-
1
-
-
0037443771
-
A review of process fault detection and diagnosis: part II: qualitative models and search strategies
-
Venkatasubramanian V., Rengaswamy R., Kavuri S.N. A review of process fault detection and diagnosis: part II: qualitative models and search strategies. Comput. Chem. Eng. 2003, 27:313-326.
-
(2003)
Comput. Chem. Eng.
, vol.27
, pp. 313-326
-
-
Venkatasubramanian, V.1
Rengaswamy, R.2
Kavuri, S.N.3
-
2
-
-
0037443803
-
A review of process fault detection and diagnosis: part III: process history based methods
-
Venkatasubramanian V., Rengaswamy R., Kavuri S.N., Yin K. A review of process fault detection and diagnosis: part III: process history based methods. Comput. Chem. Eng. 2003, 27:327-346.
-
(2003)
Comput. Chem. Eng.
, vol.27
, pp. 327-346
-
-
Venkatasubramanian, V.1
Rengaswamy, R.2
Kavuri, S.N.3
Yin, K.4
-
3
-
-
0037443770
-
A review of process fault detection and diagnosis: part I: quantitative model-based methods
-
Venkatasubramanian V., Rengaswamy R., Yin K., Kavuri S.N. A review of process fault detection and diagnosis: part I: quantitative model-based methods. Comput. Chem. Eng. 2003, 27:293-311.
-
(2003)
Comput. Chem. Eng.
, vol.27
, pp. 293-311
-
-
Venkatasubramanian, V.1
Rengaswamy, R.2
Yin, K.3
Kavuri, S.N.4
-
5
-
-
84875001041
-
Review of recent research on data-based process monitoring
-
Ge Z., Song Z., Gao F. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 2013, 52:3534-3562.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 3534-3562
-
-
Ge, Z.1
Song, Z.2
Gao, F.3
-
7
-
-
0242354134
-
Statistical process monitoring: basics and beyond
-
Joe Qin S. Statistical process monitoring: basics and beyond. J. Chemom. 2003, 17:480-502.
-
(2003)
J. Chemom.
, vol.17
, pp. 480-502
-
-
Joe Qin, S.1
-
8
-
-
0037394190
-
Monitoring independent components for fault detection
-
Kano M., Tanaka S., Hasebe S., Hashimoto I., Ohno H. Monitoring independent components for fault detection. AIChE J. 2003, 49:969-976.
-
(2003)
AIChE J.
, vol.49
, pp. 969-976
-
-
Kano, M.1
Tanaka, S.2
Hasebe, S.3
Hashimoto, I.4
Ohno, H.5
-
9
-
-
0037084628
-
Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem
-
Kano M., Nagao K., Hasebe S., Hashimoto I., Ohno H., Strauss R., Bakshi B.R. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem. Comput. Chem. Eng. 2002, 26:161-174.
-
(2002)
Comput. Chem. Eng.
, vol.26
, pp. 161-174
-
-
Kano, M.1
Nagao, K.2
Hasebe, S.3
Hashimoto, I.4
Ohno, H.5
Strauss, R.6
Bakshi, B.R.7
-
10
-
-
84863101603
-
Quality control methods for several related variables
-
Jackson J.E. Quality control methods for several related variables. Technometrics 1959, 359-377.
-
(1959)
Technometrics
, pp. 359-377
-
-
Jackson, J.E.1
-
11
-
-
84885596977
-
Double-weighted independent component analysis for non-Gaussian chemical process monitoring
-
Jiang Q., Yan X., Tong C. Double-weighted independent component analysis for non-Gaussian chemical process monitoring. Ind. Eng. Chem. Res. 2013, 52:14396-14405.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 14396-14405
-
-
Jiang, Q.1
Yan, X.2
Tong, C.3
-
12
-
-
0030262558
-
Multivariate SPC methods for process and product monitoring
-
Kourti T., MacGregor J.F. Multivariate SPC methods for process and product monitoring. J. Qual. Technol. 1996, 28:409-428.
-
(1996)
J. Qual. Technol.
, vol.28
, pp. 409-428
-
-
Kourti, T.1
MacGregor, J.F.2
-
13
-
-
0026108818
-
Multivariate statistical monitoring of process operating performance
-
Kresta J.V., Macgregor J.F., Marlin T.E. Multivariate statistical monitoring of process operating performance. Can. J. Chem. Eng. 1991, 69:35-47.
