메뉴 건너뛰기




Volumn 123, Issue , 2013, Pages 1-8

Performance-driven ensemble learning ICA model for improved non-Gaussian process monitoring

Author keywords

Bayesian inference; Ensemble learning; Independent component analysis; Performance driven; Process monitoring

Indexed keywords

ARTICLE; BAYESIAN LEARNING; FEASIBILITY STUDY; INDEPENDENT COMPONENT ANALYSIS; LEARNING ALGORITHM; MONTE CARLO METHOD; NORMAL DISTRIBUTION; ONLINE SYSTEM; PRINCIPAL COMPONENT ANALYSIS; PRIORITY JOURNAL; PROBABILITY; PROCESS MONITORING; RELIABILITY; STATISTICAL ANALYSIS; STATISTICAL MODEL; VALIDATION STUDY;

EID: 84874770366     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2013.02.001     Document Type: Article
Times cited : (87)

References (36)
  • 1
    • 0030525683 scopus 로고    scopus 로고
    • Non-parametric confidence bounds for process performance monitoring
    • Martin E.B., Morris A.J. Non-parametric confidence bounds for process performance monitoring. Journal of Process Control 1996, 6:349-358.
    • (1996) Journal of Process Control , vol.6 , pp. 349-358
    • Martin, E.B.1    Morris, A.J.2
  • 2
    • 1142268899 scopus 로고    scopus 로고
    • Regularised kernel density estimation for clustered process data
    • Chen Q., Kruger U., Leung A.Y.T. Regularised kernel density estimation for clustered process data. Control Engineering Practice 2004, 12:267-274.
    • (2004) Control Engineering Practice , vol.12 , pp. 267-274
    • Chen, Q.1    Kruger, U.2    Leung, A.Y.T.3
  • 3
    • 77953121551 scopus 로고    scopus 로고
    • Maximum-likelihood mixture factor analysis model and its application for process monitoring
    • Ge Z., Song Z. Maximum-likelihood mixture factor analysis model and its application for process monitoring. Chemometrics and Intelligent Laboratory Systems 2010, 102:53-61.
    • (2010) Chemometrics and Intelligent Laboratory Systems , vol.102 , pp. 53-61
    • Ge, Z.1    Song, Z.2
  • 4
    • 77649189520 scopus 로고    scopus 로고
    • On-line multivariate statistical monitoring of batch processes using Gaussian mixture model
    • Chen T., Zhang J. On-line multivariate statistical monitoring of batch processes using Gaussian mixture model. Computers and Chemical Engineering 2010, 34:500-507.
    • (2010) Computers and Chemical Engineering , vol.34 , pp. 500-507
    • Chen, T.1    Zhang, J.2
  • 5
    • 81055156706 scopus 로고    scopus 로고
    • A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes
    • Yu J. A nonlinear kernel Gaussian mixture model based inferential monitoring approach for fault detection and diagnosis of chemical processes. Chemical Engineering Science 2012, 68:506-519.
    • (2012) Chemical Engineering Science , vol.68 , pp. 506-519
    • Yu, J.1
  • 6
    • 0037086546 scopus 로고    scopus 로고
    • Dimension reduction of process dynamic trends using independent component analysis
    • Li R.F., Wang X.Z. Dimension reduction of process dynamic trends using independent component analysis. Computers and Chemical Engineering 2002, 26:467-473.
    • (2002) Computers and Chemical Engineering , vol.26 , pp. 467-473
    • Li, R.F.1    Wang, X.Z.2
  • 8
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Ge Z., Song Z. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors. Industrial and Engineering Chemistry Research 2007, 46:2054-2063.
    • (2007) Industrial and Engineering Chemistry Research , vol.46 , pp. 2054-2063
    • Ge, Z.1    Song, Z.2
  • 9
    • 79960836522 scopus 로고    scopus 로고
    • Integrating independent component analysis and local outlier factor for plant-wide process monitoring
    • Lee J., Kang B., Kang S. Integrating independent component analysis and local outlier factor for plant-wide process monitoring. Journal of Process Control 2011, 21:1011-1021.
    • (2011) Journal of Process Control , vol.21 , pp. 1011-1021
    • Lee, J.1    Kang, B.2    Kang, S.3
  • 10
    • 33749473097 scopus 로고    scopus 로고
    • Fault detection and diagnosis based on modified independent component analysis
    • Lee J.M., Qin S.J., Lee I.B. Fault detection and diagnosis based on modified independent component analysis. AICHE Journal 2006, 52:3501-3514.
