-
1
-
-
84863101603
-
Quality control methods for several related variables
-
Jackson J.E. Quality control methods for several related variables. Technometrics 1959, 1:359-377.
-
(1959)
Technometrics
, vol.1
, pp. 359-377
-
-
Jackson, J.E.1
-
2
-
-
0030262558
-
Multivariate SPC methods for process and product monitoring
-
Kourti T., MacGregor J.F. Multivariate SPC methods for process and product monitoring. J. Qual. Technol. 1996, 28:409-428.
-
(1996)
J. Qual. Technol.
, vol.28
, pp. 409-428
-
-
Kourti, T.1
MacGregor, J.F.2
-
3
-
-
0026108818
-
Multivariate statistical monitoring of process operating performance
-
Kresta J.V., Macgregor J.F., Marlin T.E. Multivariate statistical monitoring of process operating performance. Can. J. Chem. Eng. 2009, 69:35-47.
-
(2009)
Can. J. Chem. Eng.
, vol.69
, pp. 35-47
-
-
Kresta, J.V.1
Macgregor, J.F.2
Marlin, T.E.3
-
4
-
-
0028892168
-
Disturbance detection and isolation by dynamic principal component analysis
-
Ku W., Storer R.H., Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemom. Intell. Lab. Syst. 1995, 30:179-196.
-
(1995)
Chemom. Intell. Lab. Syst.
, vol.30
, pp. 179-196
-
-
Ku, W.1
Storer, R.H.2
Georgakis, C.3
-
5
-
-
0041355444
-
Combination method of principal component and wavelet analysis for multivariate process monitoring and fault diagnosis
-
Lu N., Wang F., Gao F. Combination method of principal component and wavelet analysis for multivariate process monitoring and fault diagnosis. Ind. Eng. Chem. Res. 2003, 42:4198-4207.
-
(2003)
Ind. Eng. Chem. Res.
, vol.42
, pp. 4198-4207
-
-
Lu, N.1
Wang, F.2
Gao, F.3
-
6
-
-
0028483476
-
Monitoring batch processes using multiway principal component analysis
-
Nomikos P., MacGregor J.F. Monitoring batch processes using multiway principal component analysis. AICHE J. 1994, 40:1361-1375.
-
(1994)
AICHE J.
, vol.40
, pp. 1361-1375
-
-
Nomikos, P.1
MacGregor, J.F.2
-
7
-
-
74249108882
-
Efficient recursive principal component analysis algorithms for process monitoring
-
Elshenawy L.M., Yin S., Naik A.S., Ding S.X. Efficient recursive principal component analysis algorithms for process monitoring. Ind. Eng. Chem. Res. 2009, 49:252-259.
-
(2009)
Ind. Eng. Chem. Res.
, vol.49
, pp. 252-259
-
-
Elshenawy, L.M.1
Yin, S.2
Naik, A.S.3
Ding, S.X.4
-
8
-
-
1342285571
-
Statistical process monitoring with independent component analysis
-
Lee J.-M., Yoo C., Lee I.-B. Statistical process monitoring with independent component analysis. J. Process Control 2004, 14:467-485.
-
(2004)
J. Process Control
, vol.14
, pp. 467-485
-
-
Lee, J.-M.1
Yoo, C.2
Lee, I.-B.3
-
9
-
-
0346911568
-
Nonlinear process monitoring using kernel principal component analysis
-
Lee J.-M., Yoo C., Choi S.W., Vanrolleghem P.A., Lee I.-B. Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 2004, 59:223-234.
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 223-234
-
-
Lee, J.-M.1
Yoo, C.2
Choi, S.W.3
Vanrolleghem, P.A.4
Lee, I.-B.5
-
10
-
-
84861191986
-
A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
-
Rashid M.M., Yu J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemom. Intell. Lab. Syst. 2012, 115:44-58.
-
(2012)
Chemom. Intell. Lab. Syst.
