메뉴 건너뛰기




Volumn 127, Issue , 2013, Pages 121-131

Weighted kernel principal component analysis based on probability density estimation and moving window and its application in nonlinear chemical process monitoring

Author keywords

Moving window; Nonlinear process monitoring; Probability density estimation; Weighted kernel principal component analysis

Indexed keywords

ARTICLE; CHEMICAL REACTION; CONTROLLED STUDY; INTERMETHOD COMPARISON; KERNEL PRINCIPAL COMPONENT ANALYSIS; NONLINEAR SYSTEM; PERFORMANCE; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; PROBABILITY; PROCESS MONITORING; QUALITY CONTROL; SIMULATION; STATISTICAL ANALYSIS; STIRRED REACTOR; TENNESSEE EASTMAN PROCESS;

EID: 84880623050     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2013.06.013     Document Type: Article
Times cited : (56)

References (45)
  • 1
    • 84863101603 scopus 로고
    • Quality control methods for several related variables
    • Jackson J.E. Quality control methods for several related variables. Technometrics 1959, 1:359-377.
    • (1959) Technometrics , vol.1 , pp. 359-377
    • Jackson, J.E.1
  • 2
    • 0030262558 scopus 로고    scopus 로고
    • Multivariate SPC methods for process and product monitoring
    • Kourti T., MacGregor J.F. Multivariate SPC methods for process and product monitoring. J. Qual. Technol. 1996, 28:409-428.
    • (1996) J. Qual. Technol. , vol.28 , pp. 409-428
    • Kourti, T.1    MacGregor, J.F.2
  • 3
    • 0026108818 scopus 로고    scopus 로고
    • Multivariate statistical monitoring of process operating performance
    • Kresta J.V., Macgregor J.F., Marlin T.E. Multivariate statistical monitoring of process operating performance. Can. J. Chem. Eng. 2009, 69:35-47.
    • (2009) Can. J. Chem. Eng. , vol.69 , pp. 35-47
    • Kresta, J.V.1    Macgregor, J.F.2    Marlin, T.E.3
  • 4
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku W., Storer R.H., Georgakis C. Disturbance detection and isolation by dynamic principal component analysis. Chemom. Intell. Lab. Syst. 1995, 30:179-196.
    • (1995) Chemom. Intell. Lab. Syst. , vol.30 , pp. 179-196
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 5
    • 0041355444 scopus 로고    scopus 로고
    • Combination method of principal component and wavelet analysis for multivariate process monitoring and fault diagnosis
    • Lu N., Wang F., Gao F. Combination method of principal component and wavelet analysis for multivariate process monitoring and fault diagnosis. Ind. Eng. Chem. Res. 2003, 42:4198-4207.
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 4198-4207
    • Lu, N.1    Wang, F.2    Gao, F.3
  • 6
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos P., MacGregor J.F. Monitoring batch processes using multiway principal component analysis. AICHE J. 1994, 40:1361-1375.
    • (1994) AICHE J. , vol.40 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 7
    • 74249108882 scopus 로고    scopus 로고
    • Efficient recursive principal component analysis algorithms for process monitoring
    • Elshenawy L.M., Yin S., Naik A.S., Ding S.X. Efficient recursive principal component analysis algorithms for process monitoring. Ind. Eng. Chem. Res. 2009, 49:252-259.
    • (2009) Ind. Eng. Chem. Res. , vol.49 , pp. 252-259
    • Elshenawy, L.M.1    Yin, S.2    Naik, A.S.3    Ding, S.X.4
  • 8
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee J.-M., Yoo C., Lee I.-B. Statistical process monitoring with independent component analysis. J. Process Control 2004, 14:467-485.
    • (2004) J. Process Control , vol.14 , pp. 467-485
    • Lee, J.-M.1    Yoo, C.2    Lee, I.-B.3
  • 9
    • 0346911568 scopus 로고    scopus 로고
    • Nonlinear process monitoring using kernel principal component analysis
