메뉴 건너뛰기




Volumn 43, Issue 1, 2014, Pages 257-278

The fanconi anemia DNA repair pathway: Structural and functional insights into a complex disorder

Author keywords

DNA repair; Fanconi anemia; Interstrand crosslink; Structural biology; Ubiquitin ligase

Indexed keywords

ADENOSINE TRIPHOSPHATASE; CYCLINE; DOUBLE STRANDED DNA; FAAP100 PROTEIN; FAAP20 PROTEIN; FAAP24 PROTEIN; FANCI PROTEIN; FANCJ PROTEIN; FANCM PROTEIN; FANCN PROTEIN; FANCO PROTEIN; FANCONI ANEMIA ASSOCIATED NUCLEASE 1; FANCONI ANEMIA GROUP A PROTEIN; FANCONI ANEMIA GROUP B PROTEIN; FANCONI ANEMIA GROUP C PROTEIN; FANCONI ANEMIA GROUP D2 PROTEIN; FANCONI ANEMIA GROUP E PROTEIN; FANCONI ANEMIA GROUP F PROTEIN; FANCONI ANEMIA GROUP G PROTEIN; FANCONI ANEMIA GROUP L PROTEIN; FANCONI ANEMIA PROTEIN; FLAP ENDONUCLEASE; MHF1 PROTEIN; MHF2 PROTEIN; PROTEIN; RAD18 PROTEIN; SINGLE STRANDED DNA; SINGLE STRANDED RNA; UBIQUITIN PROTEIN LIGASE E3; UNCLASSIFIED DRUG; UNINDEXED DRUG;

EID: 84901984431     PISSN: 1936122X     EISSN: 19361238     Source Type: Book Series    
DOI: 10.1146/annurev-biophys-051013-022737     Document Type: Article
Times cited : (188)

References (130)
  • 1
    • 84859564894 scopus 로고    scopus 로고
    • FAAP20: A novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway
    • Ali AM, Pradhan A, Singh TR, Du C, Li J, et al. 2012. FAAP20: a novel ubiquitin-binding FA nuclear core-complex protein required for functional integrity of the FA-BRCA DNA repair pathway. Blood 119:3285-944
    • (2012) Blood , vol.119 , pp. 3285-3944
    • Ali, A.M.1    Pradhan, A.2    Singh, T.R.3    Du, C.4    Li, J.5
  • 2
    • 57749112131 scopus 로고    scopus 로고
    • Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI
    • Alpi AF, Pace PE, BabuMM,PatelKJ. 2008. Mechanistic insight into site-restricted monoubiquitination of FANCD2 by Ube2t, FANCL, and FANCI. Mol. Cell 32:767-777
    • (2008) Mol. Cell , vol.32 , pp. 767-777
    • Alpi, A.F.1    Pace, P.E.2    Babu, M.M.3    Patel, K.J.4
  • 3
    • 79960668553 scopus 로고    scopus 로고
    • Diagnostic evaluation of FA
    • ed. ME Eiler, D Frohnmayer, L Frohnmayer, K Larsen, J Owen Eugene, OR: Fanconi Anemia Res. Fund. 3rd ed.
    • Alter BP. 2008. Diagnostic evaluation of FA. In Fanconi Anemia: Guidelines for Diagnosis and Management, ed. ME Eiler, D Frohnmayer, L Frohnmayer, K Larsen, J Owen, pp. 33-48. Eugene, OR: Fanconi Anemia Res. Fund. 3rd ed..
