메뉴 건너뛰기




Volumn 136, Issue , 2014, Pages 121-137

Monitoring multi-mode plant-wide processes by using mutual information-based multi-block PCA, joint probability, and Bayesian inference

Author keywords

Bayesian inference; Joint probability; Multi block principal component analysis; Multi mode plant wide process; Mutual information

Indexed keywords

COOLING WATER;

EID: 84902304472     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2014.05.012     Document Type: Article
Times cited : (98)

References (73)
  • 1
    • 0037443771 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis: part II: qualitative models and search strategies
    • Venkatasubramanian V., Rengaswamy R., Kavuri S.N. A review of process fault detection and diagnosis: part II: qualitative models and search strategies. Comput. Chem. Eng. 2003, 27:313-326.
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 313-326
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3
  • 2
    • 0037443803 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis: part III: process history based methods
    • Venkatasubramanian V., Rengaswamy R., Kavuri S.N., Yin K. A review of process fault detection and diagnosis: part III: process history based methods. Comput. Chem. Eng. 2003, 27:327-346.
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 327-346
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3    Yin, K.4
  • 3
    • 0037443770 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis: part I: quantitative model-based methods
    • Venkatasubramanian V., Rengaswamy R., Yin K., Kavuri S.N. A review of process fault detection and diagnosis: part I: quantitative model-based methods. Comput. Chem. Eng. 2003, 27:293-311.
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 293-311
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Yin, K.3    Kavuri, S.N.4
  • 5
    • 84875001041 scopus 로고    scopus 로고
    • Review of recent research on data-based process monitoring
    • Ge Z., Song Z., Gao F. Review of recent research on data-based process monitoring. Ind. Eng. Chem. Res. 2013, 52:3534-3562.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 3534-3562
    • Ge, Z.1    Song, Z.2    Gao, F.3
  • 7
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Joe Qin S. Statistical process monitoring: basics and beyond. J. Chemom. 2003, 17:480-502.
    • (2003) J. Chemom. , vol.17 , pp. 480-502
    • Joe Qin, S.1
  • 8
    • 0037394190 scopus 로고    scopus 로고
    • Monitoring independent components for fault detection
    • Kano M., Tanaka S., Hasebe S., Hashimoto I., Ohno H. Monitoring independent components for fault detection. AIChE J. 2003, 49:969-976.
    • (2003) AIChE J. , vol.49 , pp. 969-976
    • Kano, M.1    Tanaka, S.2    Hasebe, S.3    Hashimoto, I.4    Ohno, H.5
  • 9
    • 0037084628 scopus 로고    scopus 로고
    • Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem
    • Kano M., Nagao K., Hasebe S., Hashimoto I., Ohno H., Strauss R., Bakshi B.R. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem. Comput. Chem. Eng. 2002, 26:161-174.
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 161-174
    • Kano, M.1    Nagao, K.2    Hasebe, S.3    Hashimoto, I.4    Ohno, H.5    Strauss, R.6    Bakshi, B.R.7
  • 10
    • 84863101603 scopus 로고
    • Quality control methods for several related variables
    • Jackson J.E. Quality control methods for several related variables. Technometrics 1959, 359-377.
    • (1959) Technometrics , pp. 359-377
    • Jackson, J.E.1
  • 11
    • 84885596977 scopus 로고    scopus 로고
    • Double-weighted independent component analysis for non-Gaussian chemical process monitoring
    • Jiang Q., Yan X., Tong C. Double-weighted independent component analysis for non-Gaussian chemical process monitoring. Ind. Eng. Chem. Res. 2013, 52:14396-14405.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 14396-14405
    • Jiang, Q.1    Yan, X.2    Tong, C.3
  • 12
    • 0030262558 scopus 로고    scopus 로고
    • Multivariate SPC methods for process and product monitoring
    • Kourti T., MacGregor J.F. Multivariate SPC methods for process and product monitoring. J. Qual. Technol. 1996, 28:409-428.