    • Lee J.-M., Yoo C., Choi S.W., Vanrolleghem P.A., Lee I.-B. Nonlinear process monitoring using kernel principal component analysis. Chem. Eng. Sci. 2004, 59:223-234.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 223-234
    • Lee, J.-M.1    Yoo, C.2    Choi, S.W.3    Vanrolleghem, P.A.4    Lee, I.-B.5
  • 10
    • 84861191986 scopus 로고    scopus 로고
    • A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring
    • Rashid M.M., Yu J. A new dissimilarity method integrating multidimensional mutual information and independent component analysis for non-Gaussian dynamic process monitoring. Chemom. Intell. Lab. Syst. 2012, 115:44-58.
    • (2012) Chemom. Intell. Lab. Syst. , vol.115 , pp. 44-58
    • Rashid, M.M.1    Yu, J.2
  • 11
    • 2342615505 scopus 로고    scopus 로고
    • On-line monitoring of batch processes using multiway independent component analysis
    • Yoo C.K., Lee J.-M., Vanrolleghem P.A., Lee I.-B. On-line monitoring of batch processes using multiway independent component analysis. Chemom. Intell. Lab. Syst. 2004, 71:151-163.
    • (2004) Chemom. Intell. Lab. Syst. , vol.71 , pp. 151-163
    • Yoo, C.K.1    Lee, J.-M.2    Vanrolleghem, P.A.3    Lee, I.-B.4
  • 12
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • Joe Qin S. Recursive PLS algorithms for adaptive data modeling. Comput. Chem. Eng. 1998, 22:503-514.
    • (1998) Comput. Chem. Eng. , vol.22 , pp. 503-514
    • Joe Qin, S.1
  • 13
    • 54949117106 scopus 로고    scopus 로고
    • Diagnosis of process faults in chemical systems using a local partial least squares approach
    • Kruger U., Dimitriadis G. Diagnosis of process faults in chemical systems using a local partial least squares approach. AICHE J. 2008, 54:2581-2596.
    • (2008) AICHE J. , vol.54 , pp. 2581-2596
    • Kruger, U.1    Dimitriadis, G.2
  • 14
    • 84859698661 scopus 로고    scopus 로고
    • A PLS-based statistical approach for fault detection and isolation of robotic manipulators
    • Muradore R., Fiorini P. A PLS-based statistical approach for fault detection and isolation of robotic manipulators. IEEE Trans. Ind. Electron. 2012, 59:3167-3175.
    • (2012) IEEE Trans. Ind. Electron. , vol.59 , pp. 3167-3175
    • Muradore, R.1    Fiorini, P.2
  • 16
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: basics and beyond
    • Joe Qin S. Statistical process monitoring: basics and beyond. J. Chemometr. 2003, 17:480-502.
    • (2003) J. Chemometr. , vol.17 , pp. 480-502
    • Joe Qin, S.1
  • 17
    • 0037443803 scopus 로고    scopus 로고
    • A review of process fault detection and diagnosis: part III: process history based methods
    • Venkatasubramanian V., Rengaswamy R., Kavuri S.N., Yin K. A review of process fault detection and diagnosis: part III: process history based methods. Comput. Chem. Eng. 2003, 27:327-346.
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 327-346
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3    Yin, K.4
  • 18
    • 36148959019 scopus 로고    scopus 로고
    • Improved kernel principal component analysis for fault detection
    • Cui P., Li J., Wang G. Improved kernel principal component analysis for fault detection. Expert Syst. Appl. 2008, 34:1210-1219.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 1210-1219
    • Cui, P.1    Li, J.2    Wang, G.3
  • 19
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel PCA-based monitoring approach for nonlinear processes
    • Ge Z., Yang C., Song Z. Improved kernel PCA-based monitoring approach for nonlinear processes. Chem. Eng. Sci. 2009, 64:2245-2255.
    • (2009) Chem. Eng. Sci. , vol.64 , pp. 2245-2255
    • Ge, Z.1    Yang, C.2    Song, Z.3
  • 20
    • 0026113980 scopus 로고
    • Nonlinear principal component analysis using autoassociative neural networks