-
(1991)
Can. J. Chem. Eng.
, vol.69
, pp. 35-47
-
-
Kresta, J.V.1
Macgregor, J.F.2
Marlin, T.E.3
-
14
-
-
0034643075
-
Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
-
Chiang L.H., Russell E.L., Braatz R.D. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemom. Intell. Lab. Syst. 2000, 50:243-252.
-
(2000)
Chemom. Intell. Lab. Syst.
, vol.50
, pp. 243-252
-
-
Chiang, L.H.1
Russell, E.L.2
Braatz, R.D.3
-
15
-
-
1342285571
-
Statistical process monitoring with independent component analysis
-
Lee J.-M., Yoo C., Lee I.-B. Statistical process monitoring with independent component analysis. J. Process Control 2004, 14:467-485.
-
(2004)
J. Process Control
, vol.14
, pp. 467-485
-
-
Lee, J.-M.1
Yoo, C.2
Lee, I.-B.3
-
16
-
-
84861191986
-
A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
-
Rashid M.M., Yu J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemom. Intell. Lab. Syst. 2012, 115:44-58.
-
(2012)
Chemom. Intell. Lab. Syst.
, vol.115
, pp. 44-58
-
-
Rashid, M.M.1
Yu, J.2
-
17
-
-
84872871509
-
A support vector clustering-based probabilistic method for unsupervised fault detection and classification of complex chemical processes using unlabeled data
-
Yu J. A support vector clustering-based probabilistic method for unsupervised fault detection and classification of complex chemical processes using unlabeled data. AIChE J. 2012, 59:407-419.
-
(2012)
AIChE J.
, vol.59
, pp. 407-419
-
-
Yu, J.1
-
18
-
-
58749115727
-
Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
-
Zhang Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chem. Eng. Sci. 2009, 64:801-811.
-
(2009)
Chem. Eng. Sci.
, vol.64
, pp. 801-811
-
-
Zhang, Y.1
-
19
-
-
0035882158
-
A new multivariate statistical process monitoring method using principal component analysis
-
Kano M., Hasebe S., Hashimoto I., Ohno H. A new multivariate statistical process monitoring method using principal component analysis. Comput. Chem. Eng. 2001, 25:1103-1113.
-
(2001)
Comput. Chem. Eng.
, vol.25
, pp. 1103-1113
-
-
Kano, M.1
Hasebe, S.2
Hashimoto, I.3
Ohno, H.4
-
20
-
-
84894068408
-
Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring
-
Jiang Q., Yan X. Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring. AIChE J. 2014, 60:949-965.
-
(2014)
AIChE J.
, vol.60
, pp. 949-965
-
-
Jiang, Q.1
Yan, X.2
-
21
-
-
0028892168
-
Disturbance detection and isolation by dynamic principal component analysis
-
Ku W., Storer R.H., Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemom. Intell. Lab. Syst. 1995, 30:179-196.
-
(1995)
Chemom. Intell. Lab. Syst.
, vol.30
, pp. 179-196
-
-
Ku, W.1
Storer, R.H.2
Georgakis, C.3
-
22
-
-
84877316529
-
Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)
-
Rato T.J., Reis M.S. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR). Chemom. Intell. Lab. Syst. 2013, 125:101-108.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.125
, pp. 101-108
-
-
Rato, T.J.1
Reis, M.S.2
-
23
-
-
84880623050
-
Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring
-
Jiang Q., Yan X. Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring. Chemom. Intell. Lab. Syst. 2013, 127:121-131.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.127
, pp. 121-131
-
-
Jiang, Q.1
Yan, X.2
-
24
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
Lee J.-M., Yoo C., Choi S.W., Vanrolleghem P.A., Lee I.-B. Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 2004, 59:223-234.
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 223-234
-
-
Lee, J.-M.1
Yoo, C.2
Choi, S.W.3
Vanrolleghem, P.A.4
Lee, I.-B.5
-
25
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf B., Smola A., Müller K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10:1299-1319.
-
(1998)
Neural Comput.