    • (1996) J. Qual. Technol. , vol.28 , pp. 409-428
    • Kourti, T.1    MacGregor, J.F.2
  • 13
    • 0026108818 scopus 로고
    • Multivariate statistical monitoring of process operating performance
    • Kresta J.V., Macgregor J.F., Marlin T.E. Multivariate statistical monitoring of process operating performance. Can. J. Chem. Eng. 1991, 69:35-47.
    • (1991) Can. J. Chem. Eng. , vol.69 , pp. 35-47
    • Kresta, J.V.1    Macgregor, J.F.2    Marlin, T.E.3
  • 14
    • 0034643075 scopus 로고    scopus 로고
    • Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis
    • Chiang L.H., Russell E.L., Braatz R.D. Fault diagnosis in chemical processes using Fisher discriminant analysis, discriminant partial least squares, and principal component analysis. Chemom. Intell. Lab. Syst. 2000, 50:243-252.
    • (2000) Chemom. Intell. Lab. Syst. , vol.50 , pp. 243-252
    • Chiang, L.H.1    Russell, E.L.2    Braatz, R.D.3
  • 15
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee J.-M., Yoo C., Lee I.-B. Statistical process monitoring with independent component analysis. J. Process Control 2004, 14:467-485.
    • (2004) J. Process Control , vol.14 , pp. 467-485
    • Lee, J.-M.1    Yoo, C.2    Lee, I.-B.3
  • 16
    • 84861191986 scopus 로고    scopus 로고
    • A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
    • Rashid M.M., Yu J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemom. Intell. Lab. Syst. 2012, 115:44-58.
    • (2012) Chemom. Intell. Lab. Syst. , vol.115 , pp. 44-58
    • Rashid, M.M.1    Yu, J.2
  • 17
    • 84872871509 scopus 로고    scopus 로고
    • A support vector clustering-based probabilistic method for unsupervised fault detection and classification of complex chemical processes using unlabeled data
    • Yu J. A support vector clustering-based probabilistic method for unsupervised fault detection and classification of complex chemical processes using unlabeled data. AIChE J. 2012, 59:407-419.
    • (2012) AIChE J. , vol.59 , pp. 407-419
    • Yu, J.1
  • 18
    • 58749115727 scopus 로고    scopus 로고
    • Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM
    • Zhang Y. Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chem. Eng. Sci. 2009, 64:801-811.
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 801-811
    • Zhang, Y.1
  • 19
    • 0035882158 scopus 로고    scopus 로고
    • A new multivariate statistical process monitoring method using principal component analysis
    • Kano M., Hasebe S., Hashimoto I., Ohno H. A new multivariate statistical process monitoring method using principal component analysis. Comput. Chem. Eng. 2001, 25:1103-1113.
    • (2001) Comput. Chem. Eng. , vol.25 , pp. 1103-1113
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3    Ohno, H.4
  • 20
    • 84894068408 scopus 로고    scopus 로고
    • Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring
    • Jiang Q., Yan X. Just-in-time reorganized PCA integrated with SVDD for chemical process monitoring. AIChE J. 2014, 60:949-965.
    • (2014) AIChE J. , vol.60 , pp. 949-965
    • Jiang, Q.1    Yan, X.2
  • 21
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku W., Storer R.H., Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemom. Intell. Lab. Syst. 1995, 30:179-196.
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , pp. 179-196
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 22
    • 84877316529 scopus 로고    scopus 로고
    • Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR)
    • Rato T.J., Reis M.S. Fault detection in the Tennessee Eastman benchmark process using dynamic principal components analysis based on decorrelated residuals (DPCA-DR). Chemom. Intell. Lab. Syst. 2013, 125:101-108.
