메뉴 건너뛰기




Volumn 39, Issue 7, 2014, Pages 328-340

'Black sheep' that don't leave the double-stranded RNA-binding domain fold

Author keywords

Degenerate dsRBDs; Divergent dsRBDs; Double stranded RNA binding domain; DsRBD protein interactions; MRNA decay; RNA metabolism

Indexed keywords

CELL PROTEIN; DEAH BOX HELICASE PROTEIN 30; DEAH BOX HELICASE PROTEIN 9; DICER; DIGEORGE SYNDROME CRITICAL REGION 8; DOUBLE STRANDED RNA; PROTEIN ACTIVATOR OF PROTEIN KINASE RNA ACTIVATED; STAUFEN 1; STAUFEN 2; TRANS ACTIVATION RESPONSIVE RNA BINDING PROTEIN 2; UNCLASSIFIED DRUG; PROTEIN BINDING; RNA BINDING PROTEIN;

EID: 84903459711     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2014.05.003     Document Type: Review
Times cited : (48)

References (100)
  • 1
    • 84878270899 scopus 로고    scopus 로고
    • RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence
    • Masliah G., et al. RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence. Cell. Mol. Life Sci. 2013, 70:1875-1895.
    • (2013) Cell. Mol. Life Sci. , vol.70 , pp. 1875-1895
    • Masliah, G.1
  • 2
    • 18544377013 scopus 로고    scopus 로고
    • The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression
    • Maris C., et al. The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 2005, 272:2118-2131.
    • (2005) FEBS J. , vol.272 , pp. 2118-2131
    • Maris, C.1
  • 3
    • 36849013062 scopus 로고    scopus 로고
    • A stepwise model for double-stranded RNA processing by ribonuclease III
    • Gan J., et al. A stepwise model for double-stranded RNA processing by ribonuclease III. Mol. Microbiol. 2008, 67:143-154.
    • (2008) Mol. Microbiol. , vol.67 , pp. 143-154
    • Gan, J.1
  • 4
    • 10044246238 scopus 로고    scopus 로고
    • The double-stranded-RNA-binding motif: interference and much more
    • Tian B., et al. The double-stranded-RNA-binding motif: interference and much more. Nat. Rev. Mol. Cell Biol. 2004, 5:1013-1023.
    • (2004) Nat. Rev. Mol. Cell Biol. , vol.5 , pp. 1013-1023
    • Tian, B.1
  • 5
    • 81855205059 scopus 로고    scopus 로고
    • ADAR proteins: double-stranded RNA and Z-DNA binding domains
    • Barraud P., Allain F.H. ADAR proteins: double-stranded RNA and Z-DNA binding domains. Curr. Top. Microbiol. Immunol. 2012, 353:35-60.
    • (2012) Curr. Top. Microbiol. Immunol. , vol.353 , pp. 35-60
    • Barraud, P.1    Allain, F.H.2
  • 6
    • 77957822421 scopus 로고    scopus 로고
    • The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove
    • Stefl R., et al. The solution structure of the ADAR2 dsRBM-RNA complex reveals a sequence-specific readout of the minor groove. Cell 2010, 143:225-237.
    • (2010) Cell , vol.143 , pp. 225-237
    • Stefl, R.1
  • 7
    • 0342723737 scopus 로고    scopus 로고
    • RNA recognition by a Staufen double-stranded RNA-binding domain
    • Ramos A., et al. RNA recognition by a Staufen double-stranded RNA-binding domain. EMBO J. 2000, 19:997-1009.
    • (2000) EMBO J. , vol.19 , pp. 997-1009
    • Ramos, A.1
  • 8
    • 79960173334 scopus 로고    scopus 로고
    • Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs
    • Wang Z., et al. Structure of a yeast RNase III dsRBD complex with a noncanonical RNA substrate provides new insights into binding specificity of dsRBDs. Structure 2011, 19:999-1010.
    • (2011) Structure , vol.19 , pp. 999-1010
    • Wang, Z.1
  • 9
    • 3042704491 scopus 로고    scopus 로고
    • Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III
    • Wu H., et al. Structural basis for recognition of the AGNN tetraloop RNA fold by the double-stranded RNA-binding domain of Rnt1p RNase III. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:8307-8312.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 8307-8312
    • Wu, H.1
  • 10
    • 0034687782 scopus 로고    scopus 로고
    • Straightening of bulged RNA by the double-stranded RNA-binding domain from the protein kinase PKR
    • Zheng X., Bevilacqua P.C. Straightening of bulged RNA by the double-stranded RNA-binding domain from the protein kinase PKR. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:14162-14167.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 14162-14167
    • Zheng, X.1    Bevilacqua, P.C.2
  • 11
    • 84871993643 scopus 로고    scopus 로고
    • ATP-independent diffusion of double-stranded RNA binding proteins
    • Koh H.R., et al. ATP-independent diffusion of double-stranded RNA binding proteins. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:151-156.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 151-156
    • Koh, H.R.1
  • 12
    • 0032535613 scopus 로고    scopus 로고
    • Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA
    • Ryter J.M., Schultz S.C. Molecular basis of double-stranded RNA-protein interactions: structure of a dsRNA-binding domain complexed with dsRNA. EMBO J. 1998, 17:7505-7513.