, vol.115
, pp. 44-58
-
-
Rashid, M.M.1
Yu, J.2
-
11
-
-
2342615505
-
On-line monitoring of batch processes using multiway independent component analysis
-
Yoo C.K., Lee J.-M., Vanrolleghem P.A., Lee I.-B. On-line monitoring of batch processes using multiway independent component analysis. Chemom. Intell. Lab. Syst. 2004, 71:151-163.
-
(2004)
Chemom. Intell. Lab. Syst.
, vol.71
, pp. 151-163
-
-
Yoo, C.K.1
Lee, J.-M.2
Vanrolleghem, P.A.3
Lee, I.-B.4
-
12
-
-
0032044750
-
Recursive PLS algorithms for adaptive data modeling
-
Joe Qin S. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng. 1998, 22:503-514.
-
(1998)
Comput. Chem. Eng.
, vol.22
, pp. 503-514
-
-
Joe Qin, S.1
-
13
-
-
54949117106
-
Diagnosis of process faults in chemical systems using a local partial least squares approach
-
Kruger U., Dimitriadis G. Diagnosis of process faults in chemical systems using a local partial least squares approach. AICHE J. 2008, 54:2581-2596.
-
(2008)
AICHE J.
, vol.54
, pp. 2581-2596
-
-
Kruger, U.1
Dimitriadis, G.2
-
14
-
-
84859698661
-
A PLS-based statistical approach for fault detection and isolation of robotic manipulators
-
Muradore R., Fiorini P. A PLS-based statistical approach for fault detection and isolation of robotic manipulators. IEEE Trans. Ind. Electron. 2012, 59:3167-3175.
-
(2012)
IEEE Trans. Ind. Electron.
, vol.59
, pp. 3167-3175
-
-
Muradore, R.1
Fiorini, P.2
-
16
-
-
0242354134
-
Statistical process monitoring: basics and beyond
-
Joe Qin S. Statistical process monitoring: basics and beyond. J. Chemometr. 2003, 17:480-502.
-
(2003)
J. Chemometr.
, vol.17
, pp. 480-502
-
-
Joe Qin, S.1
-
17
-
-
0037443803
-
A review of process fault detection and diagnosis: part III: process history based methods
-
Venkatasubramanian V., Rengaswamy R., Kavuri S.N., Yin K. A review of process fault detection and diagnosis: part III: process history based methods. Comput. Chem. Eng. 2003, 27:327-346.
-
(2003)
Comput. Chem. Eng.
, vol.27
, pp. 327-346
-
-
Venkatasubramanian, V.1
Rengaswamy, R.2
Kavuri, S.N.3
Yin, K.4
-
18
-
-
36148959019
-
Improved kernel principal component analysis for fault detection
-
Cui P., Li J., Wang G. Improved kernel principal component analysis for fault detection. Expert Syst. Appl. 2008, 34:1210-1219.
-
(2008)
Expert Syst. Appl.
, vol.34
, pp. 1210-1219
-
-
Cui, P.1
Li, J.2
Wang, G.3
-
19
-
-
63249084878
-
Improved kernel PCA-based monitoring approach for nonlinear processes
-
Ge Z., Yang C., Song Z. Improved kernel PCA-based monitoring approach for nonlinear processes. Chem. Eng. Sci. 2009, 64:2245-2255.
-
(2009)
Chem. Eng. Sci.
, vol.64
, pp. 2245-2255
-
-
Ge, Z.1
Yang, C.2
Song, Z.3
-
20
-
-
0026113980
-
Nonlinear principal component analysis using autoassociative neural networks
-
Kramer M.A. Nonlinear principal component analysis using autoassociative neural networks. AICHE J. 1991, 37:233-243.
-
(1991)
AICHE J.
, vol.37
, pp. 233-243
-
-
Kramer, M.A.1
-
21
-
-
0043015539
-
Nonlinear principal component analysis-based on principal curves and neural networks
-
Dong D., McAvoy T.J. Nonlinear principal component analysis-based on principal curves and neural networks. Comput. Chem. Eng. 1996, 20:65-78.