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
26
-
-
84863151045
-
Dynamic processes monitoring using recursive kernel principal component analysis
-
Zhang Y., Li S., Teng Y. Dynamic processes monitoring using recursive kernel principal component analysis. Chem. Eng. Sci. 2012, 72:78-86.
-
(2012)
Chem. Eng. Sci.
, vol.72
, pp. 78-86
-
-
Zhang, Y.1
Li, S.2
Teng, Y.3
-
27
-
-
0242390969
-
On-line batch process monitoring using a consecutively updated multiway principal component analysis model
-
Lee J.-M., Yoo C., Lee I.-B. On-line batch process monitoring using a consecutively updated multiway principal component analysis model. Comput. Chem. Eng. 2003, 27:1903-1912.
-
(2003)
Comput. Chem. Eng.
, vol.27
, pp. 1903-1912
-
-
Lee, J.-M.1
Yoo, C.2
Lee, I.-B.3
-
28
-
-
0028483476
-
Monitoring batch processes using multiway principal component analysis
-
Nomikos P., MacGregor J.F. Monitoring batch processes using multiway principal component analysis. AIChE J. 1994, 40:1361-1375.
-
(1994)
AIChE J.
, vol.40
, pp. 1361-1375
-
-
Nomikos, P.1
MacGregor, J.F.2
-
29
-
-
14844303316
-
Nonlinear process monitoring using JITL-PCA
-
Cheng C., Chiu M.-S. Nonlinear process monitoring using JITL-PCA. Chemom. Intell. Lab. Syst. 2005, 76:1-13.
-
(2005)
Chemom. Intell. Lab. Syst.
, vol.76
, pp. 1-13
-
-
Cheng, C.1
Chiu, M.-S.2
-
30
-
-
34247109083
-
Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
-
Ge Z., Song Z. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors. Ind. Eng. Chem. Res. 2007, 46:2054-2063.
-
(2007)
Ind. Eng. Chem. Res.
, vol.46
, pp. 2054-2063
-
-
Ge, Z.1
Song, Z.2
-
31
-
-
78650358993
-
Mixture Bayesian regularization method of PPCA for multimode process monitoring
-
Ge Z., Song Z. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AIChE J. 2010, 56:2838-2849.
-
(2010)
AIChE J.
, vol.56
, pp. 2838-2849
-
-
Ge, Z.1
Song, Z.2
-
32
-
-
84873346452
-
Distributed PCA model for plant-wide process monitoring
-
Ge Z., Song Z. Distributed PCA model for plant-wide process monitoring. Ind. Eng. Chem. Res. 2013, 52:1947-1957.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 1947-1957
-
-
Ge, Z.1
Song, Z.2
-
33
-
-
84867006916
-
Chemical processes monitoring based on weighted principal component analysis and its application
-
Jiang Q., Yan X. Chemical processes monitoring based on weighted principal component analysis and its application. Chemom. Intell. Lab. Syst. 2012, 119:11-20.
-
(2012)
Chemom. Intell. Lab. Syst.
, vol.119
, pp. 11-20
-
-
Jiang, Q.1
Yan, X.2
-
34
-
-
84873855648
-
Fault detection and diagnosis in chemical processes using sensitive principal component analysis
-
Jiang Q., Yan X., Zhao W. Fault detection and diagnosis in chemical processes using sensitive principal component analysis. Ind. Eng. Chem. Res. 2013, 52:1635-1644.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 1635-1644
-
-
Jiang, Q.1
Yan, X.2
Zhao, W.3
-
35
-
-
0037106519
-
Multivariate process monitoring and fault diagnosis by multi-scale PCA
-
Misra M., Yue H.H., Qin S.J., Ling C. Multivariate process monitoring and fault diagnosis by multi-scale PCA. Comput. Chem. Eng. 2002, 26:1281-1293.
-
(2002)
Comput. Chem. Eng.
, vol.26
, pp. 1281-1293
-
-
Misra, M.1
Yue, H.H.2
Qin, S.J.3
Ling, C.4
-
36
-
-
53349170926
-
Multi-block methods in multivariate process control
-
Kohonen J., Reinikainen S.P., Aaljoki K., Perkiö A., Väänänen T., Høskuldsson A. Multi-block methods in multivariate process control. J. Chemom. 2008, 22:281-287.