    • Kramer M.A. Nonlinear principal component analysis using autoassociative neural networks. AICHE J. 1991, 37:233-243.
    • (1991) AICHE J. , vol.37 , pp. 233-243
    • Kramer, M.A.1
  • 21
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysis-based on principal curves and neural networks
    • Dong D., McAvoy T.J. Nonlinear principal component analysis-based on principal curves and neural networks. Comput. Chem. Eng. 1996, 20:65-78.
    • (1996) Comput. Chem. Eng. , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 22
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A., Müller K.-R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10:1299-1319.
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 23
    • 10044259622 scopus 로고    scopus 로고
    • Nonlinear dynamic process monitoring based on dynamic kernel PCA
    • Choi S.W., Lee I.-B. Nonlinear dynamic process monitoring based on dynamic kernel PCA. Chem. Eng. Sci. 2004, 59:5897-5908.
    • (2004) Chem. Eng. Sci. , vol.59 , pp. 5897-5908
    • Choi, S.W.1    Lee, I.-B.2
  • 24
    • 40949103011 scopus 로고    scopus 로고
    • Nonlinear multiscale modelling for fault detection and identification
    • Choi S.W., Morris J., Lee I.-B. Nonlinear multiscale modelling for fault detection and identification. Chem. Eng. Sci. 2008, 63:2252-2266.
    • (2008) Chem. Eng. Sci. , vol.63 , pp. 2252-2266
    • Choi, S.W.1    Morris, J.2    Lee, I.-B.3
  • 25
    • 78449282926 scopus 로고    scopus 로고
    • Kernel generalization of PPCA for nonlinear probabilistic monitoring
    • Ge Z., Song Z. Kernel generalization of PPCA for nonlinear probabilistic monitoring. Ind. Eng. Chem. Res. 2010, 49:11832-11836.
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 11832-11836
    • Ge, Z.1    Song, Z.2
  • 26
    • 84863151045 scopus 로고    scopus 로고
    • Dynamic processes monitoring using recursive kernel principal component analysis
    • Zhang Y., Li S., Teng Y. Dynamic processes monitoring using recursive kernel principal component analysis. Chem. Eng. Sci. 2012, 72:78-86.
    • (2012) Chem. Eng. Sci. , vol.72 , pp. 78-86
    • Zhang, Y.1    Li, S.2    Teng, Y.3
  • 27
    • 84865495534 scopus 로고    scopus 로고
    • Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity method, industrial & engineering chemistry research
    • Rashid M., Yu J. Nonlinear and non-Gaussian dynamic batch process monitoring using a new multiway kernel independent component analysis and multidimensional mutual information based dissimilarity method, industrial & engineering chemistry research. Ind. Eng. Chem. Res. 2012, 51:10910-10920.
    • (2012) Ind. Eng. Chem. Res. , vol.51 , pp. 10910-10920
    • Rashid, M.1    Yu, J.2
  • 29
    • 0037093020 scopus 로고    scopus 로고
    • Fault detection behavior and performance analysis of principal component analysis based process monitoring methods
    • Wang H., Song Z., Li P. Fault detection behavior and performance analysis of principal component analysis based process monitoring methods. Ind. Eng. Chem. Res. 2002, 41:2455-2464.
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 2455-2464
    • Wang, H.1    Song, Z.2    Li, P.3
  • 30
    • 84867006916 scopus 로고    scopus 로고
    • Chemical processes monitoring based on weighted principal component analysis and its application
    • Jiang Q., Yan X. Chemical processes monitoring based on weighted principal component analysis and its application. Chemom. Intell. Lab. Syst. 2012, 119:11-20.
    • (2012) Chemom. Intell. Lab. Syst. , vol.119 , pp. 11-20
    • Jiang, Q.1    Yan, X.2
  • 31
    • 0028354319 scopus 로고
    • Exponentially weighted moving principal components analysis and projections to latent structures
    • Wold S. Exponentially weighted moving principal components analysis and projections to latent structures. Chemom. Intell. Lab. Syst. 1994, 23:149-161.
