-
1
-
-
0345444027
-
Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation
-
Hanein D., Matlack K.E.S., Jungnickel B., Plath K., Kalies K.-U., Miller K.R., Rapoport T.A., and Akey C.W. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 87 (1996) 721-732
-
(1996)
Cell
, vol.87
, pp. 721-732
-
-
Hanein, D.1
Matlack, K.E.S.2
Jungnickel, B.3
Plath, K.4
Kalies, K.-U.5
Miller, K.R.6
Rapoport, T.A.7
Akey, C.W.8
-
2
-
-
0031473345
-
Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex
-
Beckmann R., Bubeck D., Grassucci R., Penczek P., Verschoor A., Blobel G., and Frank J. Alignment of conduits for the nascent polypeptide chain in the ribosome-Sec61 complex. Science 278 (1997) 2123-2126
-
(1997)
Science
, vol.278
, pp. 2123-2126
-
-
Beckmann, R.1
Bubeck, D.2
Grassucci, R.3
Penczek, P.4
Verschoor, A.5
Blobel, G.6
Frank, J.7
-
3
-
-
0035798359
-
Architecture of the protein-conducting channel associated with the translating 80S ribosome
-
Beckmann R., Spahn C.M., Eswar N., Helmers J., Penczek P.A., Sali A., Frank J., and Blobel G. Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107 (2001) 361-372
-
(2001)
Cell
, vol.107
, pp. 361-372
-
-
Beckmann, R.1
Spahn, C.M.2
Eswar, N.3
Helmers, J.4
Penczek, P.A.5
Sali, A.6
Frank, J.7
Blobel, G.8
-
4
-
-
0033638455
-
The structure of ribosome-channel complexes engaged in protein translocation
-
Menetret J., Neuhof A., Morgan D.G., Plath K., Radermacher M., Rapoport T.A., and Akey C.W. The structure of ribosome-channel complexes engaged in protein translocation. Mol Cell 6 (2000) 1219-1232
-
(2000)
Mol Cell
, vol.6
, pp. 1219-1232
-
-
Menetret, J.1
Neuhof, A.2
Morgan, D.G.3
Plath, K.4
Radermacher, M.5
Rapoport, T.A.6
Akey, C.W.7
-
5
-
-
0030611388
-
The aqueous pore through the translocon has a diameter of 40-60 Å during cotranslational protein translocation at the ER membrane
-
Hamman B.D., Chen J.-C., Johnson E.E., and Johnson A.E. The aqueous pore through the translocon has a diameter of 40-60 Å during cotranslational protein translocation at the ER membrane. Cell 89 (1997) 535-544
-
(1997)
Cell
, vol.89
, pp. 535-544
-
-
Hamman, B.D.1
Chen, J.-C.2
Johnson, E.E.3
Johnson, A.E.4
-
6
-
-
0028064967
-
SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion
-
Economou A., and Wickner W. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78 (1994) 835-844
-
(1994)
Cell
, vol.78
, pp. 835-844
-
-
Economou, A.1
Wickner, W.2
-
7
-
-
0347192985
-
X-ray structure of a protein-conducting channel
-
Van den Berg B., Clemons Jr. W.M., Collinson I., Modis Y., Hartmann E., Harrison S.C., and Rapoport T.A. X-ray structure of a protein-conducting channel. Nature 427 (2004) 36-44
-
(2004)
Nature
, vol.427
, pp. 36-44
-
-
Van den Berg, B.1
Clemons Jr., W.M.2
Collinson, I.3
Modis, Y.4
Hartmann, E.5
Harrison, S.C.6
Rapoport, T.A.7
-
8
-
-
18544380083
-
Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY
-
Cannon K.S., Or E., Clemons Jr. W.M., Shibata Y., and Rapoport T.A. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J Cell Biol 169 (2005) 219-225
-
(2005)
J Cell Biol
, vol.169
, pp. 219-225
-
-
Cannon, K.S.1
Or, E.2
Clemons Jr., W.M.3
Shibata, Y.4
Rapoport, T.A.5
-
9
-
-
0032544614
-
Signal sequence recognition in posttranslational protein transport across the yeast ER membrane
-
Plath K., Mothes W., Wilkinson B.M., Stirling C.J., and Rapoport T.A. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94 (1998) 795-807
-
(1998)
Cell
, vol.94
, pp. 795-807
-
-
Plath, K.1
Mothes, W.2
Wilkinson, B.M.3
Stirling, C.J.4
Rapoport, T.A.5
-
10
-
-
0034697967
-
The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain
-
Heinrich S.U., Mothes W., Brunner J., and Rapoport T.A. The Sec61p complex mediates the integration of a membrane protein by allowing lipid partitioning of the transmembrane domain. Cell 102 (2000) 233-244
-
(2000)
Cell
, vol.102
, pp. 233-244
-
-
Heinrich, S.U.1
Mothes, W.2
Brunner, J.3
Rapoport, T.A.4
-
11
-
-
34848895197
-
Structural determinants of lateral gate opening in the protein translocon
-
Molecular dynamics simulations were used to address the energetics of translocation channel opening. Topics addressed include the role of the plug domain in channel stability, the potential penetration of phospholipids into the open channel, and the possible role of SecE as a clamp.
