol. 2014, 202:509-520.
    • (2014) New Phytol. , vol.202 , pp. 509-520
    • Tang, W.1
  • 41
    • 37849028984 scopus 로고    scopus 로고
    • Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis
    • Qin Y.M., et al. Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 2007, 19:3692-3704.
    • (2007) Plant Cell , vol.19 , pp. 3692-3704
    • Qin, Y.M.1
  • 42
    • 33745462176 scopus 로고    scopus 로고
    • Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation
    • Shi Y.H., et al. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant Cell 2006, 18:651-664.
    • (2006) Plant Cell , vol.18 , pp. 651-664
    • Shi, Y.H.1
  • 43
    • 42449163064 scopus 로고    scopus 로고
    • The ascorbate peroxidase regulated by H(2)O(2) and ethylene is involved in cotton fiber cell elongation by modulating ROS homeostasis
    • Qin Y.M., et al. The ascorbate peroxidase regulated by H(2)O(2) and ethylene is involved in cotton fiber cell elongation by modulating ROS homeostasis. Plant Signal. Behav. 2008, 3:194-196.
    • (2008) Plant Signal. Behav. , vol.3 , pp. 194-196
    • Qin, Y.M.1
  • 44
    • 84885794279 scopus 로고    scopus 로고
    • A whole-genome DNA marker map for cotton based on the D-genome sequence of Gossypium raimondii L
    • Wang Z., et al. A whole-genome DNA marker map for cotton based on the D-genome sequence of Gossypium raimondii L. G3 (Bethesda) 2013, 3:1759-1767.
    • (2013) G3 (Bethesda) , vol.3 , pp. 1759-1767
    • Wang, Z.1
  • 45
    • 0032516005 scopus 로고    scopus 로고
    • When defense backfires: detrimental effect of a plant's protective trichomes on an insect beneficial to the plant
    • Eisner T., et al. When defense backfires: detrimental effect of a plant's protective trichomes on an insect beneficial to the plant. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:4410-4414.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 4410-4414
    • Eisner, T.1
  • 46
    • 84877252767 scopus 로고    scopus 로고
    • Entrapment of bed bugs by leaf trichomes inspires microfabrication of biomimetic surfaces
    • Szyndler M.W., et al. Entrapment of bed bugs by leaf trichomes inspires microfabrication of biomimetic surfaces. J. R. Soc. Interface 2013, 10:20130174.
    • (2013) J. R. Soc. Interface , vol.10 , pp. 20130174
    • Szyndler, M.W.1
  • 47
    • 0026362835 scopus 로고
    • A model for cell-type determination and differentiation in plants
    • Marks M.D., et al. A model for cell-type determination and differentiation in plants. Symp. Soc. Exp. Biol. 1991, 45:77-87.
    • (1991) Symp. Soc. Exp. Biol. , vol.45 , pp. 77-87
    • Marks, M.D.1
  • 48
    • 77953219973 scopus 로고    scopus 로고
    • TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis
    • Bischoff V., et al. TRICHOME BIREFRINGENCE and its homolog AT5G01360 encode plant-specific DUF231 proteins required for cellulose biosynthesis in Arabidopsis. Plant Physiol. 2010, 153:590-602.
    • (2010) Plant Physiol. , vol.153 , pp. 590-602
    • Bischoff, V.1
  • 49
    • 0000069598 scopus 로고
    • Systematic endopolyploidy in Arabidopsis thaliana
    • Galbraith D.W., et al. Systematic endopolyploidy in Arabidopsis thaliana. Plant Physiol. 1991, 96:985-989.
    • (1991) Plant Physiol. , vol.96 , pp. 985-989
    • Galbraith, D.W.1
  • 50
    • 0037197834 scopus 로고    scopus 로고
    • Ectopic D-type cyclin expression induces not only DNA replication but also cell division in Arabidopsis trichomes
    • Schnittger A., et al. Ectopic D-type cyclin expression induces not only DNA replication but also cell division in Arabidopsis trichomes. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:6410-6415.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 6410-6415
    • Schnittger, A.1
  • 51
    • 33244480556 scopus 로고    scopus 로고
    • Expression profiling identifies genes expressed early during lint fibre initiation in cotton
    • Wu Y., et al. Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiol. 2006, 47:107-127.
    • (2006) Plant Cell Physiol. , vol.47 , pp. 107-127
    • Wu, Y.1
  • 52
    • 0033301736 scopus 로고    scopus 로고
    • Increased nuclear DNA content in developing cotton fiber cells
    • Van't Hof J. Increased nuclear DNA content in developing cotton fiber cells. Am. J. Bot. 1999, 86:776-779.
    • (1999) Am. J. Bot. , vol.86 , pp. 776-779
    • Van't Hof, J.1
  • 53
    • 32044459972 scopus 로고    scopus 로고
    • DNA content and expression of genes related to cell cycling in developing Gossypium hirsutum (Malvaceae) fibers
    • Taliercio E., et al. DNA content and expression of genes related to cell cycling in developing Gossypium hirsutum (Malvaceae) fibers. Am. J. Bot. 2005, 92:1942-1947.
    • (2005) Am. J. Bot. , vol.92 , pp. 1942-1947
    • Taliercio, E.1
  • 54
    • 0027995660 scopus 로고
    • Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development
    • Larkin J.C., et al. Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development. Plant Cell 1994, 6:1065-1076.