    • (2006) AICHE Journal , vol.52 , pp. 3501-3514
    • Lee, J.M.1    Qin, S.J.2    Lee, I.B.3
  • 11
    • 50649095932 scopus 로고    scopus 로고
    • Online monitoring of nonlinear multiple mode processes based on adaptive local model approach
    • Ge Z.Q., Song Z.H. Online monitoring of nonlinear multiple mode processes based on adaptive local model approach. Control Engineering Practice 2008, 16:1427-1437.
    • (2008) Control Engineering Practice , vol.16 , pp. 1427-1437
    • Ge, Z.Q.1    Song, Z.H.2
  • 12
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: algorithms and applications
    • Hyvarinen A., Oja E. Independent component analysis: algorithms and applications. Neural Network 2000, 13:411-430.
    • (2000) Neural Network , vol.13 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 13
    • 0035659878 scopus 로고    scopus 로고
    • Independent component ordering in ICA time-series analysis
    • Cheung Y.M., Xu L. Independent component ordering in ICA time-series analysis. Neurocomputing 2001, 41:145-152.
    • (2001) Neurocomputing , vol.41 , pp. 145-152
    • Cheung, Y.M.1    Xu, L.2
  • 14
    • 52649119206 scopus 로고    scopus 로고
    • Statistical-based monitoring of multivariate non-Gaussian systems
    • Liu X., Xie L., Kruger U., Littler T., Wang S. Statistical-based monitoring of multivariate non-Gaussian systems. AICHE Journal 2008, 54:2379-2391.
    • (2008) AICHE Journal , vol.54 , pp. 2379-2391
    • Liu, X.1    Xie, L.2    Kruger, U.3    Littler, T.4    Wang, S.5
  • 15
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 1996, 24:123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 18
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • Tao D.C., Tang X.O., Li X.L., Wu X.D. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 2006, 28:1088-1099.
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , pp. 1088-1099
    • Tao, D.C.1    Tang, X.O.2    Li, X.L.3    Wu, X.D.4
  • 19
    • 84874766740 scopus 로고    scopus 로고
    • Ensemble learning for independent component analysis, Advances in Independent Component Analysis, thesis
    • J.W. Miskin, Ensemble learning for independent component analysis, Advances in Independent Component Analysis, thesis, 2000.
    • (2000)
    • Miskin, J.W.1
  • 20
    • 27344446224 scopus 로고    scopus 로고
    • Ensemble learning for independent component analysis
    • Cheng J., Liu Q.S., Lu H.Q., Chen Y.W. Ensemble learning for independent component analysis. Pattern Recognition 2006, 39:81-88.
    • (2006) Pattern Recognition , vol.39 , pp. 81-88
    • Cheng, J.1    Liu, Q.S.2    Lu, H.Q.3    Chen, Y.W.4
  • 21
    • 84874771546 scopus 로고    scopus 로고
    • Nonlinear independent component analysis using ensemble learning: experiments and discussion
    • Lappalainen H., Giannakopoulos X., Honkela A., Karhunen J. Nonlinear independent component analysis using ensemble learning: experiments and discussion. Proc. ICA 2002.
    • (2002) Proc. ICA
    • Lappalainen, H.1    Giannakopoulos, X.2    Honkela, A.3    Karhunen, J.4
  • 23
    • 62349101529 scopus 로고    scopus 로고
    • Ensemble component selection for improving ICA based microarray data prediction models
    • Liu K.H., Li B., Zhang J., Du J.X. Ensemble component selection for improving ICA based microarray data prediction models. Pattern Recognition 2009, 42:1274-1283.
    • (2009) Pattern Recognition , vol.42 , pp. 1274-1283
    • Liu, K.H.1    Li, B.2    Zhang, J.3    Du, J.X.4
  • 24
    • 67249116501 scopus 로고    scopus 로고
    • A novel statistical-based monitoring approach for complex multivariate processes
    • Ge Z.Q., Xie L., Song Z.H. A novel statistical-based monitoring approach for complex multivariate processes. Industrial and Engineering Chemistry Research 2009, 48:4892-4898.
    • (2009) Industrial and Engineering Chemistry Research , vol.48 , pp. 4892-4898
    • Ge, Z.Q.1    Xie, L.2    Song, Z.H.3
  • 25
    • 0032144398 scopus 로고    scopus 로고
    • Subspace approach to multidimensional fault identification and reconstruction