    • (2013) Chemom. Intell. Lab. Syst. , vol.125 , pp. 101-108
    • Rato, T.J.1    Reis, M.S.2
  • 23
    • 84880623050 scopus 로고    scopus 로고
    • Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring
    • Jiang Q., Yan X. Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring. Chemom. Intell. Lab. Syst. 2013, 127:121-131.
    • (2013) Chemom. Intell. Lab. Syst. , vol.127 , pp. 121-131
    • Jiang, Q.1    Yan, X.2
  • 24
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • Lee J.-M., Yoo C., Choi S.W., Vanrolleghem P.A., Lee I.-B. Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 2004, 59:223-234.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.-M.1    Yoo, C.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.-B.5
  • 25
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A., Müller K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10:1299-1319.
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 26
    • 84863151045 scopus 로고    scopus 로고
    • Dynamic processes monitoring using recursive kernel principal component analysis
    • Zhang Y., Li S., Teng Y. Dynamic processes monitoring using recursive kernel principal component analysis. Chem. Eng. Sci. 2012, 72:78-86.
    • (2012) Chem. Eng. Sci. , vol.72 , pp. 78-86
    • Zhang, Y.1    Li, S.2    Teng, Y.3
  • 27
    • 0242390969 scopus 로고    scopus 로고
    • On-line batch process monitoring using a consecutively updated multiway principal component analysis model
    • Lee J.-M., Yoo C., Lee I.-B. On-line batch process monitoring using a consecutively updated multiway principal component analysis model. Comput. Chem. Eng. 2003, 27:1903-1912.
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 1903-1912
    • Lee, J.-M.1    Yoo, C.2    Lee, I.-B.3
  • 28
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos P., MacGregor J.F. Monitoring batch processes using multiway principal component analysis. AIChE J. 1994, 40:1361-1375.
    • (1994) AIChE J. , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 29
    • 14844303316 scopus 로고    scopus 로고
    • Nonlinear process monitoring using JITL-PCA
    • Cheng C., Chiu M.-S. Nonlinear process monitoring using JITL-PCA. Chemom. Intell. Lab. Syst. 2005, 76:1-13.
    • (2005) Chemom. Intell. Lab. Syst. , vol.76 , pp. 1-13
    • Cheng, C.1    Chiu, M.-S.2
  • 30
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Ge Z., Song Z. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors. Ind. Eng. Chem. Res. 2007, 46:2054-2063.
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2054-2063
    • Ge, Z.1    Song, Z.2
  • 31
    • 78650358993 scopus 로고    scopus 로고
    • Mixture Bayesian regularization method of PPCA for multimode process monitoring
    • Ge Z., Song Z. Mixture Bayesian regularization method of PPCA for multimode process monitoring. AIChE J. 2010, 56:2838-2849.
    • (2010) AIChE J. , vol.56 , pp. 2838-2849
    • Ge, Z.1    Song, Z.2
  • 32
    • 84873346452 scopus 로고    scopus 로고
    • Distributed PCA model for plant-wide process monitoring
    • Ge Z., Song Z. Distributed PCA model for plant-wide process monitoring. Ind. Eng. Chem. Res. 2013, 52:1947-1957.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 1947-1957
    • Ge, Z.1    Song, Z.2
  • 33
    • 84867006916 scopus 로고    scopus 로고
    • Chemical processes monitoring based on weighted principal component analysis and its application
    • Jiang Q., Yan X. Chemical processes monitoring based on weighted principal component analysis and its application. Chemom. Intell. Lab. Syst. 2012, 119:11-20.
    • (2012) Chemom. Intell. Lab. Syst. , vol.119 , pp. 11-20
    • Jiang, Q.1    Yan, X.2
  • 34
    • 84873855648 scopus 로고    scopus 로고
    • Fault detection and diagnosis in chemical processes using sensitive principal component analysis
    • Jiang Q., Yan X., Zhao W. Fault detection and diagnosis in chemical processes using sensitive principal component analysis. Ind. Eng. Chem. Res. 2013, 52:1635-1644.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 1635-1644
    • Jiang, Q.1    Yan, X.2    Zhao, W.3
  • 35
    • 0037106519 scopus 로고    scopus 로고
    • Multivariate process monitoring and fault diagnosis by multi-scale PCA
    • Misra M., Yue H.H., Qin S.J., Ling C. Multivariate process monitoring and fault diagnosis by multi-scale PCA. Comput. Chem. Eng. 2002, 26:1281-1293.