    • (2008) Fanconi Anemia: Guidelines for Diagnosis and Management , pp. 33-48
    • Alter, B.P.1
  • 4
    • 67649655954 scopus 로고    scopus 로고
    • Drosophila MUS312 and the vertebrate ortholog BTBD12 interact withDNAstructure-specific endonucleases inDNArepair and recombination
    • Andersen SL, Bergstralh DT, Kohl KP, LaRocque JR,Moore CB, Sekelsky J. 2009. Drosophila MUS312 and the vertebrate ortholog BTBD12 interact withDNAstructure-specific endonucleases inDNArepair and recombination. Mol. Cell 35:128-355
    • (2009) Mol. Cell , vol.35 , pp. 128-355
    • Andersen, S.L.1    Bergstralh, D.T.2    Kohl, K.P.3    Larocque, J.R.4    Moore, C.B.5    Sekelsky, J.6
  • 5
    • 67650451108 scopus 로고    scopus 로고
    • Fanconi anemia and its diagnosis
    • Auerbach AD. 2009. Fanconi anemia and its diagnosis. Mutat. Res. 668:4-100
    • (2009) Mutat. Res. , vol.668 , pp. 4-100
    • Auerbach, A.D.1
  • 7
    • 0031023182 scopus 로고    scopus 로고
    • Reconstitution of human excision nuclease with recombinant XPF-ERCC1 complex
    • Bessho T, Sancar A, Thompson LH, ThelenMP. 1997. Reconstitution of human excision nuclease with recombinant XPF-ERCC1 complex. J. Biol. Chem. 272:3833-377
    • (1997) J. Biol. Chem. , vol.272 , pp. 3833-3387
    • Bessho, T.1    Sancar, A.2    Thompson, L.H.3    Thelen, M.P.4
  • 10
    • 84877584276 scopus 로고    scopus 로고
    • Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia
    • Bogliolo M, Schuster B, Stoepker C, Derkunt B, Su Y, et al. 2013. Mutations in ERCC4, encoding the DNA-repair endonuclease XPF, cause Fanconi anemia. Am. J. Hum. Genet. 92:800-66
    • (2013) Am. J. Hum. Genet. , vol.92 , pp. 800-866
    • Bogliolo, M.1    Schuster, B.2    Stoepker, C.3    Derkunt, B.4    Su, Y.5
  • 11
    • 77957760669 scopus 로고    scopus 로고
    • Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination
    • Buisson R, Dion-Ĉot́e AM, Coulombe Y, Launay H, Cai H, et al. 2010. Cooperation of breast cancer proteins PALB2 and piccolo BRCA2 in stimulating homologous recombination. Nat. Struct. Mol. Biol. 17:1247-544
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1247-1544
    • Buisson, R.1    Dion-Ĉot́e, A.M.2    Coulombe, Y.3    Launay, H.4    Cai, H.5
  • 12
    • 79953832617 scopus 로고    scopus 로고
    • Origin, functional role, and clinical impact of Fanconi anemia FANCA mutations
    • Castella M, Pujol R, Calĺen E, Trujillo JP, Casado JA, et al. 2011. Origin, functional role, and clinical impact of Fanconi anemia FANCA mutations. Blood 117:3759-699
    • (2011) Blood , vol.117 , pp. 3759-3699
    • Castella, M.1    Pujol, R.2    Calĺen, E.3    Trujillo, J.P.4    Casado, J.A.5
  • 13
    • 84863625900 scopus 로고    scopus 로고
    • Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells
    • Ceccaldi R, Parmar K, Mouly E, Delord M, Kim JM, et al. 2012. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell 11:36-499
    • (2012) Cell Stem Cell , vol.11 , pp. 36-499
    • Ceccaldi, R.1    Parmar, K.2    Mouly, E.3    Delord, M.4    Kim, J.M.5
  • 15
    • 78649336706 scopus 로고    scopus 로고
    • The DNA damage response: Making it safe to play with knives
    • Ciccia A, Elledge SJ. 2010. The DNA damage response: making it safe to play with knives. Mol. Cell 40:179-2044
    • (2010) Mol. Cell , vol.40 , pp. 179-2044
    • Ciccia, A.1    Elledge, S.J.2
  • 16
    • 33846799430 scopus 로고    scopus 로고
    • Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM
    • Ciccia A, Ling C, Coulthard R, Yan Z, Xue Y, et al. 2007. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol. Cell 25:331-433
    • (2007) Mol. Cell , vol.25 , pp. 331-433
    • Ciccia, A.1    Ling, C.2    Coulthard, R.3    Yan, Z.4    Xue, Y.5
  • 17
    • 50649091874 scopus 로고    scopus 로고
    • Structural and functional relationships of the XPF/MUS81 family of proteins
    • Ciccia A, McDonald N, West SC. 2008. Structural and functional relationships of the XPF/MUS81 family of proteins. Annu. Rev. Biochem. 77:259-877
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 259-877
    • Ciccia, A.1    McDonald, N.2    West, S.C.3
  • 18
    • 77949267134 scopus 로고    scopus 로고
    • The structure of the catalytic subunit FANCL of the Fanconi anemia core complex
    • Cole AR, Lewis LP, Walden H. 2010. The structure of the catalytic subunit FANCL of the Fanconi anemia core complex. Nat. Struct. Mol. Biol. 17:294-988
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 294-988
    • Cole, A.R.1    Lewis, L.P.2    Walden, H.3
  • 19
    • 64049107302 scopus 로고    scopus 로고
    • ATR-dependent phosphorylation of FANCA on serine 1449 after DNA damage is important for FA pathway function
    • Collins NB, Wilson JB, Bush T, Thomashevski A, Roberts KJ, et al. 2009. ATR-dependent phosphorylation of FANCA on serine 1449 after DNA damage is important for FA pathway function. Blood 113:2181-900
    • (2009) Blood , vol.113 , pp. 2181-2900
    • Collins, N.B.1    Wilson, J.B.2    Bush, T.3    Thomashevski, A.4    Roberts, K.J.5
  • 20
    • 55049111236 scopus 로고    scopus 로고
    • FANCM and FAAP24 function in ATRmediated checkpoint signaling independently of the Fanconi anemia core complex
    • Collis SJ, Ciccia A, Deans AJ, Horejsi Z,Martin JS, et al. 2008. FANCM and FAAP24 function in ATRmediated checkpoint signaling independently of the Fanconi anemia core complex. Mol. Cell 32:313-244
    • (2008) Mol. Cell , vol.32 , pp. 313-244
    • Collis, S.J.1    Ciccia, A.2    Deans, A.J.3    Horejsi, Z.4    Martin, J.S.5
  • 21
    • 84883487898 scopus 로고    scopus 로고
    • Architecture and DNA recognition elements of the Fanconi anemia FANCM-FAAP24 complex
    • Coulthard R, Deans AJ, Swuec P, Bowles M, Costa A, et al. 2013. Architecture and DNA recognition elements of the Fanconi anemia FANCM-FAAP24 complex. Structure 21:1648-588
    • (2013) Structure , vol.21 , pp. 1648-1598
    • Coulthard, R.1    Deans, A.J.2    Swuec, P.3    Bowles, M.4    Costa, A.5
  • 23
    • 72149090671 scopus 로고    scopus 로고
    • FANCM connects the genome instability disorders Bloom's Syndrome and Fanconi Anemia
    • Deans AJ, West SC. 2009. FANCM connects the genome instability disorders Bloom's Syndrome and Fanconi Anemia. Mol. Cell 36:943-533
    • (2009) Mol. Cell , vol.36 , pp. 943-533
    • Deans, A.J.1    West, S.C.2
  • 24
    • 79959635260 scopus 로고    scopus 로고
    • DNA interstrand crosslink repair and cancer
    • Deans AJ, West SC. 2011. DNA interstrand crosslink repair and cancer. Nat. Rev. Cancer 11:467-800
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 467-800
    • Deans, A.J.1    West, S.C.2
  • 25
    • 0037090816 scopus 로고    scopus 로고
    • The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif
    • Enzlin JH, Sch?arer OD. 2002. The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif. EMBO J. 21:2045-533
    • (2002) EMBO J. , vol.21 , pp. 2045-2533
    • Enzlin, J.H.1    Scharer, O.D.2
  • 26