    • (1998) EMBO J. , vol.17 , pp. 7505-7513
    • Ryter, J.M.1    Schultz, S.C.2
  • 13
    • 84872873185 scopus 로고    scopus 로고
    • Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites
    • Hartman E., et al. Intrinsic dynamics of an extended hydrophobic core in the S. cerevisiae RNase III dsRBD contributes to recognition of specific RNA binding sites. J. Mol. Biol. 2013, 425:546-562.
    • (2013) J. Mol. Biol. , vol.425 , pp. 546-562
    • Hartman, E.1
  • 14
    • 84899935773 scopus 로고    scopus 로고
    • Structure of a eukaryotic RNase III postcleavage complex reveals a double-ruler mechanism for substrate selection
    • Liang Y.H., et al. Structure of a eukaryotic RNase III postcleavage complex reveals a double-ruler mechanism for substrate selection. Mol. Cell 2014, 54:431-444.
    • (2014) Mol. Cell , vol.54 , pp. 431-444
    • Liang, Y.H.1
  • 15
    • 0026480392 scopus 로고
    • A conserved double-stranded RNA-binding domain
    • St Johnston D., et al. A conserved double-stranded RNA-binding domain. Proc. Natl. Acad. Sci. U.S.A. 1992, 89:10979-10983.
    • (1992) Proc. Natl. Acad. Sci. U.S.A. , vol.89 , pp. 10979-10983
    • St Johnston, D.1
  • 16
    • 0029959285 scopus 로고    scopus 로고
    • Comparative mutational analysis of the double-stranded RNA binding domains of Xenopus laevis RNA-binding protein A
    • Krovat B.C., Jantsch M.F. Comparative mutational analysis of the double-stranded RNA binding domains of Xenopus laevis RNA-binding protein A. J. Biol. Chem. 1996, 271:28112-28119.
    • (1996) J. Biol. Chem. , vol.271 , pp. 28112-28119
    • Krovat, B.C.1    Jantsch, M.F.2
  • 17
    • 84876169592 scopus 로고    scopus 로고
    • Staufen1 dimerizes through a conserved motif and a degenerate dsRNA-binding domain to promote mRNA decay
    • Gleghorn M.L., et al. Staufen1 dimerizes through a conserved motif and a degenerate dsRNA-binding domain to promote mRNA decay. Nat. Struct. Mol. Biol. 2013, 20:515-524.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 515-524
    • Gleghorn, M.L.1
  • 18
    • 84869085954 scopus 로고    scopus 로고
    • Interdomain allostery promotes assembly of the poly(A) mRNA complex with PABP and eIF4G
    • Safaee N., et al. Interdomain allostery promotes assembly of the poly(A) mRNA complex with PABP and eIF4G. Mol. Cell 2012, 48:375-386.
    • (2012) Mol. Cell , vol.48 , pp. 375-386
    • Safaee, N.1
  • 19
    • 0031697802 scopus 로고    scopus 로고
    • The double-stranded RNA-binding domains of Xenopus laevis ADAR1 exhibit different RNA-binding behaviors
    • Brooks R., et al. The double-stranded RNA-binding domains of Xenopus laevis ADAR1 exhibit different RNA-binding behaviors. FEBS Lett. 1998, 434:121-126.
    • (1998) FEBS Lett. , vol.434 , pp. 121-126
    • Brooks, R.1
  • 20
    • 79961091137 scopus 로고    scopus 로고
    • Evolution of RNA-binding proteins in animals: insights from genome-wide analysis in the sponge Amphimedon queenslandica
    • Kerner P., et al. Evolution of RNA-binding proteins in animals: insights from genome-wide analysis in the sponge Amphimedon queenslandica. Mol. Biol. Evol. 2011, 28:2289-2303.
    • (2011) Mol. Biol. Evol. , vol.28 , pp. 2289-2303
    • Kerner, P.1
  • 21
    • 18444380595 scopus 로고    scopus 로고
    • The double-stranded RNA-binding motif, a versatile macromolecular docking platform
    • Chang K.Y., Ramos A. The double-stranded RNA-binding motif, a versatile macromolecular docking platform. FEBS J. 2005, 272:2109-2117.
    • (2005) FEBS J. , vol.272 , pp. 2109-2117
    • Chang, K.Y.1    Ramos, A.2
  • 22
    • 0036966283 scopus 로고    scopus 로고
    • New and old roles of the double-stranded RNA-binding domain
    • Doyle M., Jantsch M.F. New and old roles of the double-stranded RNA-binding domain. J. Struct. Biol. 2002, 140:147-153.
    • (2002) J. Struct. Biol. , vol.140 , pp. 147-153
    • Doyle, M.1    Jantsch, M.F.2
  • 23
    • 0034192148 scopus 로고    scopus 로고
    • Proteins binding to duplexed RNA: one motif, multiple functions
    • Fierro-Monti I., Mathews M.B. Proteins binding to duplexed RNA: one motif, multiple functions. Trends Biochem. Sci. 2000, 25:241-246.