-
(2008)
J. Chemom.
, vol.22
, pp. 281-287
-
-
Kohonen, J.1
Reinikainen, S.P.2
Aaljoki, K.3
Perkiö, A.4
Väänänen, T.5
Høskuldsson, A.6
-
37
-
-
0000736392
-
Analysis of multiblock and hierarchical PCA and PLS models
-
Westerhuis J.A., Kourti T., MacGregor J.F. Analysis of multiblock and hierarchical PCA and PLS models. J. Chemom. 1998, 12:301-321.
-
(1998)
J. Chemom.
, vol.12
, pp. 301-321
-
-
Westerhuis, J.A.1
Kourti, T.2
MacGregor, J.F.3
-
38
-
-
0028424619
-
Process monitoring and diagnosis by multiblock PLS methods
-
MacGregor J.F., Jaeckle C., Kiparissides C., Koutoudi M. Process monitoring and diagnosis by multiblock PLS methods. AIChE J. 1994, 40:826-838.
-
(1994)
AIChE J.
, vol.40
, pp. 826-838
-
-
MacGregor, J.F.1
Jaeckle, C.2
Kiparissides, C.3
Koutoudi, M.4
-
39
-
-
84880858673
-
Distributed statistical process monitoring based on four-subspace construction and Bayesian inference
-
Tong C., Song Y., Yan X. Distributed statistical process monitoring based on four-subspace construction and Bayesian inference. Ind. Eng. Chem. Res. 2013, 52:9897-9907.
-
(2013)
Ind. Eng. Chem. Res.
, vol.52
, pp. 9897-9907
-
-
Tong, C.1
Song, Y.2
Yan, X.3
-
40
-
-
0001282938
-
On unifying multiblock analysis with application to decentralized process monitoring
-
Qin S.J., Valle S., Piovoso M.J. On unifying multiblock analysis with application to decentralized process monitoring. J. Chemom. 2001, 15:715-742.
-
(2001)
J. Chemom.
, vol.15
, pp. 715-742
-
-
Qin, S.J.1
Valle, S.2
Piovoso, M.J.3
-
41
-
-
84876305649
-
Modeling and performance monitoring of multivariate multimodal processes
-
Feital T., Kruger U., Dutra J., Pinto J.C., Lima E.L. Modeling and performance monitoring of multivariate multimodal processes. AIChE J. 2012, 59:1557-1569.
-
(2012)
AIChE J.
, vol.59
, pp. 1557-1569
-
-
Feital, T.1
Kruger, U.2
Dutra, J.3
Pinto, J.C.4
Lima, E.L.5
-
42
-
-
72249099895
-
Multimode process monitoring based on Bayesian method
-
Ge Z., Song Z. Multimode process monitoring based on Bayesian method. J. Chemom. 2009, 23:636-650.
-
(2009)
J. Chemom.
, vol.23
, pp. 636-650
-
-
Ge, Z.1
Song, Z.2
-
43
-
-
84884417425
-
Bayesian inference and joint probability analysis for batch process monitoring
-
Ge Z., Song Z. Bayesian inference and joint probability analysis for batch process monitoring. AIChE J. 2013, 59:3702-3713.
-
(2013)
AIChE J.
, vol.59
, pp. 3702-3713
-
-
Ge, Z.1
Song, Z.2
-
44
-
-
84877622612
-
Modeling and monitoring of multimode process based on subspace separation
-
Zhang Y., Wang C., Lu R. Modeling and monitoring of multimode process based on subspace separation. Chem. Eng. Res. Des. 2013, 91:831-842.
-
(2013)
Chem. Eng. Res. Des.
, vol.91
, pp. 831-842
-
-
Zhang, Y.1
Wang, C.2
Lu, R.3
-
45
-
-
0032686509
-
Real-time monitoring for a process with multiple operating modes
-
Hwang D.-H., Han C. Real-time monitoring for a process with multiple operating modes. Control. Eng. Pract. 1999, 7:891-902.
-
(1999)
Control. Eng. Pract.
, vol.7
, pp. 891-902
-
-
Hwang, D.-H.1
Han, C.2
-
46
-
-
0035255106
-
Performance monitoring of a multi-product semi-batch process
-
Lane S., Martin E., Kooijmans R., Morris A. Performance monitoring of a multi-product semi-batch process. J. Process Control 2001, 11:1-11.