    • (1994) Chemom. Intell. Lab. Syst. , vol.23 , pp. 149-161
    • Wold, S.1
  • 32
    • 45249112589 scopus 로고    scopus 로고
    • Fault diagnosis based on variable-weighted kernel Fisher discriminant analysis
    • He X.B., Yang Y.P., Yang Y.H. Fault diagnosis based on variable-weighted kernel Fisher discriminant analysis. Chemom. Intell. Lab. Syst. 2008, 93:27-33.
    • (2008) Chemom. Intell. Lab. Syst. , vol.93 , pp. 27-33
    • He, X.B.1    Yang, Y.P.2    Yang, Y.H.3
  • 33
    • 70349338494 scopus 로고    scopus 로고
    • Multilevel simultaneous component analysis for fault detection in multicampaign process monitoring: application to on-line high performance liquid chromatography of a continuous process
    • Ferreira D.L., Kittiwachana S., Fido L.A., Thompson D.R., Escott R.E., Brereton R.G. Multilevel simultaneous component analysis for fault detection in multicampaign process monitoring: application to on-line high performance liquid chromatography of a continuous process. Analyst 2009, 134:1571-1585.
    • (2009) Analyst , vol.134 , pp. 1571-1585
    • Ferreira, D.L.1    Kittiwachana, S.2    Fido, L.A.3    Thompson, D.R.4    Escott, R.E.5    Brereton, R.G.6
  • 35
    • 0001473437 scopus 로고
    • On estimation of a probability density function and mode
    • Parzen E. On estimation of a probability density function and mode. Ann. Math. Stat. 1962, 33:1065-1076.
    • (1962) Ann. Math. Stat. , vol.33 , pp. 1065-1076
    • Parzen, E.1
  • 39
    • 0035427805 scopus 로고    scopus 로고
    • Fault diagnosis with multivariate statistical models part I: using steady state fault signatures
    • Yoon S., MacGregor J.F. Fault diagnosis with multivariate statistical models part I: using steady state fault signatures. J. Process. Control. 2001, 11:387-400.
    • (2001) J. Process. Control. , vol.11 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2
  • 40
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • Yue H.H., Qin S.J. Reconstruction-based fault identification using a combined index. Ind. Eng. Chem. Res. 2001, 40:4403-4414.
    • (2001) Ind. Eng. Chem. Res. , vol.40 , pp. 4403-4414
    • Yue, H.H.1    Qin, S.J.2
  • 41
    • 0037425487 scopus 로고    scopus 로고
    • Overall statistical monitoring of static and dynamic patterns
    • Choi S.W., Yoo C.K., Lee I.-B. Overall statistical monitoring of static and dynamic patterns. Ind. Eng. Chem. Res. 2003, 42:108-117.
    • (2003) Ind. Eng. Chem. Res. , vol.42 , pp. 108-117
    • Choi, S.W.1    Yoo, C.K.2    Lee, I.-B.3
  • 42
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs J.J., Vogel E.F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17:245-255.
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 43
    • 0028431355 scopus 로고
    • Base control for the Tennessee Eastman problem
    • McAvoy T., Ye N. Base control for the Tennessee Eastman problem. Comput. Chem. Eng. 1994, 18:383-413.
    • (1994) Comput. Chem. Eng. , vol.18 , pp. 383-413
    • McAvoy, T.1    Ye, N.2
  • 44
    • 0029256836 scopus 로고
    • Plant-wide control of the Tennessee Eastman problem
    • Lyman P.R., Georgakis C. Plant-wide control of the Tennessee Eastman problem. Comput. Chem. Eng. 1995, 19:321-331.
    • (1995) Comput. Chem. Eng. , vol.19 , pp. 321-331
    • Lyman, P.R.1    Georgakis, C.2
  • 45
    • 34548593553 scopus 로고    scopus 로고
    • Fault detection of non-linear processes using kernel independent component analysis
    • Lee J.M., Qin S.J., Lee I.B. Fault detection of non-linear processes using kernel independent component analysis. Can. J. Chem. Eng. 2007, 85:526-536.
    • (2007) Can. J. Chem. Eng. , vol.85 , pp. 526-536
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.