    • (2002) Comput. Chem. Eng. , vol.26 , pp. 1281-1293
    • Misra, M.1    Yue, H.H.2    Qin, S.J.3    Ling, C.4
  • 37
    • 0000736392 scopus 로고    scopus 로고
    • Analysis of multiblock and hierarchical PCA and PLS models
    • Westerhuis J.A., Kourti T., MacGregor J.F. Analysis of multiblock and hierarchical PCA and PLS models. J. Chemom. 1998, 12:301-321.
    • (1998) J. Chemom. , vol.12 , pp. 301-321
    • Westerhuis, J.A.1    Kourti, T.2    MacGregor, J.F.3
  • 39
    • 84880858673 scopus 로고    scopus 로고
    • Distributed statistical process monitoring based on four-subspace construction and Bayesian inference
    • Tong C., Song Y., Yan X. Distributed statistical process monitoring based on four-subspace construction and Bayesian inference. Ind. Eng. Chem. Res. 2013, 52:9897-9907.
    • (2013) Ind. Eng. Chem. Res. , vol.52 , pp. 9897-9907
    • Tong, C.1    Song, Y.2    Yan, X.3
  • 40
    • 0001282938 scopus 로고    scopus 로고
    • On unifying multiblock analysis with application to decentralized process monitoring
    • Qin S.J., Valle S., Piovoso M.J. On unifying multiblock analysis with application to decentralized process monitoring. J. Chemom. 2001, 15:715-742.
    • (2001) J. Chemom. , vol.15 , pp. 715-742
    • Qin, S.J.1    Valle, S.2    Piovoso, M.J.3
  • 41
    • 84876305649 scopus 로고    scopus 로고
    • Modeling and performance monitoring of multivariate multimodal processes
    • Feital T., Kruger U., Dutra J., Pinto J.C., Lima E.L. Modeling and performance monitoring of multivariate multimodal processes. AIChE J. 2012, 59:1557-1569.
    • (2012) AIChE J. , vol.59 , pp. 1557-1569
    • Feital, T.1    Kruger, U.2    Dutra, J.3    Pinto, J.C.4    Lima, E.L.5
  • 42
    • 72249099895 scopus 로고    scopus 로고
    • Multimode process monitoring based on Bayesian method
    • Ge Z., Song Z. Multimode process monitoring based on Bayesian method. J. Chemom. 2009, 23:636-650.
    • (2009) J. Chemom. , vol.23 , pp. 636-650
    • Ge, Z.1    Song, Z.2
  • 43
    • 84884417425 scopus 로고    scopus 로고
    • Bayesian inference and joint probability analysis for batch process monitoring
    • Ge Z., Song Z. Bayesian inference and joint probability analysis for batch process monitoring. AIChE J. 2013, 59:3702-3713.
    • (2013) AIChE J. , vol.59 , pp. 3702-3713
    • Ge, Z.1    Song, Z.2
  • 44
    • 84877622612 scopus 로고    scopus 로고
    • Modeling and monitoring of multimode process based on subspace separation
    • Zhang Y., Wang C., Lu R. Modeling and monitoring of multimode process based on subspace separation. Chem. Eng. Res. Des. 2013, 91:831-842.
    • (2013) Chem. Eng. Res. Des. , vol.91 , pp. 831-842
    • Zhang, Y.1    Wang, C.2    Lu, R.3
  • 45
    • 0032686509 scopus 로고    scopus 로고
    • Real-time monitoring for a process with multiple operating modes
    • Hwang D.-H., Han C. Real-time monitoring for a process with multiple operating modes. Control. Eng. Pract. 1999, 7:891-902.