-
(2001)
J. Process Control
, vol.11
, pp. 1-11
-
-
Lane, S.1
Martin, E.2
Kooijmans, R.3
Morris, A.4
-
47
-
-
6344249065
-
Monitoring of processes with multiple operating modes through multiple principle component analysis models
-
Zhao S.J., Zhang J., Xu Y.M. Monitoring of processes with multiple operating modes through multiple principle component analysis models. Ind. Eng. Chem. Res. 2004, 43:7025-7035.
-
(2004)
Ind. Eng. Chem. Res.
, vol.43
, pp. 7025-7035
-
-
Zhao, S.J.1
Zhang, J.2
Xu, Y.M.3
-
48
-
-
33646178973
-
Performance monitoring of processes with multiple operating modes through multiple PLS models
-
Zhao S.J., Zhang J., Xu Y.M. Performance monitoring of processes with multiple operating modes through multiple PLS models. J. Process Control 2006, 16:763-772.
-
(2006)
J. Process Control
, vol.16
, pp. 763-772
-
-
Zhao, S.J.1
Zhang, J.2
Xu, Y.M.3
-
49
-
-
77953535805
-
Multi-model based process condition monitoring of offshore oil and gas production process
-
Natarajan S., Srinivasan R. Multi-model based process condition monitoring of offshore oil and gas production process. Chem. Eng. Res. Des. 2010, 88:572-591.
-
(2010)
Chem. Eng. Res. Des.
, vol.88
, pp. 572-591
-
-
Natarajan, S.1
Srinivasan, R.2
-
50
-
-
0032898793
-
Mixture principal component analysis models for process monitoring
-
Chen J., Liu J. Mixture principal component analysis models for process monitoring. Ind. Eng. Chem. Res. 1999, 38:1478-1488.
-
(1999)
Ind. Eng. Chem. Res.
, vol.38
, pp. 1478-1488
-
-
Chen, J.1
Liu, J.2
-
51
-
-
2342521341
-
Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
-
Choi S.W., Park J.H., Lee I.-B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput. Chem. Eng. 2004, 28:1377-1387.
-
(2004)
Comput. Chem. Eng.
, vol.28
, pp. 1377-1387
-
-
Choi, S.W.1
Park, J.H.2
Lee, I.-B.3
-
52
-
-
47549099484
-
Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
-
Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008, 54:1811-1829.
-
(2008)
AIChE J.
, vol.54
, pp. 1811-1829
-
-
Yu, J.1
Qin, S.J.2
-
53
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
Battiti R. Using mutual information for selecting features in supervised neural net learning. Neural Netw. IEEE T. 1994, 5:537-550.
-
(1994)
Neural Netw. IEEE T.
, vol.5
, pp. 537-550
-
-
Battiti, R.1
-
54
-
-
0000702165
-
Mutual information functions versus correlation functions
-
Li W. Mutual information functions versus correlation functions. J. Stat. Phys. 1990, 60:823-837.
-
(1990)
J. Stat. Phys.
, vol.60
, pp. 823-837
-
-
Li, W.1
-
55
-
-
17444370127
-
Hierarchical clustering using mutual information
-
Kraskov A., Stögbauer H., Andrzejak R.G., Grassberger P. Hierarchical clustering using mutual information. EPL (Europhys. Lett.) 2005, 70:278.
-
(2005)
EPL (Europhys. Lett.)
, vol.70
, pp. 278
-
-
Kraskov, A.1
Stögbauer, H.2
Andrzejak, R.G.3
Grassberger, P.4
-
58
-
-
84951601886
-
Cross-validatory estimation of the number of components in factor and principal components models
-
Wold S. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 1978, 20:397-405.
-
(1978)
Technometrics
, vol.20
, pp. 397-405
-
-
Wold, S.1
-
59
-
-
79953699930
-
A distribution-free method for process monitoring
-
Ge Z., Song Z. A distribution-free method for process monitoring. Expert Syst. Appl. 2011, 38:9821-9829.
-
(2011)
Expert Syst. Appl.
, vol.38
, pp. 9821-9829
-
-
Ge, Z.1
Song, Z.2
-
60
-
-
0001473437
-
On estimation of a probability density function and mode
-
Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33:1065-1076.