    • (1994) Plant Cell , vol.6 , pp. 1065-1076
    • Larkin, J.C.1
  • 55
    • 0027130892 scopus 로고
    • Arabidopsis GLABROUS1 gene requires downstream sequences for function
    • Larkin J.C., et al. Arabidopsis GLABROUS1 gene requires downstream sequences for function. Plant Cell 1993, 5:1739-1748.
    • (1993) Plant Cell , vol.5 , pp. 1739-1748
    • Larkin, J.C.1
  • 56
    • 0025997497 scopus 로고
    • A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules
    • Oppenheimer D.G., et al. A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 1991, 67:483-493.
    • (1991) Cell , vol.67 , pp. 483-493
    • Oppenheimer, D.G.1
  • 57
    • 0033756404 scopus 로고    scopus 로고
    • GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1
    • Payne C.T., et al. GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1. Genetics 2000, 156:1349-1362.
    • (2000) Genetics , vol.156 , pp. 1349-1362
    • Payne, C.T.1
  • 58
    • 0033165574 scopus 로고    scopus 로고
    • The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein
    • Walker A.R., et al. The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 1999, 11:1337-1350.
    • (1999) Plant Cell , vol.11 , pp. 1337-1350
    • Walker, A.R.1
  • 59
    • 0031946298 scopus 로고    scopus 로고
    • Control of GL2 expression in Arabidopsis leaves and trichomes
    • Szymanski D.B., et al. Control of GL2 expression in Arabidopsis leaves and trichomes. Development 1998, 125:1161-1171.
    • (1998) Development , vol.125 , pp. 1161-1171
    • Szymanski, D.B.1
  • 60
    • 2942618799 scopus 로고    scopus 로고
    • Plant trichomes: a model for cell differentiation
    • Hülskamp M. Plant trichomes: a model for cell differentiation. Nat. Rev. Mol. Cell Biol. 2004, 5:471-480.
    • (2004) Nat. Rev. Mol. Cell Biol. , vol.5 , pp. 471-480
    • Hülskamp, M.1
  • 61
    • 70349556372 scopus 로고    scopus 로고
    • One, two, three models for trichome patterning in Arabidopsis?
    • Pesch M., Hulskamp M. One, two, three models for trichome patterning in Arabidopsis?. Curr. Opin. Plant Biol. 2009, 12:587-592.
    • (2009) Curr. Opin. Plant Biol. , vol.12 , pp. 587-592
    • Pesch, M.1    Hulskamp, M.2
  • 62
    • 11144225214 scopus 로고    scopus 로고
    • Comparison of TRY and the closely related At1g01380 gene in controlling Arabidopsis trichome patterning
    • Esch J.J., et al. Comparison of TRY and the closely related At1g01380 gene in controlling Arabidopsis trichome patterning. Plant J. 2004, 40:860-869.
    • (2004) Plant J. , vol.40 , pp. 860-869
    • Esch, J.J.1
  • 63
    • 44949213903 scopus 로고    scopus 로고
    • A genetic regulatory network in the development of trichomes and root hairs
    • Ishida T., et al. A genetic regulatory network in the development of trichomes and root hairs. Annu. Rev. Plant Biol. 2008, 59:365-386.
    • (2008) Annu. Rev. Plant Biol. , vol.59 , pp. 365-386
    • Ishida, T.1
  • 64
    • 4544326458 scopus 로고    scopus 로고
    • Control of plant trichome development by a cotton fiber MYB gene
    • Wang S., et al. Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 2004, 16:2323-2334.
    • (2004) Plant Cell , vol.16 , pp. 2323-2334
    • Wang, S.1
  • 65
    • 0142090703 scopus 로고    scopus 로고
    • Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.)
    • Suo J., et al. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochim. Biophys. Acta 2003, 1630:25-34.
    • (2003) Biochim. Biophys. Acta , vol.1630 , pp. 25-34
    • Suo, J.1
  • 66
    • 17844371725 scopus 로고    scopus 로고
    • Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene
    • Humphries J.A., et al. Two WD-repeat genes from cotton are functional homologues of the Arabidopsis thaliana TRANSPARENT TESTA GLABRA1 (TTG1) gene. Plant Mol. Biol. 2005, 57:67-81.
    • (2005) Plant Mol. Biol. , vol.57 , pp. 67-81
    • Humphries, J.A.1
  • 67
    • 49749127328 scopus 로고    scopus 로고
    • The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2
    • Guan X.Y., et al. The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2. Physiol. Plant. 2008, 134:174-182.
    • (2008) Physiol. Plant. , vol.134 , pp. 174-182
    • Guan, X.Y.1
  • 68
    • 67649496507 scopus 로고    scopus 로고
    • The MYB transcription factor GhMYB25 regulates early fibre and trichome development
    • Machado A., et al. The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J. 2009, 59:52-62.
    • (2009) Plant J. , vol.59 , pp. 52-62
    • Machado, A.1
  • 69
    • 79952033072 scopus 로고    scopus 로고
    • GhMYB25-like: a key factor in early cotton fibre development
    • Walford S.A., et al. GhMYB25-like: a key factor in early cotton fibre development. Plant J. 2011, 65:785-797.