    • (1999) Control. Eng. Pract. , vol.7 , pp. 891-902
    • Hwang, D.-H.1    Han, C.2
  • 46
    • 0035255106 scopus 로고    scopus 로고
    • Performance monitoring of a multi-product semi-batch process
    • Lane S., Martin E., Kooijmans R., Morris A. Performance monitoring of a multi-product semi-batch process. J. Process Control 2001, 11:1-11.
    • (2001) J. Process Control , vol.11 , pp. 1-11
    • Lane, S.1    Martin, E.2    Kooijmans, R.3    Morris, A.4
  • 47
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operating modes through multiple principle component analysis models
    • Zhao S.J., Zhang J., Xu Y.M. Monitoring of processes with multiple operating modes through multiple principle component analysis models. Ind. Eng. Chem. Res. 2004, 43:7025-7035.
    • (2004) Ind. Eng. Chem. Res. , vol.43 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 48
    • 33646178973 scopus 로고    scopus 로고
    • Performance monitoring of processes with multiple operating modes through multiple PLS models
    • Zhao S.J., Zhang J., Xu Y.M. Performance monitoring of processes with multiple operating modes through multiple PLS models. J. Process Control 2006, 16:763-772.
    • (2006) J. Process Control , vol.16 , pp. 763-772
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 49
    • 77953535805 scopus 로고    scopus 로고
    • Multi-model based process condition monitoring of offshore oil and gas production process
    • Natarajan S., Srinivasan R. Multi-model based process condition monitoring of offshore oil and gas production process. Chem. Eng. Res. Des. 2010, 88:572-591.
    • (2010) Chem. Eng. Res. Des. , vol.88 , pp. 572-591
    • Natarajan, S.1    Srinivasan, R.2
  • 50
    • 0032898793 scopus 로고    scopus 로고
    • Mixture principal component analysis models for process monitoring
    • Chen J., Liu J. Mixture principal component analysis models for process monitoring. Ind. Eng. Chem. Res. 1999, 38:1478-1488.
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 1478-1488
    • Chen, J.1    Liu, J.2
  • 51
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • Choi S.W., Park J.H., Lee I.-B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis. Comput. Chem. Eng. 2004, 28:1377-1387.
    • (2004) Comput. Chem. Eng. , vol.28 , pp. 1377-1387
    • Choi, S.W.1    Park, J.H.2    Lee, I.-B.3
  • 52
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J., Qin S.J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models. AIChE J. 2008, 54:1811-1829.
    • (2008) AIChE J. , vol.54 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 53
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • Battiti R. Using mutual information for selecting features in supervised neural net learning. Neural Netw. IEEE T. 1994, 5:537-550.
    • (1994) Neural Netw. IEEE T. , vol.5 , pp. 537-550
    • Battiti, R.1
  • 54
    • 0000702165 scopus 로고
    • Mutual information functions versus correlation functions
    • Li W. Mutual information functions versus correlation functions. J. Stat. Phys. 1990, 60:823-837.
    • (1990) J. Stat. Phys. , vol.60 , pp. 823-837
    • Li, W.1
  • 58
    • 84951601886 scopus 로고
    • Cross-validatory estimation of the number of components in factor and principal components models
    • Wold S. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics 1978, 20:397-405.
    • (1978) Technometrics , vol.20 , pp. 397-405
    • Wold, S.1
  • 59
    • 79953699930 scopus 로고    scopus 로고
    • A distribution-free method for process monitoring
    • Ge Z., Song Z. A distribution-free method for process monitoring. Expert Syst. Appl. 2011, 38:9821-9829.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 9821-9829
    • Ge, Z.1    Song, Z.2
  • 60
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33:1065-1076.