-
Gumbart J., and Schulten K. Structural determinants of lateral gate opening in the protein translocon. Biochemistry 46 (2007) 11147-11157. Molecular dynamics simulations were used to address the energetics of translocation channel opening. Topics addressed include the role of the plug domain in channel stability, the potential penetration of phospholipids into the open channel, and the possible role of SecE as a clamp.
-
(2007)
Biochemistry
, vol.46
, pp. 11147-11157
-
-
Gumbart, J.1
Schulten, K.2
-
12
-
-
0034631835
-
Role of the cytoplasmic segments of Sec61alpha in the ribosome-binding and translocation-promoting activities of the Sec61 complex
-
Raden D., Song W., and Gilmore R. Role of the cytoplasmic segments of Sec61alpha in the ribosome-binding and translocation-promoting activities of the Sec61 complex. J Cell Biol 150 (2000) 53-64
-
(2000)
J Cell Biol
, vol.150
, pp. 53-64
-
-
Raden, D.1
Song, W.2
Gilmore, R.3
-
13
-
-
12144272096
-
Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation
-
Cheng Z., Jiang Y., Mandon E.C., and Gilmore R. Identification of cytoplasmic residues of Sec61p involved in ribosome binding and cotranslational translocation. J Cell Biol 168 (2005) 67-77
-
(2005)
J Cell Biol
, vol.168
, pp. 67-77
-
-
Cheng, Z.1
Jiang, Y.2
Mandon, E.C.3
Gilmore, R.4
-
14
-
-
37349107850
-
Ribosome binding of a single copy of the SecY complex: implications for protein translocation
-
Menetret J.F., Schaletzky J., Clemons Jr. W.M., Osborne A.R., Skanland S.S., Denison C., Gygi S.P., Kirkpatrick D.S., Park E., Ludtke S.J., et al. Ribosome binding of a single copy of the SecY complex: implications for protein translocation. Mol Cell 28 (2007) 1083-1092
-
(2007)
Mol Cell
, vol.28
, pp. 1083-1092
-
-
Menetret, J.F.1
Schaletzky, J.2
Clemons Jr., W.M.3
Osborne, A.R.4
Skanland, S.S.5
Denison, C.6
Gygi, S.P.7
Kirkpatrick, D.S.8
Park, E.9
Ludtke, S.J.10
-
15
-
-
33746905934
-
Identification of two interaction sites in SecY that are important for the functional interaction with SecA
-
van der Sluis E.O., Nouwen N., Koch J., de Keyzer J., van der Does C., Tampe R., and Driessen A.J. Identification of two interaction sites in SecY that are important for the functional interaction with SecA. J Mol Biol 361 (2006) 839-849
-
(2006)
J Mol Biol
, vol.361
, pp. 839-849
-
-
van der Sluis, E.O.1
Nouwen, N.2
Koch, J.3
de Keyzer, J.4
van der Does, C.5
Tampe, R.6
Driessen, A.J.7
-
16
-
-
34247214427
-
Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA
-
Alami M., Dalal K., Lelj-Garolla B., Sligar S.G., and Duong F. Nanodiscs unravel the interaction between the SecYEG channel and its cytosolic partner SecA. EMBO J 26 (2007) 1995-2004
-
(2007)
EMBO J
, vol.26
, pp. 1995-2004
-
-
Alami, M.1
Dalal, K.2
Lelj-Garolla, B.3
Sligar, S.G.4
Duong, F.5
-
17
-
-
0035942263
-
An essential amino acid residue in the protein translocation channel revealed by targeted random mutagenesis of SecY
-
Mori H., and Ito K. An essential amino acid residue in the protein translocation channel revealed by targeted random mutagenesis of SecY. Proc Natl Acad Sci U S A 98 (2001) 5128-5133
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 5128-5133
-
-
Mori, H.1
Ito, K.2
-
18
-
-
34247112381
-
Arginine 357 of SecY is needed for SecA-dependent initiation of preprotein translocation
-
The authors show that the E. coli SecY (R357E) mutant is defective in SecA-dependent post-translational translocation, but not in SecA-dependent transport of a periplasmic domain of an inner membrane protein that is targeted to SecYEG by the Ffh-FtsY pathway. The authors propose that R357 is essential for the initiation of SecA-dependent translocation.