    • (2011) Plant J. , vol.65 , pp. 785-797
    • Walford, S.A.1
  • 70
    • 37049236939 scopus 로고
    • Hormonal regulation of growth in unfertilized cotton ovules
    • Beasley C.A. Hormonal regulation of growth in unfertilized cotton ovules. Science 1973, 179:1003-1005.
    • (1973) Science , vol.179 , pp. 1003-1005
    • Beasley, C.A.1
  • 71
    • 0026721919 scopus 로고
    • Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs
    • John M.E., Crow L.J. Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:5769-5773.
    • (1992) Proc. Natl. Acad. Sci. U.S.A. , vol.89 , pp. 5769-5773
    • John, M.E.1    Crow, L.J.2
  • 72
    • 79955771780 scopus 로고    scopus 로고
    • Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality
    • Zhang M., et al. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat. Biotechnol. 2011, 29:453-458.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 453-458
    • Zhang, M.1
  • 73
    • 79955780088 scopus 로고    scopus 로고
    • Auxin boost for cotton
    • Chen Z.J., Guan X. Auxin boost for cotton. Nat. Biotechnol. 2011, 29:407-409.
    • (2011) Nat. Biotechnol. , vol.29 , pp. 407-409
    • Chen, Z.J.1    Guan, X.2
  • 74
    • 79960121037 scopus 로고    scopus 로고
    • Activation of Arabidopsis seed hair development by cotton fiber-related genes
    • Guan X., et al. Activation of Arabidopsis seed hair development by cotton fiber-related genes. PLoS ONE 2011, 6:e21301.
    • (2011) PLoS ONE , vol.6
    • Guan, X.1
  • 75
    • 57749100022 scopus 로고    scopus 로고
    • Evolutionary genetics of genome merger and doubling in plants
    • Doyle J.J., et al. Evolutionary genetics of genome merger and doubling in plants. Annu. Rev. Genet. 2008, 42:443-461.
    • (2008) Annu. Rev. Genet. , vol.42 , pp. 443-461
    • Doyle, J.J.1
  • 76
    • 34248328910 scopus 로고    scopus 로고
    • Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids
    • Chen Z.J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu. Rev. Plant Biol. 2007, 58:377-406.
    • (2007) Annu. Rev. Plant Biol. , vol.58 , pp. 377-406
    • Chen, Z.J.1
  • 77
    • 0028184403 scopus 로고
    • Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms
    • Masterson J. Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 1994, 264:421-424.
    • (1994) Science , vol.264 , pp. 421-424
    • Masterson, J.1
  • 78
    • 84879420693 scopus 로고    scopus 로고
    • Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents
    • Miller M., et al. Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents. G3 (Bethesda) 2012, 2:505-513.
    • (2012) G3 (Bethesda) , vol.2 , pp. 505-513
    • Miller, M.1
  • 79
    • 84879412664 scopus 로고    scopus 로고
    • Genomic and epigenetic insights into the molecular bases of heterosis
    • Chen Z.J. Genomic and epigenetic insights into the molecular bases of heterosis. Nat. Rev. Genet. 2013, 14:471-482.
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 471-482
    • Chen, Z.J.1
  • 80
    • 33751249024 scopus 로고    scopus 로고
    • Genetic variation for the response to ploidy change in Zea mays L
    • Riddle N.C., et al. Genetic variation for the response to ploidy change in Zea mays L. Theor. Appl. Genet. 2006, 114:101-111.
    • (2006) Theor. Appl. Genet. , vol.114 , pp. 101-111
    • Riddle, N.C.1
  • 81
    • 33846543858 scopus 로고    scopus 로고
    • Heterosis: revisiting the magic
    • Lippman Z.B., Zamir D. Heterosis: revisiting the magic. Trends Genet. 2007, 23:60-66.
    • (2007) Trends Genet. , vol.23 , pp. 60-66
    • Lippman, Z.B.1    Zamir, D.2
  • 82
    • 0000712139 scopus 로고
    • Heterosis
    • East E.M. Heterosis. Genetics 1936, 21:375-397.
    • (1936) Genetics , vol.21 , pp. 375-397
    • East, E.M.1
  • 83
    • 75949117260 scopus 로고    scopus 로고
    • Molecular mechanisms of polyploidy and hybrid vigor
    • Chen Z.J. Molecular mechanisms of polyploidy and hybrid vigor. Trends Plant Sci. 2010, 15:57-71.
    • (2010) Trends Plant Sci. , vol.15 , pp. 57-71
    • Chen, Z.J.1
  • 85
    • 0038326465 scopus 로고
    • Hybrids of Raphanus sativus L. x Brassica oleracea L
    • Karpechenko G.D. Hybrids of Raphanus sativus L. x Brassica oleracea L. J. Genet. 1924, 14:375-396.
    • (1924) J. Genet. , vol.14 , pp. 375-396
    • Karpechenko, G.D.1
  • 86
    • 33644762929 scopus 로고    scopus 로고
    • Genomewide nonadditive gene regulation in Arabidopsis allotetraploids
    • Wang J., et al. Genomewide nonadditive gene regulation in Arabidopsis allotetraploids. Genetics 2006, 172:507-517.
    • (2006) Genetics , vol.172 , pp. 507-517
    • Wang, J.1
  • 87
    • 84864834178 scopus 로고    scopus 로고
    • Cis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids
    • Shi X., et al. Cis- and trans-regulatory divergence between progenitor species determines gene-expression novelty in Arabidopsis allopolyploids. Nat. Commun. 2012, 3:950.