-
(1996)
Comput. Chem. Eng.
, vol.20
, pp. 65-78
-
-
Dong, D.1
McAvoy, T.J.2
-
22
-
-
0347243182
-
Nonlinear component analysis as a kernel eigenvalue problem
-
Schölkopf B., Smola A., Müller K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10:1299-1319.
-
(1998)
Neural Comput.
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
23
-
-
10044259622
-
Nonlinear dynamic process monitoring based on dynamic kernel PCA
-
Choi S.W., Lee I.-B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chem. Eng. Sci. 2004, 59:5897-5908.
-
(2004)
Chem. Eng. Sci.
, vol.59
, pp. 5897-5908
-
-
Choi, S.W.1
Lee, I.-B.2
-
24
-
-
40949103011
-
Nonlinear multiscale modelling for fault detection and identification
-
Choi S.W., Morris J., Lee I.-B. Nonlinear multiscale modelling for fault detection and identification. Chem. Eng. Sci. 2008, 63:2252-2266.
-
(2008)
Chem. Eng. Sci.
, vol.63
, pp. 2252-2266
-
-
Choi, S.W.1
Morris, J.2
Lee, I.-B.3
-
25
-
-
78449282926
-
Kernel generalization of PPCA for nonlinear probabilistic monitoring
-
Ge Z., Song Z. Kernel generalization of PPCA for nonlinear probabilistic monitoring. Ind. Eng. Chem. Res. 2010, 49:11832-11836.
-
(2010)
Ind. Eng. Chem. Res.
, vol.49
, pp. 11832-11836
-
-
Ge, Z.1
Song, Z.2
-
26
-
-
84863151045
-
Dynamic processes monitoring using recursive kernel principal component analysis
-
Zhang Y., Li S., Teng Y. Dynamic processes monitoring using recursive kernel principal component analysis. Chem. Eng. Sci. 2012, 72:78-86.
-
(2012)
Chem. Eng. Sci.
, vol.72
, pp. 78-86
-
-
Zhang, Y.1
Li, S.2
Teng, Y.3
-
27
-
-
84865495534
-
Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity method, industrial & engineering chemistry research
-
Rashid M., Yu J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity method, industrial & engineering chemistry research. Ind. Eng. Chem. Res. 2012, 51:10910-10920.
-
(2012)
Ind. Eng. Chem. Res.
, vol.51
, pp. 10910-10920
-
-
Rashid, M.1
Yu, J.2
-
29
-
-
0037093020
-
Fault detection behavior and performance analysis of principal component analysis based process monitoring methods
-
Wang H., Song Z., Li P. Fault detection behavior and performance analysis of principal component analysis based process monitoring methods. Ind. Eng. Chem. Res. 2002, 41:2455-2464.
-
(2002)
Ind. Eng. Chem. Res.
, vol.41
, pp. 2455-2464
-
-
Wang, H.1
Song, Z.2
Li, P.3
-
30
-
-
84867006916
-
Chemical processes monitoring based on weighted principal component analysis and its application
-
Jiang Q., Yan X. Chemical processes monitoring based on weighted principal component analysis and its application. Chemom. Intell. Lab. Syst. 2012, 119:11-20.
-
(2012)
Chemom. Intell. Lab. Syst.
, vol.119
, pp. 11-20
-
-
Jiang, Q.1
Yan, X.2
-
31
-
-
0028354319
-
Exponentially weighted moving principal components analysis and projections to latent structures
-
Wold S. Exponentially weighted moving principal components analysis and projections to latent structures. Chemom. Intell. Lab. Syst. 1994, 23:149-161.
-
(1994)
Chemom. Intell. Lab. Syst.
, vol.23
, pp. 149-161
-
-
Wold, S.1
-
32
-
-
45249112589
-
Fault diagnosis based on variable-weighted kernel Fisher discriminant analysis
-
He X.B., Yang Y.P., Yang Y.H. Fault diagnosis based on variable-weighted kernel Fisher discriminant analysis. Chemom. Intell. Lab. Syst. 2008, 93:27-33.