-
(1962)
Ann. Math. Stat.
, vol.33
, pp. 1065-1076
-
-
Parzen, E.1
-
64
-
-
77955305868
-
Nonlinear process monitoring based on linear subspace and Bayesian inference
-
Ge Z., Zhang M., Song Z. Nonlinear process monitoring based on linear subspace and Bayesian inference. J. Process Control 2010, 20:676-688.
-
(2010)
J. Process Control
, vol.20
, pp. 676-688
-
-
Ge, Z.1
Zhang, M.2
Song, Z.3
-
65
-
-
0001606671
-
Contribution plots: a missing link in multivariate quality control
-
Miller P., Swanson R., Heckler C.E. Contribution plots: a missing link in multivariate quality control. Appl. Math. Comput. Sci. 1998, 8:775-792.
-
(1998)
Appl. Math. Comput. Sci.
, vol.8
, pp. 775-792
-
-
Miller, P.1
Swanson, R.2
Heckler, C.E.3
-
66
-
-
78650303983
-
A unified statistical framework for monitoring multivariate systems with unknown source and error signals
-
Feital T., Kruger U., Xie L., Schubert U., Lima E.L., Pinto J.C. A unified statistical framework for monitoring multivariate systems with unknown source and error signals. Chemom. Intell. Lab. Syst. 2010, 104:223-232.
-
(2010)
Chemom. Intell. Lab. Syst.
, vol.104
, pp. 223-232
-
-
Feital, T.1
Kruger, U.2
Xie, L.3
Schubert, U.4
Lima, E.L.5
Pinto, J.C.6
-
67
-
-
84874770366
-
Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring
-
Ge Z., Song Z. Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring. Chemom. Intell. Lab. Syst. 2013, 123:1-8.
-
(2013)
Chemom. Intell. Lab. Syst.
, vol.123
, pp. 1-8
-
-
Ge, Z.1
Song, Z.2
-
68
-
-
84863563165
-
Local ICA for multivariate statistical fault diagnosis in systems with unknown signal and error distributions
-
Ge Z., Xie L., Kruger U., Song Z. Local ICA for multivariate statistical fault diagnosis in systems with unknown signal and error distributions. AIChE J. 2012, 58:2357-2372.
-
(2012)
AIChE J.
, vol.58
, pp. 2357-2372
-
-
Ge, Z.1
Xie, L.2
Kruger, U.3
Song, Z.4
-
69
-
-
52649119206
-
Statistical-based monitoring of multivariate non-Gaussian systems
-
Liu X., Xie L., Kruger U., Littler T., Wang S. Statistical-based monitoring of multivariate non-Gaussian systems. AIChE J. 2008, 54:2379-2391.
-
(2008)
AIChE J.
, vol.54
, pp. 2379-2391
-
-
Liu, X.1
Xie, L.2
Kruger, U.3
Littler, T.4
Wang, S.5
-
70
-
-
33749473097
-
Fault detection and diagnosis based on modified independent component analysis
-
Lee J.M., Qin S.J., Lee I.B. Fault detection and diagnosis based on modified independent component analysis. AIChE J. 2006, 52:3501-3514.
-
(2006)
AIChE J.
, vol.52
, pp. 3501-3514
-
-
Lee, J.M.1
Qin, S.J.2
Lee, I.B.3
-
71
-
-
0027561446
-
A plant-wide industrial process control problem
-
Downs J.J., Vogel E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
-
(1993)
Comput. Chem. Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
-
72
-
-
0029256836
-
Plant-wide control of the Tennessee Eastman problem
-
Lyman P.R., Georgakis C. Plant-wide control of the Tennessee Eastman problem. Comput. Chem. Eng. 1995, 19:321-331.
-
(1995)
Comput. Chem. Eng.
, vol.19
, pp. 321-331
-
-
Lyman, P.R.1
Georgakis, C.2
-
73
-
-
0030217795
-
Decentralized control of the Tennessee Eastman challenge process
-
Lawrence Ricker N. Decentralized control of the Tennessee Eastman challenge process. J. Process Control 1996, 6:205-221.
-
(1996)
J. Process Control
, vol.6
, pp. 205-221
-
-
Lawrence Ricker, N.1
|