    • (2012) Nat. Commun. , vol.3 , pp. 950
    • Shi, X.1
  • 88
    • 80054838610 scopus 로고    scopus 로고
    • Genomic expression dominance in the natural allopolyploid Coffea arabica is massively affected by growth temperature
    • Bardil A., et al. Genomic expression dominance in the natural allopolyploid Coffea arabica is massively affected by growth temperature. New Phytol. 2011, 192:760-774.
    • (2011) New Phytol. , vol.192 , pp. 760-774
    • Bardil, A.1
  • 89
    • 77950923920 scopus 로고    scopus 로고
    • Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina x townsendii and Spartina anglica (Poaceae)
    • Chelaifa H., et al. Transcriptomic changes following recent natural hybridization and allopolyploidy in the salt marsh species Spartina x townsendii and Spartina anglica (Poaceae). New Phytol. 2010, 186:161-174.
    • (2010) New Phytol. , vol.186 , pp. 161-174
    • Chelaifa, H.1
  • 90
    • 79952114068 scopus 로고    scopus 로고
    • Homoeolog-specific transcriptional bias in allopolyploid wheat
    • Akhunova A.R., et al. Homoeolog-specific transcriptional bias in allopolyploid wheat. BMC Genomics 2010, 11:505.
    • (2010) BMC Genomics , vol.11 , pp. 505
    • Akhunova, A.R.1
  • 91
    • 77955727160 scopus 로고    scopus 로고
    • Genome-wide gene expression changes in genetically stable synthetic and natural wheat allohexaploids
    • Chague V., et al. Genome-wide gene expression changes in genetically stable synthetic and natural wheat allohexaploids. New Phytol. 2010, 187:1181-1194.
    • (2010) New Phytol. , vol.187 , pp. 1181-1194
    • Chague, V.1
  • 92
    • 79953789287 scopus 로고    scopus 로고
    • Transcriptomic shock generates evolutionary novelty in a newly formed, natural allopolyploid plant
    • Buggs R.J., et al. Transcriptomic shock generates evolutionary novelty in a newly formed, natural allopolyploid plant. Curr. Biol. 2011, 21:551-556.
    • (2011) Curr. Biol. , vol.21 , pp. 551-556
    • Buggs, R.J.1
  • 93
    • 42649126373 scopus 로고    scopus 로고
    • Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution
    • Flagel L., et al. Duplicate gene expression in allopolyploid Gossypium reveals two temporally distinct phases of expression evolution. BMC Biol. 2008, 6:16.
    • (2008) BMC Biol. , vol.6 , pp. 16
    • Flagel, L.1
  • 94
    • 43149114448 scopus 로고    scopus 로고
    • Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant
    • Hovav R., et al. Partitioned expression of duplicated genes during development and evolution of a single cell in a polyploid plant. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:6191-6195.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 6191-6195
    • Hovav, R.1
  • 95
    • 84872611513 scopus 로고    scopus 로고
    • Homoeolog expression bias and expression level dominance in allopolyploid cotton
    • Yoo M.J., et al. Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity 2013, 110:171-180.
    • (2013) Heredity , vol.110 , pp. 171-180
    • Yoo, M.J.1
  • 96
    • 0345071423 scopus 로고    scopus 로고
    • Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing
    • Adams K.L., et al. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:4649-4654.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 4649-4654
    • Adams, K.L.1
  • 97
    • 67650888375 scopus 로고    scopus 로고
    • Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium)
    • Chaudhary B., et al. Reciprocal silencing, transcriptional bias and functional divergence of homeologs in polyploid cotton (Gossypium). Genetics 2009, 182:503-517.
    • (2009) Genetics , vol.182 , pp. 503-517
    • Chaudhary, B.1
  • 98
    • 0030980947 scopus 로고    scopus 로고
    • Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica
    • Chen Z.J., Pikaard C.S. Transcriptional analysis of nucleolar dominance in polyploid plants: biased expression/silencing of progenitor rRNA genes is developmentally regulated in Brassica. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:3442-3447.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 3442-3447
    • Chen, Z.J.1    Pikaard, C.S.2
  • 99
    • 67650317473 scopus 로고    scopus 로고
    • Coordinated and fine-scale control of homoeologous gene expression in allotetraploid cotton
    • Flagel L.E., et al. Coordinated and fine-scale control of homoeologous gene expression in allotetraploid cotton. J. Hered. 2009, 100:487-490.
    • (2009) J. Hered. , vol.100 , pp. 487-490
    • Flagel, L.E.1
  • 100
    • 0032516002 scopus 로고    scopus 로고
    • Polyploid formation created unique avenues for response to selection in Gossypium
    • Jiang C., et al. Polyploid formation created unique avenues for response to selection in Gossypium. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:4419-4424.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 4419-4424
    • Jiang, C.1
  • 101
    • 34548440742 scopus 로고    scopus 로고
    • Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development
    • Rong J., et al. Meta-analysis of polyploid cotton QTL shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 2007, 176:2577-2588.
    • (2007) Genetics , vol.176 , pp. 2577-2588
    • Rong, J.1
  • 102
    • 33747037492 scopus 로고    scopus 로고
    • Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton
    • Yang S.S., et al. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J. 2006, 47:761-775.