-
de Keyzer J., Regeling A., and Driessen A.J. Arginine 357 of SecY is needed for SecA-dependent initiation of preprotein translocation. FEBS Lett 581 (2007) 1859-1864. The authors show that the E. coli SecY (R357E) mutant is defective in SecA-dependent post-translational translocation, but not in SecA-dependent transport of a periplasmic domain of an inner membrane protein that is targeted to SecYEG by the Ffh-FtsY pathway. The authors propose that R357 is essential for the initiation of SecA-dependent translocation.
-
(2007)
FEBS Lett
, vol.581
, pp. 1859-1864
-
-
de Keyzer, J.1
Regeling, A.2
Driessen, A.J.3
-
19
-
-
54049111011
-
Structure of a complex of the ATPase SecA and the protein-translocation channel
-
The X-ray crystal structure of the SecA-SecYEG complex provides a model for a partially open SecYEG channel. A two-helix finger of SecA located next to cytoplasmic loops 6 and 8 of SecY initiates channel opening, and is poised to insert a precursor into the signal sequence-binding site of SecY.
-
Zimmer J., Nam Y., and Rapoport T.A. Structure of a complex of the ATPase SecA and the protein-translocation channel. Nature 455 (2008) 936-943. The X-ray crystal structure of the SecA-SecYEG complex provides a model for a partially open SecYEG channel. A two-helix finger of SecA located next to cytoplasmic loops 6 and 8 of SecY initiates channel opening, and is poised to insert a precursor into the signal sequence-binding site of SecY.
-
(2008)
Nature
, vol.455
, pp. 936-943
-
-
Zimmer, J.1
Nam, Y.2
Rapoport, T.A.3
-
20
-
-
54049151196
-
Conformational transition of Sec machinery inferred from bacterial SecYE structures
-
The X-ray crystal structure of a SecYE-Fab complex provides a model for a 'preopen' conformation of a translocation channel. The Fab binds to a sequence (P-G-I-R-P-G) in the tip of loop 8 of SecY that includes the arginine residue that is critical for SecA function (R357 in E. coli SecY). Contact sites between SecY and SecA were mapped by crosslinking experiments.
-
Tsukazaki T., Mori H., Fukai S., Ishitani R., Mori T., Dohmae N., Perederina A., Sugita Y., Vassylyev D.G., Ito K., et al. Conformational transition of Sec machinery inferred from bacterial SecYE structures. Nature 455 (2008) 988-991. The X-ray crystal structure of a SecYE-Fab complex provides a model for a 'preopen' conformation of a translocation channel. The Fab binds to a sequence (P-G-I-R-P-G) in the tip of loop 8 of SecY that includes the arginine residue that is critical for SecA function (R357 in E. coli SecY). Contact sites between SecY and SecA were mapped by crosslinking experiments.
-
(2008)
Nature
, vol.455
, pp. 988-991
-
-
Tsukazaki, T.1
Mori, H.2
Fukai, S.3
Ishitani, R.4
Mori, T.5
Dohmae, N.6
Perederina, A.7
Sugita, Y.8
Vassylyev, D.G.9
Ito, K.10
-
21
-
-
36048929458
-
A large conformational change couples the ATP binding site of SecA to the SecY protein channel
-
A peptide array was used to identify a SecA binding site at the base of loop 6. A fluorescent probe linked to a cysteine residue in SecY (K268C mutant) is quenched by SecA in the presence of a nonhydrolyzable ATP analog (e.g. AMPPNP), suggesting that SecYEG undergoes a conformational change upon binding of SecA-AMPPNP. Interestingly, the corresponding residue in T. maritima SecY (K264) is in direct contact with the essential tyrosine residue in the two-helix finger of SecA (Y781 in T. maritima SecA) in the SecA-SecYEG cocrystal.