  • 27
    • 67649655402 scopus 로고    scopus 로고
    • Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases
    • Fekairi S, Scaglione S, ChahwanC,Taylor ER, Tissier A, et al. 2009. Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 138:78-899
    • (2009) Cell , vol.138 , pp. 78-899
    • Fekairi, S.1    Scaglione, S.2    Chahwan, C.3    Taylor, E.R.4    Tissier, A.5
  • 28
    • 0029904811 scopus 로고    scopus 로고
    • The role of DNA mismatch repair in platinum drug resistance
    • Fink D, Nebel S, Aebi S, Zheng H, Cenni B, et al. 1996. The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 56:4881-866
    • (1996) Cancer Res. , vol.56 , pp. 4881-4876
    • Fink, D.1    Nebel, S.2    Aebi, S.3    Zheng, H.4    Cenni, B.5
  • 29
    • 84866952680 scopus 로고    scopus 로고
    • Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function
    • Garaycoechea JI, CrossanGP, Langevin F,Daly M, Arends MJ, Patel KJ. 2012. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature 489:571-755
    • (2012) Nature , vol.489 , pp. 571-755
    • Garaycoechea, J.I.1    Crossan, G.P.2    Langevin, F.3    Daly, M.4    Arends, M.J.5    Patel, K.J.6
  • 30
  • 32
    • 38349050087 scopus 로고    scopus 로고
    • The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks
    • Gari K,D́ecaillet C, Stasiak AZ, Stasiak A, Constantinou A. 2008. The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol. Cell 29:141-188
    • (2008) Mol. Cell , vol.29 , pp. 141-188
    • Gari, K.1    D́ecaillet, C.2    Stasiak, A.Z.3    Stasiak, A.4    Constantinou, A.5
  • 33
    • 80052717417 scopus 로고    scopus 로고
    • Ubiquitylation and the Fanconi anemia pathway
    • Garner E, Smogorzewska A. 2011. Ubiquitylation and the Fanconi anemia pathway. FEBS Lett. 585:2853-600
    • (2011) FEBS Lett. , vol.585 , pp. 2853-2610
    • Garner, E.1    Smogorzewska, A.2
  • 34
    • 77958499239 scopus 로고    scopus 로고
    • RAD18-mediated ubiquitination of PCNA activates the Fanconi anemia DNA repair network
    • Geng L, Huntoon CJ, Karnitz LM. 2010. RAD18-mediated ubiquitination of PCNA activates the Fanconi anemia DNA repair network. J. Cell Biol. 191:249-577
    • (2010) J. Cell Biol. , vol.191 , pp. 249-577
    • Geng, L.1    Huntoon, C.J.2    Karnitz, L.M.3
  • 35
    • 27744591558 scopus 로고    scopus 로고
    • FANCC, FANCE, and FANCD2 form a ternary complex essential to the integrity of theFanconi anemiaDNAdamage response pathway
    • Gordon SM, Alon N, Buchwald M. 2005. FANCC, FANCE, and FANCD2 form a ternary complex essential to the integrity of theFanconi anemiaDNAdamage response pathway. J. Biol.Chem. 280:36118-255
    • (2005) J. Biol.Chem. , vol.280 , pp. 36118-36255
    • Gordon, S.M.1    Alon, N.2    Buchwald, M.3
  • 36
    • 0038603197 scopus 로고    scopus 로고
    • Increased sensitivity of Fancc-deficient hematopoietic cells to nitric oxide and evidence that this species mediates growth inhibition by cytokines
    • Hadjur S, Jirik FR. 2003. Increased sensitivity of Fancc-deficient hematopoietic cells to nitric oxide and evidence that this species mediates growth inhibition by cytokines. Blood 101:3877-844
    • (2003) Blood , vol.101 , pp. 3877-3854
    • Hadjur, S.1    Jirik, F.R.2
  • 37
    • 76749108600 scopus 로고    scopus 로고
    • Differential roles for DNA polymerases eta, zeta, and REV1 in lesion bypass of intrastrand versus interstrand DNA cross-links