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 241-246
    • Fierro-Monti, I.1    Mathews, M.B.2
  • 24
    • 84888426669 scopus 로고    scopus 로고
    • The central role of protein S12 in organizing the structure of the decoding site of the ribosome
    • Demirci H., et al. The central role of protein S12 in organizing the structure of the decoding site of the ribosome. RNA 2013, 19:1791-1801.
    • (2013) RNA , vol.19 , pp. 1791-1801
    • Demirci, H.1
  • 25
    • 0026687213 scopus 로고
    • The structure of ribosomal protein S5 reveals sites of interaction with 16S rRNA
    • Ramakrishnan V., White S.W. The structure of ribosomal protein S5 reveals sites of interaction with 16S rRNA. Nature 1992, 358:768-771.
    • (1992) Nature , vol.358 , pp. 768-771
    • Ramakrishnan, V.1    White, S.W.2
  • 26
    • 84867222475 scopus 로고    scopus 로고
    • Solution structure and siRNA-mediated knockdown analysis of the mitochondrial disease-related protein C12orf65
    • Kogure H., et al. Solution structure and siRNA-mediated knockdown analysis of the mitochondrial disease-related protein C12orf65. Proteins 2012, 80:2629-2642.
    • (2012) Proteins , vol.80 , pp. 2629-2642
    • Kogure, H.1
  • 27
    • 4143064788 scopus 로고    scopus 로고
    • Structural analyses of peptide release factor 1 from Thermotoga maritima reveal domain flexibility required for its interaction with the ribosome
    • Shin D.H., et al. Structural analyses of peptide release factor 1 from Thermotoga maritima reveal domain flexibility required for its interaction with the ribosome. J. Mol. Biol. 2004, 341:227-239.
    • (2004) J. Mol. Biol. , vol.341 , pp. 227-239
    • Shin, D.H.1
  • 28
    • 55849143658 scopus 로고    scopus 로고
    • Insights into translational termination from the structure of RF2 bound to the ribosome
    • Weixlbaumer A., et al. Insights into translational termination from the structure of RF2 bound to the ribosome. Science 2008, 322:953-956.
    • (2008) Science , vol.322 , pp. 953-956
    • Weixlbaumer, A.1
  • 29
    • 0029658119 scopus 로고    scopus 로고
    • Models for the 3(10)-helix/coil, pi-helix/coil, and alpha-helix/3(10)-helix/coil transitions in isolated peptides
    • Rohl C.A., Doig A.J. Models for the 3(10)-helix/coil, pi-helix/coil, and alpha-helix/3(10)-helix/coil transitions in isolated peptides. Protein Sci. 1996, 5:1687-1696.
    • (1996) Protein Sci. , vol.5 , pp. 1687-1696
    • Rohl, C.A.1    Doig, A.J.2
  • 30
    • 49649099901 scopus 로고    scopus 로고
    • Structural basis for translation termination on the 70S ribosome
    • Laurberg M., et al. Structural basis for translation termination on the 70S ribosome. Nature 2008, 454:852-857.
    • (2008) Nature , vol.454 , pp. 852-857
    • Laurberg, M.1
  • 31
    • 67650312585 scopus 로고    scopus 로고
    • Molecular basis of the inhibitor selectivity and insights into the feedback inhibition mechanism of citramalate synthase from Leptospira interrogans
    • Zhang P., et al. Molecular basis of the inhibitor selectivity and insights into the feedback inhibition mechanism of citramalate synthase from Leptospira interrogans. Biochem. J. 2009, 421:133-143.
    • (2009) Biochem. J. , vol.421 , pp. 133-143
    • Zhang, P.1
  • 32
    • 33750990797 scopus 로고    scopus 로고
    • DUF283 domain of Dicer proteins has a double-stranded RNA-binding fold
    • Dlakic M. DUF283 domain of Dicer proteins has a double-stranded RNA-binding fold. Bioinformatics 2006, 22:2711-2714.
    • (2006) Bioinformatics , vol.22 , pp. 2711-2714
    • Dlakic, M.1
  • 33
    • 77149143536 scopus 로고    scopus 로고
    • Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein-protein interaction
    • Qin H., et al. Structure of the Arabidopsis thaliana DCL4 DUF283 domain reveals a noncanonical double-stranded RNA-binding fold for protein-protein interaction. RNA 2010, 16:474-481.
    • (2010) RNA , vol.16 , pp. 474-481
    • Qin, H.1
  • 34
    • 84861214424 scopus 로고    scopus 로고
    • How hibernation factors RMF, HPF, and YfiA turn off protein synthesis
    • Polikanov Y.S., et al. How hibernation factors RMF, HPF, and YfiA turn off protein synthesis. Science 2012, 336:915-918.
    • (2012) Science , vol.336 , pp. 915-918
    • Polikanov, Y.S.1
  • 35
    • 80054907588 scopus 로고    scopus 로고
    • An extended dsRBD with a novel zinc-binding motif mediates nuclear retention of fission yeast Dicer
    • Barraud P., et al. An extended dsRBD with a novel zinc-binding motif mediates nuclear retention of fission yeast Dicer. EMBO J. 2011, 30:4223-4235.