-
Robson A., Booth A.E., Gold V.A., Clarke A.R., and Collinson I. A large conformational change couples the ATP binding site of SecA to the SecY protein channel. J Mol Biol 374 (2007) 965-976. A peptide array was used to identify a SecA binding site at the base of loop 6. A fluorescent probe linked to a cysteine residue in SecY (K268C mutant) is quenched by SecA in the presence of a nonhydrolyzable ATP analog (e.g. AMPPNP), suggesting that SecYEG undergoes a conformational change upon binding of SecA-AMPPNP. Interestingly, the corresponding residue in T. maritima SecY (K264) is in direct contact with the essential tyrosine residue in the two-helix finger of SecA (Y781 in T. maritima SecA) in the SecA-SecYEG cocrystal.
-
(2007)
J Mol Biol
, vol.374
, pp. 965-976
-
-
Robson, A.1
Booth, A.E.2
Gold, V.A.3
Clarke, A.R.4
Collinson, I.5
-
22
-
-
0025019705
-
The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins
-
Lill R., Dowhan W., and Wickner W. The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60 (1990) 271-280
-
(1990)
Cell
, vol.60
, pp. 271-280
-
-
Lill, R.1
Dowhan, W.2
Wickner, W.3
-
23
-
-
54049142467
-
A role for the two-helix finger of the SecA ATPase in protein translocation
-
The role of the two-helix finger in SecA is tested by site directed mutagenesis and disulfide bridge crosslinking. The authors identify a highly conserved aromatic residue (Y794 in E. coli SecY) that is at the tip of the two-finger helix. Disulfide bridge crosslinking shows that the two-finger helix contacts precursors entering the SecY pore.
-
Erlandson K.J., Miller S.B., Nam Y., Osborne A.R., Zimmer J., and Rapoport T.A. A role for the two-helix finger of the SecA ATPase in protein translocation. Nature 455 (2008) 984-987. The role of the two-helix finger in SecA is tested by site directed mutagenesis and disulfide bridge crosslinking. The authors identify a highly conserved aromatic residue (Y794 in E. coli SecY) that is at the tip of the two-finger helix. Disulfide bridge crosslinking shows that the two-finger helix contacts precursors entering the SecY pore.
-
(2008)
Nature
, vol.455
, pp. 984-987
-
-
Erlandson, K.J.1
Miller, S.B.2
Nam, Y.3
Osborne, A.R.4
Zimmer, J.5
Rapoport, T.A.6
-
24
-
-
47049095095
-
Analysis of polypeptide movement in the SecY channel during SecA-mediated protein translocation
-
Erlandson K.J., Or E., Osborne A.R., and Rapoport T.A. Analysis of polypeptide movement in the SecY channel during SecA-mediated protein translocation. J Biol Chem 283 (2008) 15709-15715
-
(2008)
J Biol Chem
, vol.283
, pp. 15709-15715
-
-
Erlandson, K.J.1
Or, E.2
Osborne, A.R.3
Rapoport, T.A.4
-
25
-
-
36049046667
-
Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR
-
Using NMR spectroscopy, the authors show that signal peptides adopt an α-helical conformation when bound to SecA. A preprotein binding groove is localized to the surface of the PBD domain.
-
Gelis I., Bonvin A.M., Keramisanou D., Koukaki M., Gouridis G., Karamanou S., Economou A., and Kalodimos C.G. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131 (2007) 756-769. Using NMR spectroscopy, the authors show that signal peptides adopt an α-helical conformation when bound to SecA. A preprotein binding groove is localized to the surface of the PBD domain.
-
(2007)
Cell
, vol.131
, pp. 756-769
-
-
Gelis, I.1
Bonvin, A.M.2
Keramisanou, D.3
Koukaki, M.4
Gouridis, G.5
Karamanou, S.6
Economou, A.7
Kalodimos, C.G.8
-
26
-
-
49349084439
-
SecA, the motor of the secretion machine, binds diverse partners on one interactive surface
-
The authors use site-specific spin labeling of SecA and electron paramagnetic resonance spectroscopy to map binding sites on SecA for a preprotein, SecB and SecYEG. The binding sites are partially overlapping and map to a cleft between the preprotein-binding domain and nucleotide-binding domain 2 (NBD2).
-
Cooper D.B., Smith V.F., Crane J.M., Roth H.C., Lilly A.A., and Randall L.L. SecA, the motor of the secretion machine, binds diverse partners on one interactive surface. J Mol Biol 382 (2008) 74-87. The authors use site-specific spin labeling of SecA and electron paramagnetic resonance spectroscopy to map binding sites on SecA for a preprotein, SecB and SecYEG. The binding sites are partially overlapping and map to a cleft between the preprotein-binding domain and nucleotide-binding domain 2 (NBD2).