    • (2006) Plant J. , vol.47 , pp. 761-775
    • Yang, S.S.1
  • 103
    • 0842287596 scopus 로고    scopus 로고
    • Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium)
    • Mei M., et al. Genetic mapping and QTL analysis of fiber-related traits in cotton (Gossypium). Theor. Appl. Genet. 2004, 108:280-291.
    • (2004) Theor. Appl. Genet. , vol.108 , pp. 280-291
    • Mei, M.1
  • 104
    • 34447283003 scopus 로고    scopus 로고
    • A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium
    • Guo W., et al. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics 2007, 176:527-541.
    • (2007) Genetics , vol.176 , pp. 527-541
    • Guo, W.1
  • 105
    • 84892773410 scopus 로고    scopus 로고
    • MiR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development
    • Guan X., et al. miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat. Commun. 2014, 5:3050.
    • (2014) Nat. Commun. , vol.5 , pp. 3050
    • Guan, X.1
  • 106
    • 76249125348 scopus 로고    scopus 로고
    • Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L)
    • Pang M., et al. Genome-wide analysis reveals rapid and dynamic changes in miRNA and siRNA sequence and expression during ovule and fiber development in allotetraploid cotton (Gossypium hirsutum L). Genome Biol. 2009, 10:R122.
    • (2009) Genome Biol. , vol.10
    • Pang, M.1
  • 107
    • 10744225153 scopus 로고    scopus 로고
    • Asymmetry in the assembly of the RNAi enzyme complex
    • Schwarz D.S., et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003, 115:199-208.
    • (2003) Cell , vol.115 , pp. 199-208
    • Schwarz, D.S.1
  • 108
    • 1642374097 scopus 로고    scopus 로고
    • Specificity of microRNA target selection in translational repression
    • Doench J.G., Sharp P.A. Specificity of microRNA target selection in translational repression. Genes Dev. 2004, 18:504-511.
    • (2004) Genes Dev. , vol.18 , pp. 504-511
    • Doench, J.G.1    Sharp, P.A.2
  • 109
    • 60149086351 scopus 로고    scopus 로고
    • Origin, biogenesis, and activity of plant microRNAs
    • Voinnet O. Origin, biogenesis, and activity of plant microRNAs. Cell 2009, 136:669-687.
    • (2009) Cell , vol.136 , pp. 669-687
    • Voinnet, O.1
  • 110
    • 70350227275 scopus 로고    scopus 로고
    • Small RNAs and their roles in plant development
    • Chen X. Small RNAs and their roles in plant development. Annu. Rev. Cell Dev. Biol. 2009, 25:21-44.
    • (2009) Annu. Rev. Cell Dev. Biol. , vol.25 , pp. 21-44
    • Chen, X.1
  • 111
    • 0035955366 scopus 로고    scopus 로고
    • An extensive class of small RNAs in Caenorhabditis elegans
    • Lee R.C., Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001, 294:862-864.
    • (2001) Science , vol.294 , pp. 862-864
    • Lee, R.C.1    Ambros, V.2
  • 112
    • 0347444723 scopus 로고    scopus 로고
    • MicroRNAs: genomics, biogenesis, mechanism, and function
    • Bartel D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116:281-297.
    • (2004) Cell , vol.116 , pp. 281-297
    • Bartel, D.P.1
  • 113
    • 0038299558 scopus 로고    scopus 로고
    • Role of microRNAs in plant and animal development
    • Carrington J.C., Ambros V. Role of microRNAs in plant and animal development. Science 2003, 301:336-338.
    • (2003) Science , vol.301 , pp. 336-338
    • Carrington, J.C.1    Ambros, V.2
  • 114
    • 10644237968 scopus 로고    scopus 로고
    • RNAi-mediated pathways in the nucleus
    • Matzke M.A., Birchler J.A. RNAi-mediated pathways in the nucleus. Nat. Rev. Genet. 2005, 6:24-35.
    • (2005) Nat. Rev. Genet. , vol.6 , pp. 24-35
    • Matzke, M.A.1    Birchler, J.A.2
  • 115
    • 8144225486 scopus 로고    scopus 로고
    • MicroRNA genes are transcribed by RNA polymerase II
    • Lee Y., et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004, 23:4051-4060.
    • (2004) EMBO J. , vol.23 , pp. 4051-4060
    • Lee, Y.1
  • 116
    • 4644227434 scopus 로고    scopus 로고
    • Trans-splicing and polyadenylation of let-7 microRNA primary transcripts
    • Bracht J., et al. Trans-splicing and polyadenylation of let-7 microRNA primary transcripts. RNA 2004, 10:1586-1594.
    • (2004) RNA , vol.10 , pp. 1586-1594
    • Bracht, J.1
  • 117
    • 0141843656 scopus 로고    scopus 로고
    • The nuclear RNase III Drosha initiates microRNA processing
    • Lee Y., et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425:415-419.
    • (2003) Nature , vol.425 , pp. 415-419
    • Lee, Y.1
  • 118
    • 0037015239 scopus 로고    scopus 로고
    • CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana
    • Park W., et al. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr. Biol. 2002, 12:1484.