    • (2011) EMBO J. , vol.30 , pp. 4223-4235
    • Barraud, P.1
  • 36
    • 34548480185 scopus 로고    scopus 로고
    • Crystal structure of human DGCR8 core
    • Sohn S.Y., et al. Crystal structure of human DGCR8 core. Nat. Struct. Mol. Biol. 2007, 14:847-853.
    • (2007) Nat. Struct. Mol. Biol. , vol.14 , pp. 847-853
    • Sohn, S.Y.1
  • 37
    • 79960186717 scopus 로고    scopus 로고
    • The inside-out mechanism of Dicers from budding yeasts
    • Weinberg D.E., et al. The inside-out mechanism of Dicers from budding yeasts. Cell 2011, 146:262-276.
    • (2011) Cell , vol.146 , pp. 262-276
    • Weinberg, D.E.1
  • 38
    • 78650763143 scopus 로고    scopus 로고
    • Structures of the first and second double-stranded RNA-binding domains of human TAR RNA-binding protein
    • Yamashita S., et al. Structures of the first and second double-stranded RNA-binding domains of human TAR RNA-binding protein. Protein Sci. 2011, 20:118-130.
    • (2011) Protein Sci. , vol.20 , pp. 118-130
    • Yamashita, S.1
  • 39
    • 70349939426 scopus 로고    scopus 로고
    • Structural insights into mechanisms of the small RNA methyltransferase HEN1
    • Huang Y., et al. Structural insights into mechanisms of the small RNA methyltransferase HEN1. Nature 2009, 461:823-827.
    • (2009) Nature , vol.461 , pp. 823-827
    • Huang, Y.1
  • 40
    • 0345628581 scopus 로고    scopus 로고
    • Mammalian staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to the rough endoplasmic reticulum
    • Wickham L., et al. Mammalian staufen is a double-stranded-RNA- and tubulin-binding protein which localizes to the rough endoplasmic reticulum. Mol. Cell. Biol. 1999, 19:2220-2230.
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 2220-2230
    • Wickham, L.1
  • 41
    • 0034653570 scopus 로고    scopus 로고
    • Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation
    • Micklem D.R., et al. Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO J. 2000, 19:1366-1377.
    • (2000) EMBO J. , vol.19 , pp. 1366-1377
    • Micklem, D.R.1
  • 42
    • 77149145510 scopus 로고    scopus 로고
    • Multimerization of Staufen1 in live cells
    • Martel C., et al. Multimerization of Staufen1 in live cells. RNA 2010, 16:585-597.
    • (2010) RNA , vol.16 , pp. 585-597
    • Martel, C.1
  • 43
    • 0035171849 scopus 로고    scopus 로고
    • Two rat brain staufen isoforms differentially bind RNA
    • Monshausen M., et al. Two rat brain staufen isoforms differentially bind RNA. J. Neurochem. 2001, 76:155-165.
    • (2001) J. Neurochem. , vol.76 , pp. 155-165
    • Monshausen, M.1
  • 44
    • 0029041105 scopus 로고
    • NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5
    • Bycroft M., et al. NMR solution structure of a dsRNA binding domain from Drosophila staufen protein reveals homology to the N-terminal domain of ribosomal protein S5. EMBO J. 1995, 14:3563-3571.
    • (1995) EMBO J. , vol.14 , pp. 3563-3571
    • Bycroft, M.1
  • 45
    • 84892797558 scopus 로고    scopus 로고
    • Architecture of the large subunit of the mammalian mitochondrial ribosome
    • Greber B.J., et al. Architecture of the large subunit of the mammalian mitochondrial ribosome. Nature 2013, 505:515-519.
    • (2013) Nature , vol.505 , pp. 515-519
    • Greber, B.J.1
  • 46
    • 24144457783 scopus 로고    scopus 로고
    • Interaction of Staufen1 with the 5' end of mRNA facilitates translation of these RNAs
    • Dugre-Brisson S., et al. Interaction of Staufen1 with the 5' end of mRNA facilitates translation of these RNAs. Nucleic Acids Res. 2005, 33:4797-4812.
    • (2005) Nucleic Acids Res. , vol.33 , pp. 4797-4812
    • Dugre-Brisson, S.1
  • 47
    • 0036685161 scopus 로고    scopus 로고
    • Molecular mapping of the determinants involved in human Staufen-ribosome association
    • Luo M., et al. Molecular mapping of the determinants involved in human Staufen-ribosome association. Biochem. J. 2002, 365:817-824.
    • (2002) Biochem. J. , vol.365 , pp. 817-824
    • Luo, M.1
  • 48
    • 84893725356 scopus 로고    scopus 로고
    • Staufen1 senses overall transcript secondary structure to regulate translation
    • Ricci E.P., et al. Staufen1 senses overall transcript secondary structure to regulate translation. Nat. Struct. Mol. Biol. 2014, 21:26-35.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 26-35
    • Ricci, E.P.1
  • 49
    • 84903464120 scopus 로고    scopus 로고
    • Ribosomal protein S5, ribosome biogenesis and translational fidelity
    • Springer Vienna, M. Rodnina (Ed.)