-
(2008)
J Mol Biol
, vol.382
, pp. 74-87
-
-
Cooper, D.B.1
Smith, V.F.2
Crane, J.M.3
Roth, H.C.4
Lilly, A.A.5
Randall, L.L.6
-
28
-
-
27144525002
-
Investigating the SecY plug movement at the SecYEG translocation channel
-
Tam P.C., Maillard A.P., Chan K.K., and Duong F. Investigating the SecY plug movement at the SecYEG translocation channel. EMBO J 24 (2005) 3380-3388
-
(2005)
EMBO J
, vol.24
, pp. 3380-3388
-
-
Tam, P.C.1
Maillard, A.P.2
Chan, K.K.3
Duong, F.4
-
29
-
-
57749186222
-
Synthetic peptides identify a second periplasmic site for the plug of the SecYEG protein translocation complex
-
Robson A., Carr B., Sessions R.B., and Collinson I. Synthetic peptides identify a second periplasmic site for the plug of the SecYEG protein translocation complex. FEBS Lett 583 (2009) 207-212
-
(2009)
FEBS Lett
, vol.583
, pp. 207-212
-
-
Robson, A.1
Carr, B.2
Sessions, R.B.3
Collinson, I.4
-
30
-
-
0027985063
-
Secretory proteins move through the endoplasmic reticulum via an aqueous, gated pore
-
Crowley K.S., Liao S., Worrell V.E., Reinhart G.D., and Johnson A.E. Secretory proteins move through the endoplasmic reticulum via an aqueous, gated pore. Cell 78 (1994) 461-471
-
(1994)
Cell
, vol.78
, pp. 461-471
-
-
Crowley, K.S.1
Liao, S.2
Worrell, V.E.3
Reinhart, G.D.4
Johnson, A.E.5
-
31
-
-
35648929979
-
The active protein-conducting channel of Escherichia coli contains an apolar patch
-
Bol R., de Wit J.G., and Driessen A.J. The active protein-conducting channel of Escherichia coli contains an apolar patch. J Biol Chem 282 (2007) 29785-29793
-
(2007)
J Biol Chem
, vol.282
, pp. 29785-29793
-
-
Bol, R.1
de Wit, J.G.2
Driessen, A.J.3
-
32
-
-
33750844195
-
Different modes of SecY-SecA interactions revealed by site-directed in vivo photo-cross-linking
-
Mori H., and Ito K. Different modes of SecY-SecA interactions revealed by site-directed in vivo photo-cross-linking. Proc Natl Acad Sci U S A 103 (2006) 16159-16164
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, pp. 16159-16164
-
-
Mori, H.1
Ito, K.2
-
33
-
-
33947717366
-
Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel
-
Osborne A.R., and Rapoport T.A. Protein translocation is mediated by oligomers of the SecY complex with one SecY copy forming the channel. Cell 129 (2007) 97-110
-
(2007)
Cell
, vol.129
, pp. 97-110
-
-
Osborne, A.R.1
Rapoport, T.A.2
-
34
-
-
33748300566
-
The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability
-
Junne T., Schwede T., Goder V., and Spiess M. The plug domain of yeast Sec61p is important for efficient protein translocation, but is not essential for cell viability. Mol Biol Cell 17 (2006) 4063-4068
-
(2006)
Mol Biol Cell
, vol.17
, pp. 4063-4068
-
-
Junne, T.1
Schwede, T.2
Goder, V.3
Spiess, M.4
-
35
-
-
33847698213
-
Deregulation of the SecYEG translocation channel upon removal of the plug domain
-
The authors show that the plug domain of E. coli SecY is not essential. However, the deletion of the plug domain reduces the stability of SecYEG and causes a prlA phenotype. Locking the plug domain in the closed conformation via a disulfide inactivates the channel.
-
Maillard A.P., Lalani S., Silva F., Belin D., and Duong F. Deregulation of the SecYEG translocation channel upon removal of the plug domain. J Biol Chem 282 (2007) 1281-1287. The authors show that the plug domain of E. coli SecY is not essential. However, the deletion of the plug domain reduces the stability of SecYEG and causes a prlA phenotype. Locking the plug domain in the closed conformation via a disulfide inactivates the channel.