    • Dunia R., Qin S.J. Subspace approach to multidimensional fault identification and reconstruction. AICHE Journal 1998, 44:1813-1831.
    • (1998) AICHE Journal , vol.44 , pp. 1813-1831
    • Dunia, R.1    Qin, S.J.2
  • 27
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel PCA-based monitoring approach for nonlinear processes
    • Ge Z.Q., Yang C.J., Song Z.H. Improved kernel PCA-based monitoring approach for nonlinear processes. Chemical Engineering Science 2009, 64:2245-2255.
    • (2009) Chemical Engineering Science , vol.64 , pp. 2245-2255
    • Ge, Z.Q.1    Yang, C.J.2    Song, Z.H.3
  • 28
    • 71849088402 scopus 로고    scopus 로고
    • Sensor fault identification and isolation for multivariate non-Gaussian processes
    • Ge Z., Xie L., Kruger U., Lamont L., Song Z., Wang S. Sensor fault identification and isolation for multivariate non-Gaussian processes. Journal of Process Control 2009, 19:1707-1715.
    • (2009) Journal of Process Control , vol.19 , pp. 1707-1715
    • Ge, Z.1    Xie, L.2    Kruger, U.3    Lamont, L.4    Song, Z.5    Wang, S.6
  • 29
    • 79959245830 scopus 로고    scopus 로고
    • Multivariate statistical process monitoring based on statistics pattern analysis
    • Wang J., He Q.P. Multivariate statistical process monitoring based on statistics pattern analysis. Industrial and Engineering Chemistry Research 2010, 49:7858-7869.
    • (2010) Industrial and Engineering Chemistry Research , vol.49 , pp. 7858-7869
    • Wang, J.1    He, Q.P.2
  • 30
    • 77249178133 scopus 로고    scopus 로고
    • A novel process monitoring approach with dynamic independent component analysis
    • Hsu C.C., Chen M.C., Chen L.S. A novel process monitoring approach with dynamic independent component analysis. Control Engineering Practice 2010, 18:242-253.
    • (2010) Control Engineering Practice , vol.18 , pp. 242-253
    • Hsu, C.C.1    Chen, M.C.2    Chen, L.S.3
  • 31
    • 79958703777 scopus 로고    scopus 로고
    • Localized fisher discriminant analysis based complex chemical process monitoring
    • Yu J. Localized fisher discriminant analysis based complex chemical process monitoring. AICHE Journal 2011, 57:1817-1828.
    • (2011) AICHE Journal , vol.57 , pp. 1817-1828
    • Yu, J.1
  • 32
    • 77951529123 scopus 로고    scopus 로고
    • Two-level multiblock statistical monitoring for plant-wide processes
    • Ge Z.Q., Song Z.H. Two-level multiblock statistical monitoring for plant-wide processes. Korean Journal of Chemical Engineering 2009, 26:1467-1475.
    • (2009) Korean Journal of Chemical Engineering , vol.26 , pp. 1467-1475
    • Ge, Z.Q.1    Song, Z.H.2
  • 33
    • 80051914224 scopus 로고    scopus 로고
    • Two-dimensional Bayesian monitoring method for nonlinear multimode processes
    • Ge Z., Gao F., Song Z. Two-dimensional Bayesian monitoring method for nonlinear multimode processes. Chemical Engineering Science 2011, 66:5173-5183.
    • (2011) Chemical Engineering Science , vol.66 , pp. 5173-5183
    • Ge, Z.1    Gao, F.2    Song, Z.3
  • 34
    • 84866069902 scopus 로고    scopus 로고
    • A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process
    • Yin S., Ding S.X., Haghani A., Hao H.Y., Zhang P. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. Journal of Process Control 2012, 22:1567-1581.
    • (2012) Journal of Process Control , vol.22 , pp. 1567-1581
    • Yin, S.1    Ding, S.X.2    Haghani, A.3    Hao, H.Y.4    Zhang, P.5
  • 35
    • 79953699930 scopus 로고    scopus 로고
    • A distribution-free method for process monitoring
    • Ge Z.Q., Song Z.H. A distribution-free method for process monitoring. Expert Systems with Applications 2011, 38:9821-9829.
    • (2011) Expert Systems with Applications , vol.38 , pp. 9821-9829
    • Ge, Z.Q.1    Song, Z.H.2
  • 36
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-based fault identification using a combined index
    • Yue H.H., Qin S.J. Reconstruction-based fault identification using a combined index. Industrial and Engineering Chemistry Research 2001, 40:4403-4414.
    • (2001) Industrial and Engineering Chemistry Research , vol.40 , pp. 4403-4414
    • Yue, H.H.1    Qin, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.