    • Roy-Chaudhuri B., et al. Ribosomal protein S5, ribosome biogenesis and translational fidelity. Ribosomes 2011, 263-270. Springer Vienna. M. Rodnina (Ed.).
    • (2011) Ribosomes , pp. 263-270
    • Roy-Chaudhuri, B.1
  • 50
    • 45849141942 scopus 로고    scopus 로고
    • Interactions between the double-stranded RNA-binding proteins TRBP and PACT define the Medipal domain that mediates protein-protein interactions
    • Laraki G., et al. Interactions between the double-stranded RNA-binding proteins TRBP and PACT define the Medipal domain that mediates protein-protein interactions. RNA Biol. 2008, 5:92-103.
    • (2008) RNA Biol. , vol.5 , pp. 92-103
    • Laraki, G.1
  • 51
    • 77954947916 scopus 로고    scopus 로고
    • Activation of the antiviral kinase PKR and viral countermeasures
    • Dauber B., Wolff T. Activation of the antiviral kinase PKR and viral countermeasures. Viruses 2009, 1:523-544.
    • (2009) Viruses , vol.1 , pp. 523-544
    • Dauber, B.1    Wolff, T.2
  • 52
    • 70349283034 scopus 로고    scopus 로고
    • ADAR1 interacts with PKR during human immunodeficiency virus infection of lymphocytes and contributes to viral replication
    • Clerzius G., et al. ADAR1 interacts with PKR during human immunodeficiency virus infection of lymphocytes and contributes to viral replication. J. Virol. 2009, 83:10119-10128.
    • (2009) J. Virol. , vol.83 , pp. 10119-10128
    • Clerzius, G.1
  • 53
    • 0034654227 scopus 로고    scopus 로고
    • A new double-stranded RNA-binding protein that interacts with PKR
    • Coolidge C.J., Patton J.G. A new double-stranded RNA-binding protein that interacts with PKR. Nucleic Acids Res. 2000, 28:1407-1417.
    • (2000) Nucleic Acids Res. , vol.28 , pp. 1407-1417
    • Coolidge, C.J.1    Patton, J.G.2
  • 54
    • 58149463628 scopus 로고    scopus 로고
    • TRBP control of PACT-induced phosphorylation of protein kinase R is reversed by stress
    • Daher A., et al. TRBP control of PACT-induced phosphorylation of protein kinase R is reversed by stress. Mol. Cell. Biol. 2009, 29:254-265.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 254-265
    • Daher, A.1
  • 55
    • 33846073016 scopus 로고    scopus 로고
    • Double-stranded RNA deaminase ADAR1 increases host susceptibility to virus infection
    • Nie Y., et al. Double-stranded RNA deaminase ADAR1 increases host susceptibility to virus infection. J. Virol. 2007, 81:917-923.
    • (2007) J. Virol. , vol.81 , pp. 917-923
    • Nie, Y.1
  • 56
    • 84898623891 scopus 로고    scopus 로고
    • NF90 exerts antiviral activity through regulation of PKR phosphorylation and stress granules in infected cells
    • Wen X., et al. NF90 exerts antiviral activity through regulation of PKR phosphorylation and stress granules in infected cells. J. Immunol. 2014, 192:3753-3764.
    • (2014) J. Immunol. , vol.192 , pp. 3753-3764
    • Wen, X.1
  • 57
    • 33745627468 scopus 로고    scopus 로고
    • Molecular basis for PKR activation by PACT or dsRNA
    • Li S., et al. Molecular basis for PKR activation by PACT or dsRNA. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:10005-10010.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 10005-10010
    • Li, S.1
  • 58
    • 84862756078 scopus 로고    scopus 로고
    • Molecular evolution of dihydrouridine synthases
    • Kasprzak J.M., et al. Molecular evolution of dihydrouridine synthases. BMC Bioinformatics 2012, 13:153.
    • (2012) BMC Bioinformatics , vol.13 , pp. 153
    • Kasprzak, J.M.1
  • 59
    • 39449113635 scopus 로고    scopus 로고
    • Interaction of human tRNA-dihydrouridine synthase-2 with interferon-induced protein kinase PKR
    • Mittelstadt M., et al. Interaction of human tRNA-dihydrouridine synthase-2 with interferon-induced protein kinase PKR. Nucleic Acids Res. 2008, 36:998-1008.
    • (2008) Nucleic Acids Res. , vol.36 , pp. 998-1008
    • Mittelstadt, M.1
  • 60
    • 4444248655 scopus 로고    scopus 로고
    • Oligomerization activity of a double-stranded RNA-binding domain
    • Hitti E.G., et al. Oligomerization activity of a double-stranded RNA-binding domain. FEBS Lett. 2004, 574:25-30.
    • (2004) FEBS Lett. , vol.574 , pp. 25-30
    • Hitti, E.G.1
  • 62
    • 84872195078 scopus 로고    scopus 로고
    • Staufen2 functions in Staufen1-mediated mRNA decay by binding to itself and its paralog and promoting UPF1 helicase but not ATPase activity
    • Park E., et al. Staufen2 functions in Staufen1-mediated mRNA decay by binding to itself and its paralog and promoting UPF1 helicase but not ATPase activity. Proc. Natl. Acad. Sci. U.S.A. 2013, 110:405-412.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 405-412
    • Park, E.1
  • 63
    • 77955119567 scopus 로고    scopus 로고
    • DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures
    • Faller M., et al. DGCR8 recognizes primary transcripts of microRNAs through highly cooperative binding and formation of higher-order structures. RNA 2010, 16:1570-1583.