-
(2007)
J Biol Chem
, vol.282
, pp. 1281-1287
-
-
Maillard, A.P.1
Lalani, S.2
Silva, F.3
Belin, D.4
Duong, F.5
-
36
-
-
34248523155
-
The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal
-
Li W., Schulman S., Boyd D., Erlandson K., Beckwith J., and Rapoport T.A. The plug domain of the SecY protein stabilizes the closed state of the translocation channel and maintains a membrane seal. Mol Cell 26 (2007) 511-521
-
(2007)
Mol Cell
, vol.26
, pp. 511-521
-
-
Li, W.1
Schulman, S.2
Boyd, D.3
Erlandson, K.4
Beckwith, J.5
Rapoport, T.A.6
-
37
-
-
36349034451
-
Mutations in the Sec61p channel affecting signal sequence recognition and membrane protein topology
-
A screen for S. cerevisiae Sec61 mutants that display reduced topological fidelity of membrane protein integration yields new sec61 mutants, several of which map to the lateral gate (TM2 and TM7) or to the plug domain. The plug domain deletion, and point mutants in the lateral gate and plug domain, cause a prlA-like phenotype in yeast.
-
Junne T., Schwede T., Goder V., and Spiess M. Mutations in the Sec61p channel affecting signal sequence recognition and membrane protein topology. J Biol Chem 282 (2007) 33201-33209. A screen for S. cerevisiae Sec61 mutants that display reduced topological fidelity of membrane protein integration yields new sec61 mutants, several of which map to the lateral gate (TM2 and TM7) or to the plug domain. The plug domain deletion, and point mutants in the lateral gate and plug domain, cause a prlA-like phenotype in yeast.
-
(2007)
J Biol Chem
, vol.282
, pp. 33201-33209
-
-
Junne, T.1
Schwede, T.2
Goder, V.3
Spiess, M.4
-
38
-
-
34248563028
-
Determining the conductance of the SecY protein translocation channel for small molecules
-
E. coli SecY plug domain deletion mutants are incorporated into planar lipid bilayers, and channel conductance is measured. Wild-type channels in the closed conformation are impermeable to ions, unlike the plug domain deletion mutants that display transient channel openings. The authors conclude that both the narrow pore ring and the plug of SecY are required to maintain the membrane permeability barrier.
-
Saparov S.M., Erlandson K., Cannon K., Schaletzky J., Schulman S., Rapoport T.A., and Pohl P. Determining the conductance of the SecY protein translocation channel for small molecules. Mol Cell 26 (2007) 501-509. E. coli SecY plug domain deletion mutants are incorporated into planar lipid bilayers, and channel conductance is measured. Wild-type channels in the closed conformation are impermeable to ions, unlike the plug domain deletion mutants that display transient channel openings. The authors conclude that both the narrow pore ring and the plug of SecY are required to maintain the membrane permeability barrier.
-
(2007)
Mol Cell
, vol.26
, pp. 501-509
-
-
Saparov, S.M.1
Erlandson, K.2
Cannon, K.3
Schaletzky, J.4
Schulman, S.5
Rapoport, T.A.6
Pohl, P.7
-
39
-
-
0025039566
-
SecE-dependent overproduction of SecY in Escherichia coli. Evidence for interaction between two components of the secretory machinery
-
Matsuyama S., Akimaru J., and Mizushima S. SecE-dependent overproduction of SecY in Escherichia coli. Evidence for interaction between two components of the secretory machinery. FEBS Lett 269 (1990) 96-100
-
(1990)
FEBS Lett
, vol.269
, pp. 96-100
-
-
Matsuyama, S.1
Akimaru, J.2
Mizushima, S.3
-
40
-
-
0028151096
-
SSS1 encodes a stabilizing component of the Sec61 subcomplex of the yeast protein translocation apparatus