    • (1962) Ann. Math. Stat. , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 64
    • 77955305868 scopus 로고    scopus 로고
    • Nonlinear process monitoring based on linear subspace and Bayesian inference
    • Ge Z., Zhang M., Song Z. Nonlinear process monitoring based on linear subspace and Bayesian inference. J. Process Control 2010, 20:676-688.
    • (2010) J. Process Control , vol.20 , pp. 676-688
    • Ge, Z.1    Zhang, M.2    Song, Z.3
  • 65
    • 0001606671 scopus 로고    scopus 로고
    • Contribution plots: a missing link in multivariate quality control
    • Miller P., Swanson R., Heckler C.E. Contribution plots: a missing link in multivariate quality control. Appl. Math. Comput. Sci. 1998, 8:775-792.
    • (1998) Appl. Math. Comput. Sci. , vol.8 , pp. 775-792
    • Miller, P.1    Swanson, R.2    Heckler, C.E.3
  • 66
    • 78650303983 scopus 로고    scopus 로고
    • A unified statistical framework for monitoring multivariate systems with unknown source and error signals
    • Feital T., Kruger U., Xie L., Schubert U., Lima E.L., Pinto J.C. A unified statistical framework for monitoring multivariate systems with unknown source and error signals. Chemom. Intell. Lab. Syst. 2010, 104:223-232.
    • (2010) Chemom. Intell. Lab. Syst. , vol.104 , pp. 223-232
    • Feital, T.1    Kruger, U.2    Xie, L.3    Schubert, U.4    Lima, E.L.5    Pinto, J.C.6
  • 67
    • 84874770366 scopus 로고    scopus 로고
    • Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring
    • Ge Z., Song Z. Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring. Chemom. Intell. Lab. Syst. 2013, 123:1-8.
    • (2013) Chemom. Intell. Lab. Syst. , vol.123 , pp. 1-8
    • Ge, Z.1    Song, Z.2
  • 68
    • 84863563165 scopus 로고    scopus 로고
    • Local ICA for multivariate statistical fault diagnosis in systems with unknown signal and error distributions
    • Ge Z., Xie L., Kruger U., Song Z. Local ICA for multivariate statistical fault diagnosis in systems with unknown signal and error distributions. AIChE J. 2012, 58:2357-2372.
    • (2012) AIChE J. , vol.58 , pp. 2357-2372
    • Ge, Z.1    Xie, L.2    Kruger, U.3    Song, Z.4
  • 69
    • 52649119206 scopus 로고    scopus 로고
    • Statistical-based monitoring of multivariate non-Gaussian systems
    • Liu X., Xie L., Kruger U., Littler T., Wang S. Statistical-based monitoring of multivariate non-Gaussian systems. AIChE J. 2008, 54:2379-2391.
    • (2008) AIChE J. , vol.54 , pp. 2379-2391
    • Liu, X.1    Xie, L.2    Kruger, U.3    Littler, T.4    Wang, S.5
  • 70
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • Lee J.M., Qin S.J., Lee I.B. Fault detection and diagnosis based on modified independent component analysis. AIChE J. 2006, 52:3501-3514.
    • (2006) AIChE J. , vol.52 , pp. 3501-3514
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 71
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs J.J., Vogel E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 72
    • 0029256836 scopus 로고
    • Plant-wide control of the Tennessee Eastman problem
    • Lyman P.R., Georgakis C. Plant-wide control of the Tennessee Eastman problem. Comput. Chem. Eng. 1995, 19:321-331.
    • (1995) Comput. Chem. Eng. , vol.19 , pp. 321-331
    • Lyman, P.R.1    Georgakis, C.2
  • 73
    • 0030217795 scopus 로고    scopus 로고
    • Decentralized control of the Tennessee Eastman challenge process
    • Lawrence Ricker N. Decentralized control of the Tennessee Eastman challenge process. J. Process Control 1996, 6:205-221.
    • (1996) J. Process Control , vol.6 , pp. 205-221
    • Lawrence Ricker, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.