    • (2010) RNA , vol.16 , pp. 1570-1583
    • Faller, M.1
  • 64
    • 84899893118 scopus 로고    scopus 로고
    • A bimodular nuclear localization signal assembled via an extended double-stranded RNA-binding domain acts as an RNA-sensing signal for transportin 1
    • Barraud P., et al. A bimodular nuclear localization signal assembled via an extended double-stranded RNA-binding domain acts as an RNA-sensing signal for transportin 1. Proc. Natl. Acad. Sci. U.S.A. 2014, 111:E1852-E1861.
    • (2014) Proc. Natl. Acad. Sci. U.S.A. , vol.111
    • Barraud, P.1
  • 65
    • 30044443622 scopus 로고    scopus 로고
    • Staufen1 is imported into the nucleolus via a bipartite nuclear localization signal and several modulatory determinants
    • Martel C., et al. Staufen1 is imported into the nucleolus via a bipartite nuclear localization signal and several modulatory determinants. Biochem. J. 2006, 393:245-254.
    • (2006) Biochem. J. , vol.393 , pp. 245-254
    • Martel, C.1
  • 66
    • 9144271779 scopus 로고    scopus 로고
    • Alternative splicing of Staufen2 creates the nuclear export signal for CRM1 (Exportin 1)
    • Miki T., Yoneda Y. Alternative splicing of Staufen2 creates the nuclear export signal for CRM1 (Exportin 1). J. Biol. Chem. 2004, 279:47473-47479.
    • (2004) J. Biol. Chem. , vol.279 , pp. 47473-47479
    • Miki, T.1    Yoneda, Y.2
  • 67
    • 78349307235 scopus 로고    scopus 로고
    • Substrate-specific kinetics of Dicer-catalyzed RNA processing
    • Chakravarthy S., et al. Substrate-specific kinetics of Dicer-catalyzed RNA processing. J. Mol. Biol. 2010, 404:392-402.
    • (2010) J. Mol. Biol. , vol.404 , pp. 392-402
    • Chakravarthy, S.1
  • 68
    • 84865727711 scopus 로고    scopus 로고
    • The multiple functions of TRBP, at the hub of cell responses to viruses, stress, and cancer
    • Daniels S.M., Gatignol A. The multiple functions of TRBP, at the hub of cell responses to viruses, stress, and cancer. Microbiol. Mol. Biol. Rev. 2012, 76:652-666.
    • (2012) Microbiol. Mol. Biol. Rev. , vol.76 , pp. 652-666
    • Daniels, S.M.1    Gatignol, A.2
  • 69
    • 56249098241 scopus 로고    scopus 로고
    • DsRNA binding properties of RDE-4 and TRBP reflect their distinct roles in RNAi
    • Parker G.S., et al. dsRNA binding properties of RDE-4 and TRBP reflect their distinct roles in RNAi. J. Mol. Biol. 2008, 384:967-979.
    • (2008) J. Mol. Biol. , vol.384 , pp. 967-979
    • Parker, G.S.1
  • 70
    • 70350783745 scopus 로고    scopus 로고
    • Structural insights into RNA processing by the human RISC-loading complex
    • Wang H.W., et al. Structural insights into RNA processing by the human RISC-loading complex. Nat. Struct. Mol. Biol. 2009, 16:1148-1153.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 1148-1153
    • Wang, H.W.1
  • 71
    • 32544460452 scopus 로고    scopus 로고
    • The role of PACT in the RNA silencing pathway
    • Lee Y., et al. The role of PACT in the RNA silencing pathway. EMBO J. 2006, 25:522-532.
    • (2006) EMBO J. , vol.25 , pp. 522-532
    • Lee, Y.1
  • 72
    • 23244467710 scopus 로고    scopus 로고
    • MicroRNAs: Loquacious speaks out
    • Leuschner P.J., et al. MicroRNAs: Loquacious speaks out. Curr. Biol. 2005, 15:R603-R605.
    • (2005) Curr. Biol. , vol.15
    • Leuschner, P.J.1
  • 73
    • 35349023128 scopus 로고    scopus 로고
    • Functional anatomy of the Drosophila microRNA-generating enzyme
    • Ye X., et al. Functional anatomy of the Drosophila microRNA-generating enzyme. J. Biol. Chem. 2007, 282:28373-28378.
    • (2007) J. Biol. Chem. , vol.282 , pp. 28373-28378
    • Ye, X.1
  • 74
    • 84876892072 scopus 로고    scopus 로고
    • ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing
    • Ota H., et al. ADAR1 forms a complex with Dicer to promote microRNA processing and RNA-induced gene silencing. Cell 2013, 153:575-589.