-
Esnault Y., Feldheim D., Blondel M.-O., Schekman R., and Képes F. SSS1 encodes a stabilizing component of the Sec61 subcomplex of the yeast protein translocation apparatus. J Biol Chem 269 (1994) 27478-27485
-
(1994)
J Biol Chem
, vol.269
, pp. 27478-27485
-
-
Esnault, Y.1
Feldheim, D.2
Blondel, M.-O.3
Schekman, R.4
Képes, F.5
-
41
-
-
24944458963
-
Atomic model of the E. coli membrane-bound protein translocation complex SecYEG
-
Bostina M., Mohsin B., Kuhlbrandt W., and Collinson I. Atomic model of the E. coli membrane-bound protein translocation complex SecYEG. J Mol Biol 352 (2005) 1035-1043
-
(2005)
J Mol Biol
, vol.352
, pp. 1035-1043
-
-
Bostina, M.1
Mohsin, B.2
Kuhlbrandt, W.3
Collinson, I.4
-
42
-
-
0036500974
-
The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure
-
Bessonneau P., Besson V., Collinson I., and Duong F. The SecYEG preprotein translocation channel is a conformationally dynamic and dimeric structure. EMBO J 21 (2002) 995-1003
-
(2002)
EMBO J
, vol.21
, pp. 995-1003
-
-
Bessonneau, P.1
Besson, V.2
Collinson, I.3
Duong, F.4
-
43
-
-
33845403419
-
Oligomeric states of the SecA and SecYEG core components of the bacterial Sec translocon
-
Rusch S.L., and Kendall D.A. Oligomeric states of the SecA and SecYEG core components of the bacterial Sec translocon. Biochim Biophys Acta 1768 (2007) 5-12
-
(2007)
Biochim Biophys Acta
, vol.1768
, pp. 5-12
-
-
Rusch, S.L.1
Kendall, D.A.2
-
44
-
-
0029881380
-
A second trimeric complex containing homologues of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae
-
Finke K., Plath K., Panzer S., Prehn S., Rapoport T.A., Hartmann E., and Sommer T. A second trimeric complex containing homologues of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae. EMBO J 15 (1996) 1482-1494
-
(1996)
EMBO J
, vol.15
, pp. 1482-1494
-
-
Finke, K.1
Plath, K.2
Panzer, S.3
Prehn, S.4
Rapoport, T.A.5
Hartmann, E.6
Sommer, T.7
-
45
-
-
0028241570
-
Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature
-
Nishiyama K., Hanada M., and Tokuda H. Disruption of the gene encoding p12 (SecG) reveals the direct involvement and important function of SecG in the protein translocation of Escherichia coli at low temperature. EMBO J 13 (1994) 3272-3277
-
(1994)
EMBO J
, vol.13
, pp. 3272-3277
-
-
Nishiyama, K.1
Hanada, M.2
Tokuda, H.3
-
46
-
-
41549097803
-
An interaction between the SRP receptor and the translocon is critical during cotranslational protein translocation
-
The role of the S. cerevisiae translocon β-subunits (Sbh1 and Sbh2) was investigated. The authors present genetic evidence for an interaction between the SRP receptor and Sbh2p. The growth defect caused by the deletion of Sbh1p and Sbh2p can be suppressed by expression of the TM domain of Sbh2p. However, the in vivo kinetics of channel gating is retarded by the deletion of the cytosolic domain of the translocon β-subunit.
-
Jiang Y., Cheng Z., Mandon E.C., and Gilmore R. An interaction between the SRP receptor and the translocon is critical during cotranslational protein translocation. J Cell Biol 180 (2008) 1149-1161. The role of the S. cerevisiae translocon β-subunits (Sbh1 and Sbh2) was investigated. The authors present genetic evidence for an interaction between the SRP receptor and Sbh2p. The growth defect caused by the deletion of Sbh1p and Sbh2p can be suppressed by expression of the TM domain of Sbh2p. However, the in vivo kinetics of channel gating is retarded by the deletion of the cytosolic domain of the translocon β-subunit.