    • (2002) Curr. Biol. , vol.12 , pp. 1484
    • Park, W.1
  • 119
    • 13644256193 scopus 로고    scopus 로고
    • Methylation as a crucial step in plant microRNA biogenesis
    • Yu B., et al. Methylation as a crucial step in plant microRNA biogenesis. Science 2005, 307:932-935.
    • (2005) Science , vol.307 , pp. 932-935
    • Yu, B.1
  • 120
    • 23944493378 scopus 로고    scopus 로고
    • Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis
    • Li J., et al. Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr. Biol. 2005, 15:1501-1507.
    • (2005) Curr. Biol. , vol.15 , pp. 1501-1507
    • Li, J.1
  • 121
    • 14844339653 scopus 로고    scopus 로고
    • Nuclear processing and export of microRNAs in Arabidopsis
    • Park M.Y., et al. Nuclear processing and export of microRNAs in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:3691-3696.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 3691-3696
    • Park, M.Y.1
  • 122
    • 0347988235 scopus 로고    scopus 로고
    • Nuclear export of microRNA precursors
    • Lund E., et al. Nuclear export of microRNA precursors. Science 2004, 303:95-98.
    • (2004) Science , vol.303 , pp. 95-98
    • Lund, E.1
  • 123
    • 0347361541 scopus 로고    scopus 로고
    • Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs
    • Yi R., et al. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003, 17:3011-3016.
    • (2003) Genes Dev. , vol.17 , pp. 3011-3016
    • Yi, R.1
  • 124
    • 4444302947 scopus 로고    scopus 로고
    • Crystal structure of Argonaute and its implications for RISC slicer activity
    • Song J.J., et al. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 2004, 305:1434-1437.
    • (2004) Science , vol.305 , pp. 1434-1437
    • Song, J.J.1
  • 125
    • 23844550243 scopus 로고    scopus 로고
    • Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs
    • Baumberger N., Baulcombe D.C. Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:11928-11933.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 11928-11933
    • Baumberger, N.1    Baulcombe, D.C.2
  • 126
    • 55049138084 scopus 로고    scopus 로고
    • Interspecies regulation of microRNAs and their targets
    • Ha M., et al. Interspecies regulation of microRNAs and their targets. Biochim. Biophys. Acta 2008, 1779:735-742.
    • (2008) Biochim. Biophys. Acta , vol.1779 , pp. 735-742
    • Ha, M.1
  • 127
    • 84862777313 scopus 로고    scopus 로고
    • Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility
    • Ng D.W., et al. Big roles for small RNAs in polyploidy, hybrid vigor, and hybrid incompatibility. Curr. Opin. Plant Biol. 2012, 15:154-161.
    • (2012) Curr. Opin. Plant Biol. , vol.15 , pp. 154-161
    • Ng, D.W.1
  • 128
    • 9644272448 scopus 로고    scopus 로고
    • Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana
    • Allen E., et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat. Genet. 2004, 36:1282-1290.
    • (2004) Nat. Genet. , vol.36 , pp. 1282-1290
    • Allen, E.1
  • 129
    • 38949210837 scopus 로고    scopus 로고
    • Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family
    • Zhao N., et al. Structural, biochemical, and phylogenetic analyses suggest that indole-3-acetic acid methyltransferase is an evolutionarily ancient member of the SABATH family. Plant Physiol. 2008, 146:455-467.
    • (2008) Plant Physiol. , vol.146 , pp. 455-467
    • Zhao, N.1
  • 130
    • 0142027812 scopus 로고    scopus 로고
    • Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis
    • Shinoda T., Itoyama K. Juvenile hormone acid methyltransferase: a key regulatory enzyme for insect metamorphosis. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:11986-11991.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 11986-11991
    • Shinoda, T.1    Itoyama, K.2
  • 131
    • 35348862983 scopus 로고    scopus 로고
    • Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules
    • Wu Y., et al. Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules. Planta 2007, 226:1475-1490.
    • (2007) Planta , vol.226 , pp. 1475-1490
    • Wu, Y.1
  • 132
    • 0000932092 scopus 로고
    • The effects of plant growth substances on in vitro fiber development from unfertilized cotton ovules
    • Beasley C.A., Ting I.P. The effects of plant growth substances on in vitro fiber development from unfertilized cotton ovules. Am. J. Bot. 1974, 61:188-194.
    • (1974) Am. J. Bot. , vol.61 , pp. 188-194
    • Beasley, C.A.1    Ting, I.P.2
  • 133
    • 46649089702 scopus 로고    scopus 로고
    • Dwarf plants of diploid Medicago sativa carry a mutation in the gibberellin 3-beta-hydroxylase gene
    • Dalmadi A., et al. Dwarf plants of diploid Medicago sativa carry a mutation in the gibberellin 3-beta-hydroxylase gene. Plant Cell Rep. 2008, 27:1271-1279.
    • (2008) Plant Cell Rep. , vol.27 , pp. 1271-1279
    • Dalmadi, A.1
  • 134
    • 24944443408 scopus 로고    scopus 로고
    • Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes
    • Williams L., et al. Regulation of Arabidopsis shoot apical meristem and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development 2005, 132:3657-3668.
    • (2005) Development , vol.132 , pp. 3657-3668
    • Williams, L.1
  • 135
    • 4444363152 scopus 로고    scopus 로고
    • MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region
    • Mallory A.C., et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. EMBO J. 2004, 23:3356-3364.