    • Hicks JK, Chute CL, Paulsen MT, Ragland RL, Howlett NG, et al. 2010. Differential roles for DNA polymerases eta, zeta, and REV1 in lesion bypass of intrastrand versus interstrand DNA cross-links. Mol. Cell. Biol. 30:1217-300
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 1217-1300
    • Hicks, J.K.1    Chute, C.L.2    Paulsen, M.T.3    Ragland, R.L.4    Howlett, N.G.5
  • 38
    • 77955868586 scopus 로고    scopus 로고
    • Translesion DNA synthesis polymerases in DNA interstrand crosslink repair
    • Ho TV, Scharer OD. 2010. Translesion DNA synthesis polymerases in DNA interstrand crosslink repair. Environ. Mol. Mutagen. 51:552-666
    • (2010) Environ. Mol. Mutagen. , vol.51 , pp. 552-666
    • Ho, T.V.1    Scharer, O.D.2
  • 39
    • 0032520032 scopus 로고    scopus 로고
    • The Fanconi anemia group C gene product is located in both the nucleus and cytoplasm of human cells
    • Hoatlin ME, Christianson TA, Keeble WW, Hammond AT, Zhi Y, et al. 1998. The Fanconi anemia group C gene product is located in both the nucleus and cytoplasm of human cells. Blood 91:1418-255
    • (1998) Blood , vol.91 , pp. 1418-1265
    • Hoatlin, M.E.1    Christianson, T.A.2    Keeble, W.W.3    Hammond, A.T.4    Zhi, Y.5
  • 40
    • 80052747469 scopus 로고    scopus 로고
    • Structural analysis of human FANCL, the E3 ligase in the Fanconi anemia pathway
    • Hodson C, Cole AR, Lewis LP, Miles JA, Purkiss A, Walden H. 2011. Structural analysis of human FANCL, the E3 ligase in the Fanconi anemia pathway. J. Biol. Chem. 286:32628-377
    • (2011) J. Biol. Chem. , vol.286 , pp. 32628-32387
    • Hodson, C.1    Cole, A.R.2    Lewis, L.P.3    Miles, J.A.4    Purkiss, A.5    Walden, H.6
  • 41
    • 84873881517 scopus 로고    scopus 로고
    • Towards a molecular understanding of the Fanconi anemia core complex
    • Hodson C, Walden H. 2012. Towards a molecular understanding of the Fanconi anemia core complex. Anemia 2012:9267877
    • (2012) Anemia , vol.2012 , pp. 9267877
    • Hodson, C.1    Walden, H.2
  • 42
    • 0037068455 scopus 로고    scopus 로고
    • RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
    • Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135-411
    • (2002) Nature , vol.419 , pp. 135-411
    • Hoege, C.1    Pfander, B.2    Moldovan, G.L.3    Pyrowolakis, G.4    Jentsch, S.5
  • 44
    • 77955505023 scopus 로고    scopus 로고
    • The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response
    • Huang M, Kim JM, Shiotani B, Yang K, Zou L, D'Andrea AD. 2010. The FANCM/FAAP24 complex is required for the DNA interstrand crosslink-induced checkpoint response. Mol. Cell 39:259-688
    • (2010) Mol. Cell , vol.39 , pp. 259-688
    • Huang, M.1    Kim, J.M.2    Shiotani, B.3    Yang, K.4    Zou, L.5    D'Andrea, A.D.6
  • 45
    • 33646094490 scopus 로고    scopus 로고
    • Tetratricopeptide-motif-mediated interaction of FANCG with recombination proteins XRCC3 and BRCA2
    • Hussain S, Wilson JB, Blom E, Thompson LH, Sung P, et al. 2006. Tetratricopeptide-motif-mediated interaction of FANCG with recombination proteins XRCC3 and BRCA2. DNA Repair 5:629-400
    • (2006) DNA Repair , vol.5 , pp. 629-400
    • Hussain, S.1    Wilson, J.B.2    Blom, E.3    Thompson, L.H.4    Sung, P.5
  • 46
    • 55549137026 scopus 로고    scopus 로고
    • FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway
    • Ishiai M, Kitao H, Smogorzewska A, Tomida J, Kinomura A, et al. 2008. FANCI phosphorylation functions as a molecular switch to turn on the Fanconi anemia pathway. Nat. Struct. Mol. Biol. 15:1138-466