    • (2013) Cell , vol.153 , pp. 575-589
    • Ota, H.1
  • 75
    • 20244378840 scopus 로고    scopus 로고
    • Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana
    • Hiraguri A., et al. Specific interactions between Dicer-like proteins and HYL1/DRB-family dsRNA-binding proteins in Arabidopsis thaliana. Plant Mol. Biol. 2005, 57:173-188.
    • (2005) Plant Mol. Biol. , vol.57 , pp. 173-188
    • Hiraguri, A.1
  • 76
    • 79953011158 scopus 로고    scopus 로고
    • Specific requirement of DRB4, a dsRNA-binding protein, for the in vitro dsRNA-cleaving activity of Arabidopsis Dicer-like 4
    • Fukudome A., et al. Specific requirement of DRB4, a dsRNA-binding protein, for the in vitro dsRNA-cleaving activity of Arabidopsis Dicer-like 4. RNA 2011, 17:750-760.
    • (2011) RNA , vol.17 , pp. 750-760
    • Fukudome, A.1
  • 77
    • 84860113120 scopus 로고    scopus 로고
    • APC/C-mediated degradation of dsRNA-binding protein 4 (DRB4) involved in RNA silencing
    • Marrocco K., et al. APC/C-mediated degradation of dsRNA-binding protein 4 (DRB4) involved in RNA silencing. PLoS ONE 2012, 7:e35173.
    • (2012) PLoS ONE , vol.7
    • Marrocco, K.1
  • 78
    • 84859350087 scopus 로고    scopus 로고
    • RNAi keeps Atf1-bound stress response genes in check at nuclear pores
    • Woolcock K.J., et al. RNAi keeps Atf1-bound stress response genes in check at nuclear pores. Genes Dev. 2012, 26:683-692.
    • (2012) Genes Dev. , vol.26 , pp. 683-692
    • Woolcock, K.J.1
  • 79
    • 84887316535 scopus 로고    scopus 로고
    • A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis
    • Chen T., et al. A KH-domain RNA-binding protein interacts with FIERY2/CTD phosphatase-like 1 and splicing factors and is important for pre-mRNA splicing in Arabidopsis. PLoS Genet. 2013, 9:e1003875.
    • (2013) PLoS Genet. , vol.9
    • Chen, T.1
  • 80
    • 77955582184 scopus 로고    scopus 로고
    • SF1 and SF2 helicases: family matters
    • Fairman-Williams M.E., et al. SF1 and SF2 helicases: family matters. Curr. Opin. Struct. Biol. 2010, 20:313-324.
    • (2010) Curr. Opin. Struct. Biol. , vol.20 , pp. 313-324
    • Fairman-Williams, M.E.1
  • 81
    • 35748932681 scopus 로고    scopus 로고
    • Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells
    • Hock J., et al. Proteomic and functional analysis of Argonaute-containing mRNA-protein complexes in human cells. EMBO Rep. 2007, 8:1052-1060.
    • (2007) EMBO Rep. , vol.8 , pp. 1052-1060
    • Hock, J.1
  • 82
    • 43549116789 scopus 로고    scopus 로고
    • Functional analysis of dicer-2 missense mutations in the siRNA pathway of Drosophila
    • Lim do H., et al. Functional analysis of dicer-2 missense mutations in the siRNA pathway of Drosophila. Biochem. Biophys. Res. Commun. 2008, 371:525-530.
    • (2008) Biochem. Biophys. Res. Commun. , vol.371 , pp. 525-530
    • Lim do, H.1
  • 83
    • 0036671363 scopus 로고    scopus 로고
    • Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form
    • Kagawa W., et al. Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form. Mol. Cell 2002, 10:359-371.
    • (2002) Mol. Cell , vol.10 , pp. 359-371
    • Kagawa, W.1
  • 84
    • 0037108889 scopus 로고    scopus 로고
    • Structure of the single-strand annealing domain of human RAD52 protein
    • Singleton M.R., et al. Structure of the single-strand annealing domain of human RAD52 protein. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:13492-13497.
    • (2002) Proc. Natl. Acad. Sci. U.S.A. , vol.99 , pp. 13492-13497
    • Singleton, M.R.1
  • 85
    • 53049093612 scopus 로고    scopus 로고
    • Identification of a second DNA binding site in the human Rad52 protein
    • Kagawa W., et al. Identification of a second DNA binding site in the human Rad52 protein. J. Biol. Chem. 2008, 283:24264-24273.
    • (2008) J. Biol. Chem. , vol.283 , pp. 24264-24273
    • Kagawa, W.1
  • 86
    • 48149097525 scopus 로고    scopus 로고
    • Functional and structural basis for a bacteriophage homolog of human RAD52
    • Ploquin M., et al. Functional and structural basis for a bacteriophage homolog of human RAD52. Curr. Biol. 2008, 18:1142-1146.
    • (2008) Curr. Biol. , vol.18 , pp. 1142-1146
    • Ploquin, M.1
  • 87
    • 0030926002 scopus 로고    scopus 로고
    • The crystal structure of the signal recognition particle Alu RNA binding heterodimer, SRP9/14
    • Birse D.E., et al. The crystal structure of the signal recognition particle Alu RNA binding heterodimer, SRP9/14. EMBO J. 1997, 16:3757-3766.