    • (2004) EMBO J. , vol.23 , pp. 3356-3364
    • Mallory, A.C.1
  • 136
    • 17444430392 scopus 로고    scopus 로고
    • MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants
    • Allen E., et al. microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 2005, 121:207-221.
    • (2005) Cell , vol.121 , pp. 207-221
    • Allen, E.1
  • 137
    • 41149158475 scopus 로고    scopus 로고
    • Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation
    • Montgomery T.A., et al. Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 2008, 133:128-141.
    • (2008) Cell , vol.133 , pp. 128-141
    • Montgomery, T.A.1
  • 138
    • 4944225347 scopus 로고    scopus 로고
    • Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs
    • Vazquez F., et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell 2004, 16:69-79.
    • (2004) Mol. Cell , vol.16 , pp. 69-79
    • Vazquez, F.1
  • 139
    • 4644286235 scopus 로고    scopus 로고
    • SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis
    • Peragine A., et al. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 2004, 18:2368-2379.
    • (2004) Genes Dev. , vol.18 , pp. 2368-2379
    • Peragine, A.1
  • 140
    • 24644481318 scopus 로고    scopus 로고
    • DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana
    • Xie Z., et al. DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:12984-12989.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 12984-12989
    • Xie, Z.1
  • 141
    • 33750440526 scopus 로고    scopus 로고
    • A two-hit trigger for siRNA biogenesis in plants
    • Axtell M.J., et al. A two-hit trigger for siRNA biogenesis in plants. Cell 2006, 127:565-577.
    • (2006) Cell , vol.127 , pp. 565-577
    • Axtell, M.J.1
  • 142
    • 33646165249 scopus 로고    scopus 로고
    • Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis
    • Fahlgren N., et al. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr. Biol. 2006, 16:939-944.
    • (2006) Curr. Biol. , vol.16 , pp. 939-944
    • Fahlgren, N.1
  • 143
    • 33646191642 scopus 로고    scopus 로고
    • DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7
    • Adenot X., et al. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr. Biol. 2006, 16:927-932.
    • (2006) Curr. Biol. , vol.16 , pp. 927-932
    • Adenot, X.1
  • 144
    • 33845688601 scopus 로고    scopus 로고
    • A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana
    • Rajagopalan R., et al. A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 2006, 20:3407-3425.
    • (2006) Genes Dev. , vol.20 , pp. 3407-3425
    • Rajagopalan, R.1
  • 145
    • 84862232060 scopus 로고    scopus 로고
    • Apple miRNAs and tasiRNAs with novel regulatory networks
    • Xia R., et al. Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol. 2012, 13:R47.
    • (2012) Genome Biol. , vol.13
    • Xia, R.1
  • 146
    • 84865425907 scopus 로고    scopus 로고
    • An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis
    • Luo Q.J., et al. An autoregulatory feedback loop involving PAP1 and TAS4 in response to sugars in Arabidopsis. Plant Mol. Biol. 2012, 80:117-129.
    • (2012) Plant Mol. Biol. , vol.80 , pp. 117-129
    • Luo, Q.J.1
  • 147
    • 84866428079 scopus 로고    scopus 로고
    • MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding
    • Lin J.S., et al. MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New Phytol. 2012, 196:427-440.
    • (2012) New Phytol. , vol.196 , pp. 427-440
    • Lin, J.S.1
  • 148
    • 35348996554 scopus 로고    scopus 로고
    • Specialization and evolution of endogenous small RNA pathways
    • Chapman E.J., Carrington J.C. Specialization and evolution of endogenous small RNA pathways. Nat. Rev. Genet. 2007, 8:884-896.
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 884-896
    • Chapman, E.J.1    Carrington, J.C.2
  • 149
    • 4644242349 scopus 로고    scopus 로고
    • RNA silencing in plants
    • Baulcombe D. RNA silencing in plants. Nature 2004, 431:356-363.
    • (2004) Nature , vol.431 , pp. 356-363
    • Baulcombe, D.1
  • 150
    • 14844295120 scopus 로고    scopus 로고
    • RNA polymerase IV directs silencing of endogenous DNA
    • Herr A.J., et al. RNA polymerase IV directs silencing of endogenous DNA. Science 2005, 308:118-120.
    • (2005) Science , vol.308 , pp. 118-120
    • Herr, A.J.1
  • 151
    • 14844302397 scopus 로고    scopus 로고
    • Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation
    • Onodera Y., et al. Plant nuclear RNA polymerase IV mediates siRNA and DNA methylation-dependent heterochromatin formation. Cell 2005, 120:613-622.
    • (2005) Cell , vol.120 , pp. 613-622
    • Onodera, Y.1
  • 152
    • 79960729221 scopus 로고    scopus 로고
    • Silencing signals in plants: a long journey for small RNAs
    • Molnar A., et al. Silencing signals in plants: a long journey for small RNAs. Genome Biol. 2011, 12:215.
    • (2011) Genome Biol. , vol.12 , pp. 215
    • Molnar, A.1
  • 153
    • 77249170184 scopus 로고    scopus 로고
    • Establishing, maintaining and modifying DNA methylation patterns in plants and animals
    • Law J.A., Jacobsen S.E. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 2010, 11:204-220.