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 1138-1466
    • Ishiai, M.1    Kitao, H.2    Smogorzewska, A.3    Tomida, J.4    Kinomura, A.5
  • 47
    • 77957975815 scopus 로고    scopus 로고
    • Purified human BRCA2 stimulates RAD51-mediated recombination
    • Jensen RB, Carreira A, Kowalczykowski SC. 2010. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467:678-833
    • (2010) Nature , vol.467 , pp. 678-833
    • Jensen, R.B.1    Carreira, A.2    Kowalczykowski, S.C.3
  • 48
    • 79960539404 scopus 로고    scopus 로고
    • Structure of the FANCI-FANCD2 complex: Insights into the Fanconi anemia DNA repair pathway
    • JooW, Xu G, Persky NS, Smogorzewska A, Rudge DG, et al. 2011. Structure of the FANCI-FANCD2 complex: insights into the Fanconi anemia DNA repair pathway. Science 333:312-166
    • (2011) Science , vol.333 , pp. 312-166
    • Joow Xu, G.1    Persky, N.S.2    Smogorzewska, A.3    Rudge, D.G.4
  • 49
    • 84873840259 scopus 로고    scopus 로고
    • Fanconi anemia proteins and their interacting partners: Amolecular puzzle
    • Kaddar T, Carreau M. 2012. Fanconi anemia proteins and their interacting partners: amolecular puzzle. Anemia 2012:4258144
    • (2012) Anemia , vol.2012 , pp. 4258144
    • Kaddar, T.1    Carreau, M.2
  • 50
    • 2442417331 scopus 로고    scopus 로고
    • Interaction of human DNA polymerase? with monoubiquitinated PCNA: A possible mechanism for the polymerase switch in response to DNA damage
    • Kannouche PL,Wing J, Lehmann AR. 2004. Interaction of human DNA polymerase ?with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14:491-5000
    • (2004) Mol. Cell , vol.14 , pp. 491-5000
    • Kannouche, P.L.1    Wing, J.2    Lehmann, A.R.3
  • 51
    • 84863670930 scopus 로고    scopus 로고
    • Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway
    • Kim H, D'Andrea AD. 2012. Regulation of DNA cross-link repair by the Fanconi anemia/BRCA pathway. Genes Dev. 26:1393-4088
    • (2012) Genes Dev. , vol.26 , pp. 1393-4088
    • Kim, H.1    D'Andrea, A.D.2
  • 53
    • 84872082435 scopus 로고    scopus 로고
    • Regulation of multiple DNA repair pathways by the Fanconi anemia protein SLX4
    • Kim Y, Spitz GS, Veturi U, Lach FP, Auerbach AD, Smogorzewska A. 2013. Regulation of multiple DNA repair pathways by the Fanconi anemia protein SLX4. Blood 121:54-633
    • (2013) Blood , vol.121 , pp. 54-633
    • Kim, Y.1    Spitz, G.S.2    Veturi, U.3    Lach, F.P.4    Auerbach, A.D.5    Smogorzewska, A.6
  • 54
    • 72949123930 scopus 로고    scopus 로고
    • The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair
    • Knipscheer P, Raschle M, Smogorzewska A, EnoiuM,Ho TV, et al. 2009. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326:1698-7011
    • (2009) Science , vol.326 , pp. 1698-7011
    • Knipscheer, P.1    Raschle, M.2    Smogorzewska, A.3    Enoiu, M.4    Ho, T.V.5
  • 55
    • 11144225798 scopus 로고    scopus 로고
    • Cooperation of the Nterminal helicase and C-terminal endonuclease activities of archaeal Hef protein in processing stalled replication forks
    • Komori K, Hidaka M, Horiuchi T, Fujikane R, Shinagawa H, Ishino Y. 2004. Cooperation of the Nterminal helicase and C-terminal endonuclease activities of archaeal Hef protein in processing stalled replication forks. J. Biol. Chem. 279:53175-855
    • (2004) J. Biol. Chem. , vol.279 , pp. 53175-53855
    • Komori, K.1    Hidaka, M.2    Horiuchi, T.3    Fujikane, R.4    Shinagawa, H.5    Ishino, Y.6