-
(2008)
J Cell Biol
, vol.180
, pp. 1149-1161
-
-
Jiang, Y.1
Cheng, Z.2
Mandon, E.C.3
Gilmore, R.4
-
47
-
-
57549089212
-
Inter-species complementation of the translocon beta subunit requires only its transmembrane domain
-
Leroux A., and Rokeach L.A. Inter-species complementation of the translocon beta subunit requires only its transmembrane domain. PLoS ONE 3 (2008) e3880
-
(2008)
PLoS ONE
, vol.3
-
-
Leroux, A.1
Rokeach, L.A.2
-
48
-
-
35649013761
-
The transmembrane domain is sufficient for Sbh1p function, its association with the Sec61 complex, and interaction with Rtn1p
-
Feng D., Zhao X., Soromani C., Toikkanen J., Romisch K., Vembar S.S., Brodsky J.L., Keranen S., and Jantti J. The transmembrane domain is sufficient for Sbh1p function, its association with the Sec61 complex, and interaction with Rtn1p. J Biol Chem 282 (2007) 30618-30628
-
(2007)
J Biol Chem
, vol.282
, pp. 30618-30628
-
-
Feng, D.1
Zhao, X.2
Soromani, C.3
Toikkanen, J.4
Romisch, K.5
Vembar, S.S.6
Brodsky, J.L.7
Keranen, S.8
Jantti, J.9
-
49
-
-
0030825974
-
Molecular mechanism of membrane protein integration into the endoplasmic reticulum
-
Mothes W., Heinrich S.U., Graf R., Nilsson I.M., von Heijne G., Brunner J., and Rapoport T.A. Molecular mechanism of membrane protein integration into the endoplasmic reticulum. Cell 89 (1997) 523-533
-
(1997)
Cell
, vol.89
, pp. 523-533
-
-
Mothes, W.1
Heinrich, S.U.2
Graf, R.3
Nilsson, I.M.4
von Heijne, G.5
Brunner, J.6
Rapoport, T.A.7
-
50
-
-
1542358892
-
Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins
-
Woolhead C.A., McCormick P.J., and Johnson A.E. Nascent membrane and secretory proteins differ in FRET-detected folding far inside the ribosome and in their exposure to ribosomal proteins. Cell 116 (2004) 725-736
-
(2004)
Cell
, vol.116
, pp. 725-736
-
-
Woolhead, C.A.1
McCormick, P.J.2
Johnson, A.E.3
-
51
-
-
13444262028
-
Recognition of transmembrane helices by the endoplasmic reticulum translocon
-
Hessa T., Kim H., Bihlmaier K., Lundin C., Boekel J., Andersson H., Nilsson I., White S.H., and von Heijne G. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433 (2005) 377-381
-
(2005)
Nature
, vol.433
, pp. 377-381
-
-
Hessa, T.1
Kim, H.2
Bihlmaier, K.3
Lundin, C.4
Boekel, J.5
Andersson, H.6
Nilsson, I.7
White, S.H.8
von Heijne, G.9
-
53
-
-
0042815085
-
Cooperation of transmembrane segments during the integration of a double-spanning protein into the ER membrane
-
Heinrich S.U., and Rapoport T.A. Cooperation of transmembrane segments during the integration of a double-spanning protein into the ER membrane. EMBO J 22 (2003) 3654-3663
-
(2003)
EMBO J
, vol.22
, pp. 3654-3663
-
-
Heinrich, S.U.1
Rapoport, T.A.2
-
54
-
-
33749518904
-
Slow translocon gating causes cytosolic exposure of transmembrane and lumenal domains during membrane protein integration
-
Cheng Z., and Gilmore R. Slow translocon gating causes cytosolic exposure of transmembrane and lumenal domains during membrane protein integration. Nat Struct Mol Biol 13 (2006) 930-936
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 930-936
-
-
Cheng, Z.1
Gilmore, R.2
-
55
-
-
27144549973
-
Sequential triage of transmembrane segments by Sec61alpha during biogenesis of a native multispanning membrane protein
-
Sadlish H., Pitonzo D., Johnson A.E., and Skach W.R. Sequential triage of transmembrane segments by Sec61alpha during biogenesis of a native multispanning membrane protein. Nat Struct Mol Biol 12 (2005) 870-878
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 870-878
-
-
Sadlish, H.1
Pitonzo, D.2
Johnson, A.E.3
Skach, W.R.4
-
56
-
-
0033605757
-
SecA is required for the insertion of inner membrane proteins targeted by the Escherichia coli signal recognition particle
-
Qi H.Y., and Bernstein H.D. SecA is required for the insertion of inner membrane proteins targeted by the Escherichia coli signal recognition particle. J Biol Chem 274 (1999) 8993-8997
-
(1999)
J Biol Chem
, vol.274
, pp. 8993-8997
-
-
Qi, H.Y.1
Bernstein, H.D.2
-
57
-
-
0030970268
-
Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by BiP
-
Lyman S.K., and Schekman R. Binding of secretory precursor polypeptides to a translocon subcomplex is regulated by BiP. Cell 88 (1997) 85-96
-
(1997)
Cell
, vol.88
, pp. 85-96
-
-
Lyman, S.K.1
Schekman, R.2
-
58
-
-
0028997459
-
Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p
-
Panzner S., Dreier L., Hartmann E., Kostka S., and Rapoport T.A. Posttranslational protein transport in yeast reconstituted with a purified complex of Sec proteins and Kar2p. Cell 81 (1995) 561-570
-
(1995)
Cell
, vol.81
, pp. 561-570
-
-
Panzner, S.1
Dreier, L.2
Hartmann, E.3
Kostka, S.4
Rapoport, T.A.5
|