    • (2010) Nat. Rev. Genet. , vol.11 , pp. 204-220
    • Law, J.A.1    Jacobsen, S.E.2
  • 154
    • 79960716754 scopus 로고    scopus 로고
    • Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing
    • Haag J.R., Pikaard C.S. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing. Nat. Rev. Mol. Cell Biol. 2011, 12:483-492.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 483-492
    • Haag, J.R.1    Pikaard, C.S.2
  • 155
    • 0028031830 scopus 로고
    • RNA-directed de novo methylation of genomic sequences in plants
    • Wassenegger M., et al. RNA-directed de novo methylation of genomic sequences in plants. Cell 1994, 76:567-576.
    • (1994) Cell , vol.76 , pp. 567-576
    • Wassenegger, M.1
  • 156
    • 0037059080 scopus 로고    scopus 로고
    • RNA-directed DNA methylation in Arabidopsis
    • Aufsatz W., et al. RNA-directed DNA methylation in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 2002, 99(Suppl. 4):16499-16506.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , Issue.SUPPL. 4 , pp. 16499-16506
    • Aufsatz, W.1
  • 157
    • 67650461957 scopus 로고    scopus 로고
    • Uniparental expression of PolIV-dependent siRNAs in developing endosperm of Arabidopsis
    • Mosher R.A., et al. Uniparental expression of PolIV-dependent siRNAs in developing endosperm of Arabidopsis. Nature 2009, 460:283-286.
    • (2009) Nature , vol.460 , pp. 283-286
    • Mosher, R.A.1
  • 158
    • 84859464802 scopus 로고    scopus 로고
    • Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds
    • Lu J., et al. Maternal siRNAs as regulators of parental genome imbalance and gene expression in endosperm of Arabidopsis seeds. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:5529-5534.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 5529-5534
    • Lu, J.1
  • 159
    • 45849142231 scopus 로고    scopus 로고
    • RNAi of met1 reduces DNA methylation and induces genome-specific changes in gene expression and centromeric small RNA accumulation in Arabidopsis allopolyploids
    • Chen M., et al. RNAi of met1 reduces DNA methylation and induces genome-specific changes in gene expression and centromeric small RNA accumulation in Arabidopsis allopolyploids. Genetics 2008, 178:1845-1858.
    • (2008) Genetics , vol.178 , pp. 1845-1858
    • Chen, M.1
  • 160
    • 79952301195 scopus 로고    scopus 로고
    • Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor
    • Groszmann M., et al. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:2617-2622.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 2617-2622
    • Groszmann, M.1
  • 161
    • 77950346035 scopus 로고    scopus 로고
    • Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids
    • He G., et al. Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 2010, 22:17-33.
    • (2010) Plant Cell , vol.22 , pp. 17-33
    • He, G.1
  • 162
    • 84860109530 scopus 로고    scopus 로고
    • Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids
    • Shen H., et al. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 2012, 24:875-892.
    • (2012) Plant Cell , vol.24 , pp. 875-892
    • Shen, H.1
  • 163
    • 58249105076 scopus 로고    scopus 로고
    • Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids
    • Ni Z., et al. Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. Nature 2009, 457:327-331.
    • (2009) Nature , vol.457 , pp. 327-331
    • Ni, Z.1
  • 164
    • 53149149377 scopus 로고    scopus 로고
    • Identification of the candidate genes regulated by RNA-directed DNA methylation in Arabidopsis
    • Kurihara Y., et al. Identification of the candidate genes regulated by RNA-directed DNA methylation in Arabidopsis. Biochem. Biophys. Res. Commun. 2008, 376:553-557.
    • (2008) Biochem. Biophys. Res. Commun. , vol.376 , pp. 553-557
    • Kurihara, Y.1
  • 165
    • 33748629119 scopus 로고    scopus 로고
    • Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis
    • Zhang X., et al. Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 2006, 126:1189-1201.
    • (2006) Cell , vol.126 , pp. 1189-1201
    • Zhang, X.1
  • 166
    • 34249299791 scopus 로고    scopus 로고
    • The complex language of chromatin regulation during transcription
    • Berger S.L. The complex language of chromatin regulation during transcription. Nature 2007, 447:407-412.
    • (2007) Nature , vol.447 , pp. 407-412
    • Berger, S.L.1
  • 167
    • 33847070442 scopus 로고    scopus 로고
    • The role of chromatin during transcription
    • Li B., et al. The role of chromatin during transcription. Cell 2007, 128:707-719.
    • (2007) Cell , vol.128 , pp. 707-719
    • Li, B.1
  • 168
    • 42549085238 scopus 로고    scopus 로고
    • The epigenetic landscape of plants
    • Zhang X. The epigenetic landscape of plants. Science 2008, 320:489-492.
    • (2008) Science , vol.320 , pp. 489-492
    • Zhang, X.1
  • 169
    • 0035839136 scopus 로고    scopus 로고
    • Translating the histone code
    • Jenuwein T., Allis C.D. Translating the histone code. Science 2001, 293:1074-1080.
    • (2001) Science , vol.293 , pp. 1074-1080
    • Jenuwein, T.1    Allis, C.D.2
  • 170
    • 84879417659 scopus 로고    scopus 로고
    • Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1
    • Law J.A., et al. Polymerase IV occupancy at RNA-directed DNA methylation sites requires SHH1. Nature 2013, 498:385-389.
    • (2013) Nature , vol.498 , pp. 385-389
    • Law, J.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.