  • 56
    • 33847286510 scopus 로고    scopus 로고
    • Structural determinants of human FANCF protein that function in the assembly of a DNA damage signaling complex
    • Kowal P, Gurtan AM, Stuckert P, D'Andrea AD, Ellenberger T. 2007. Structural determinants of human FANCF protein that function in the assembly of a DNA damage signaling complex. J. Biol. Chem. 282:2047-555
    • (2007) J. Biol. Chem. , vol.282 , pp. 2047-2555
    • Kowal, P.1    Gurtan, A.M.2    Stuckert, P.3    D'Andrea, A.D.4    Ellenberger, T.5
  • 58
    • 77954279611 scopus 로고    scopus 로고
    • Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents
    • Kratz K, Schopf B, Kaden S, Sendoel A, Eberhard R, et al. 2010. Deficiency of FANCD2-associated nuclease KIAA1018/FAN1 sensitizes cells to interstrand crosslinking agents. Cell 142:77-888
    • (2010) Cell , vol.142 , pp. 77-888
    • Kratz, K.1    Schopf, B.2    Kaden, S.3    Sendoel, A.4    Eberhard, R.5
  • 59
    • 79960037006 scopus 로고    scopus 로고
    • Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice
    • Langevin F, Crossan GP, Rosado IV, ArendsMJ, Patel KJ. 2011. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475:53-588
    • (2011) Nature , vol.475 , pp. 53-588
    • Langevin, F.1    Crossan, G.P.2    Rosado, I.V.3    Arends, M.J.4    Patel, K.J.5
  • 60
    • 84863350996 scopus 로고    scopus 로고
    • Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair
    • Leung JW, Wang Y, Fong KW, Huen MS, Li L, Chen J. 2012. Fanconi anemia (FA) binding protein FAAP20 stabilizes FA complementation group A (FANCA) and participates in interstrand cross-link repair. Proc. Natl. Acad. Sci. USA 109:4491-966
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 4491-4966
    • Leung, J.W.1    Wang, Y.2    Fong, K.W.3    Huen, M.S.4    Li, L.5    Chen, J.6
  • 62
    • 0033047314 scopus 로고    scopus 로고
    • Characterization of regions functional in the nuclear localization of the Fanconi anemia group A protein
    • Lightfoot J, Alon N, Bosnoyan-Collins L, Buchwald M. 1999. Characterization of regions functional in the nuclear localization of the Fanconi anemia group A protein. Hum. Mol. Genet. 8:1007-155
    • (1999) Hum. Mol. Genet. , vol.8 , pp. 1007-1155
    • Lightfoot, J.1    Alon, N.2    Bosnoyan-Collins, L.3    Buchwald, M.4
  • 63
    • 34247208998 scopus 로고    scopus 로고
    • FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway
    • Ling C, Ishiai M, Ali AM, Medhurst AL, Neveling K, et al. 2007. FAAP100 is essential for activation of the Fanconi anemia-associated DNA damage response pathway. EMBO J. 26:2104-144
    • (2007) EMBO J. , vol.26 , pp. 2104-2144
    • Ling, C.1    Ishiai, M.2    Ali, A.M.3    Medhurst, A.L.4    Neveling, K.5
  • 64
    • 77955290719 scopus 로고    scopus 로고
    • FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair
    • Liu T, Ghosal G, Yuan J, Chen J, Huang J. 2010. FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329:693-966
    • (2010) Science , vol.329 , pp. 693-966
    • Liu, T.1    Ghosal, G.2    Yuan, J.3    Chen, J.4    Huang, J.5
  • 65
    • 69949164038 scopus 로고    scopus 로고
    • FANCI binds branchedDNAand is monoubiquitinated by UBE2T-FANCL
    • Longerich S, San Filippo J, LiuD, Sung P. 2009. FANCI binds branchedDNAand is monoubiquitinated by UBE2T-FANCL. J. Biol. Chem. 284:23182-866
    • (2009) J. Biol. Chem. , vol.284 , pp. 23182-23866
    • Longerich, S.1    San Filippo, J.2    Liud Sung, P.3