    • (1997) EMBO J. , vol.16 , pp. 3757-3766
    • Birse, D.E.1
  • 88
    • 0034626729 scopus 로고    scopus 로고
    • Structure and assembly of the Alu domain of the mammalian signal recognition particle
    • Weichenrieder O., et al. Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature 2000, 408:167-173.
    • (2000) Nature , vol.408 , pp. 167-173
    • Weichenrieder, O.1
  • 89
    • 79951826865 scopus 로고    scopus 로고
    • The crystal structure of the signal recognition particle in complex with its receptor
    • Ataide S.F., et al. The crystal structure of the signal recognition particle in complex with its receptor. Science 2011, 331:881-886.
    • (2011) Science , vol.331 , pp. 881-886
    • Ataide, S.F.1
  • 90
    • 1542319100 scopus 로고    scopus 로고
    • Structure of the signal recognition particle interacting with the elongation-arrested ribosome
    • Halic M., et al. Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 2004, 427:808-814.
    • (2004) Nature , vol.427 , pp. 808-814
    • Halic, M.1
  • 91
    • 0036468678 scopus 로고    scopus 로고
    • Towards the structure of the mammalian signal recognition particle
    • Wild K., et al. Towards the structure of the mammalian signal recognition particle. Curr. Opin. Struct. Biol. 2002, 12:72-81.
    • (2002) Curr. Opin. Struct. Biol. , vol.12 , pp. 72-81
    • Wild, K.1
  • 92
    • 84872604349 scopus 로고    scopus 로고
    • Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5
    • Wu B., et al. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 2013, 152:276-289.
    • (2013) Cell , vol.152 , pp. 276-289
    • Wu, B.1
  • 93
    • 84867064003 scopus 로고    scopus 로고
    • Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p
    • Mallam A.L., et al. Structural basis for RNA-duplex recognition and unwinding by the DEAD-box helicase Mss116p. Nature 2012, 490:121-125.
    • (2012) Nature , vol.490 , pp. 121-125
    • Mallam, A.L.1
  • 94
    • 84872474666 scopus 로고    scopus 로고
    • Structure of histone mRNA stem-loop, human stem-loop binding protein, and 3'hExo ternary complex
    • Tan D., et al. Structure of histone mRNA stem-loop, human stem-loop binding protein, and 3'hExo ternary complex. Science 2013, 339:318-321.
    • (2013) Science , vol.339 , pp. 318-321
    • Tan, D.1
  • 95
    • 84876374789 scopus 로고    scopus 로고
    • Structural insights into RISC assembly facilitated by dsRNA-binding domains of human RNA helicase A (DHX9)
    • Fu Q., Yuan Y.A. Structural insights into RISC assembly facilitated by dsRNA-binding domains of human RNA helicase A (DHX9). Nucleic Acids Res. 2013, 41:3457-3470.
    • (2013) Nucleic Acids Res. , vol.41 , pp. 3457-3470
    • Fu, Q.1    Yuan, Y.A.2
  • 96
    • 77952633582 scopus 로고    scopus 로고
    • Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing
    • Yang S.W., et al. Structure of Arabidopsis HYPONASTIC LEAVES1 and its molecular implications for miRNA processing. Structure 2010, 18:594-605.
    • (2010) Structure , vol.18 , pp. 594-605
    • Yang, S.W.1
  • 97
    • 84892917225 scopus 로고    scopus 로고
    • Structure of RDE-4 dsRBDs and mutational studies provide insights into dsRNA recognition in the Caenorhabditis elegans RNAi pathway
    • Chiliveri S.C., Deshmukh M.V. Structure of RDE-4 dsRBDs and mutational studies provide insights into dsRNA recognition in the Caenorhabditis elegans RNAi pathway. Biochem. J. 2014, 458:119-130.
    • (2014) Biochem. J. , vol.458 , pp. 119-130
    • Chiliveri, S.C.1    Deshmukh, M.V.2
  • 98
    • 26444436343 scopus 로고    scopus 로고
    • Intermediate states of ribonuclease III in complex with double-stranded RNA
    • Gan J., et al. Intermediate states of ribonuclease III in complex with double-stranded RNA. Structure 2005, 13:1435-1442.
    • (2005) Structure , vol.13 , pp. 1435-1442
    • Gan, J.1
  • 99
    • 40649086065 scopus 로고    scopus 로고
    • Structural and biochemical insights into the dicing mechanism of mouse Dicer: a conserved lysine is critical for dsRNA cleavage
    • Du Z., et al. Structural and biochemical insights into the dicing mechanism of mouse Dicer: a conserved lysine is critical for dsRNA cleavage. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:2391-2396.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 2391-2396
    • Du, Z.1
  • 100
    • 33748462446 scopus 로고    scopus 로고
    • Miranda couples oskar mRNA/Staufen complexes to the bicoid mRNA localization pathway
    • Irion U., et al. Miranda couples oskar mRNA/Staufen complexes to the bicoid mRNA localization pathway. Dev. Biol. 2006, 297:522-533.
    • (2006) Dev. Biol. , vol.297 , pp. 522-533
    • Irion, U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.