-
(2008)
Chemom. Intell. Lab. Syst.
, vol.93
, pp. 27-33
-
-
He, X.B.1
Yang, Y.P.2
Yang, Y.H.3
-
33
-
-
70349338494
-
Multilevel simultaneous component analysis for fault detection in multicampaign process monitoring: application to on-line high performance liquid chromatography of a continuous process
-
Ferreira D.L., Kittiwachana S., Fido L.A., Thompson D.R., Escott R.E., Brereton R.G. Multilevel simultaneous component analysis for fault detection in multicampaign process monitoring: application to on-line high performance liquid chromatography of a continuous process. Analyst 2009, 134:1571-1585.
-
(2009)
Analyst
, vol.134
, pp. 1571-1585
-
-
Ferreira, D.L.1
Kittiwachana, S.2
Fido, L.A.3
Thompson, D.R.4
Escott, R.E.5
Brereton, R.G.6
-
35
-
-
0001473437
-
On estimation of a probability density function and mode
-
Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33:1065-1076.
-
(1962)
Ann. Math. Stat.
, vol.33
, pp. 1065-1076
-
-
Parzen, E.1
-
39
-
-
0035427805
-
Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
-
Yoon S., MacGregor J.F. Fault diagnosis with multivariate statistical models part I: using steady state fault signatures. J. Process. Control. 2001, 11:387-400.
-
(2001)
J. Process. Control.
, vol.11
, pp. 387-400
-
-
Yoon, S.1
MacGregor, J.F.2
-
40
-
-
0035802262
-
Reconstruction-based fault identification using a combined index
-
Yue H.H., Qin S.J. Reconstruction-based fault identification using a combined index. Ind. Eng. Chem. Res. 2001, 40:4403-4414.
-
(2001)
Ind. Eng. Chem. Res.
, vol.40
, pp. 4403-4414
-
-
Yue, H.H.1
Qin, S.J.2
-
41
-
-
0037425487
-
Overall statistical monitoring of static and dynamic patterns
-
Choi S.W., Yoo C.K., Lee I.-B. Overall statistical monitoring of static and dynamic patterns. Ind. Eng. Chem. Res. 2003, 42:108-117.
-
(2003)
Ind. Eng. Chem. Res.
, vol.42
, pp. 108-117
-
-
Choi, S.W.1
Yoo, C.K.2
Lee, I.-B.3
-
42
-
-
0027561446
-
A plant-wide industrial process control problem
-
Downs J.J., Vogel E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
-
(1993)
Comput. Chem. Eng.
, vol.17
, pp. 245-255
-
-
Downs, J.J.1
Vogel, E.F.2
-
43
-
-
0028431355
-
Base control for the Tennessee Eastman problem
-
McAvoy T., Ye N. Base control for the Tennessee Eastman problem. Comput. Chem. Eng. 1994, 18:383-413.
-
(1994)
Comput. Chem. Eng.
, vol.18
, pp. 383-413
-
-
McAvoy, T.1
Ye, N.2
-
44
-
-
0029256836
-
Plant-wide control of the Tennessee Eastman problem
-
Lyman P.R., Georgakis C. Plant-wide control of the Tennessee Eastman problem. Comput. Chem. Eng. 1995, 19:321-331.
-
(1995)
Comput. Chem. Eng.
, vol.19
, pp. 321-331
-
-
Lyman, P.R.1
Georgakis, C.2
-
45
-
-
34548593553
-
Fault detection of non-linear processes using kernel independent component analysis
-
Lee J.M., Qin S.J., Lee I.B. Fault detection of non-linear processes using kernel independent component analysis. Can. J. Chem. Eng. 2007, 85:526-536.
-
(2007)
Can. J. Chem. Eng.
, vol.85
, pp. 526-536
-
-
Lee, J.M.1
Qin, S.J.2
Lee, I.B.3
|