  • 66
    • 33746957852 scopus 로고    scopus 로고
    • UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation
    • Machida YJ, Machida Y, Chen Y, Gurtan AM, Kupfer GM, et al. 2006. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell 23:589-966
    • (2006) Mol. Cell , vol.23 , pp. 589-966
    • Machida, Y.J.1    Machida, Y.2    Chen, Y.3    Gurtan, A.M.4    Kupfer, G.M.5
  • 67
    • 77954274685 scopus 로고    scopus 로고
    • Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2
    • MacKay C, D́eclais AC, Lundin C, Agostinho A, Deans AJ, et al. 2010. Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142:65-766
    • (2010) Cell , vol.142 , pp. 65-766
    • Mackay, C.1    D́eclais, A.C.2    Lundin, C.3    Agostinho, A.4    Deans, A.J.5
  • 68
    • 34249947699 scopus 로고    scopus 로고
    • ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage
    • Matsuoka S, Ballif BA, Smogorzewska A, McDonald ER 3rd, Hurov KE, et al. 2007. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160-666
    • (2007) Science , vol.316 , pp. 1160-1666
    • Matsuoka, S.1    Ballif, B.A.2    Smogorzewska, A.3    McDonald III, E.R.4    Hurov, K.E.5
  • 69
    • 24944461145 scopus 로고    scopus 로고
    • A FancD2-monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair
    • Matsushita N, Kitao H, Ishiai M, Nagashima N, Hirano S, et al. 2005. A FancD2-monoubiquitin fusion reveals hidden functions of Fanconi anemia core complex in DNA repair. Mol. Cell 19:841-477
    • (2005) Mol. Cell , vol.19 , pp. 841-477
    • Matsushita, N.1    Kitao, H.2    Ishiai, M.3    Nagashima, N.4    Hirano, S.5
  • 70
    • 80053125098 scopus 로고    scopus 로고
    • X-linked VACTERL with hydrocephalus syndrome: Further delineation of the phenotype caused by FANCB mutations
    • McCauley J, Masand N, McGowan R, Rajagopalan S, Hunter A, et al. 2011. X-linked VACTERL with hydrocephalus syndrome: further delineation of the phenotype caused by FANCB mutations. Am. J. Med. Genet. A 155:2370-800
    • (2011) Am. J. Med. Genet. A , vol.155 , pp. 2370-2800
    • McCauley, J.1    Masand, N.2    McGowan, R.3    Rajagopalan, S.4    Hunter, A.5
  • 71
    • 84868034865 scopus 로고    scopus 로고
    • A prototypical Fanconi anemia pathway in lower eukaryotes?
    • McHugh PJ,WardTA, Chovanec M. 2012. A prototypical Fanconi anemia pathway in lower eukaryotes? Cell Cycle 11:3739-444
    • (2012) Cell Cycle , vol.11 , pp. 3739-3454
    • McHugh, P.J.1    Ward, T.A.2    Chovanec, M.3
  • 72
    • 77955860817 scopus 로고    scopus 로고
    • Strategies for DNA interstrand crosslink repair: Insights from worms, flies, frogs, and slime molds
    • McVey M. 2010. Strategies for DNA interstrand crosslink repair: insights from worms, flies, frogs, and slime molds. Environ. Mol. Mutagen. 51:646-588
    • (2010) Environ. Mol. Mutagen. , vol.51 , pp. 646-588
    • McVey, M.1
  • 74
    • 10944239213 scopus 로고    scopus 로고
    • X-linked inheritance of Fanconi anemia complementation group B
    • Meetei AR, Levitus M, Xue Y, Medhurst AL, Zwaan M, et al. 2004. X-linked inheritance of Fanconi anemia complementation group B. Nat. Genet. 36:1219-244
    • (2004) Nat. Genet. , vol.36 , pp. 1219-1244
    • Meetei, A.R.1    Levitus, M.2    Xue, Y.3    Medhurst, A.L.4    Zwaan, M.5
  • 75
    • 25144449181 scopus 로고    scopus 로고
    • A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M
    • Meetei AR, Medhurst AL, Ling C, Xue Y, Singh TR, et al. 2005. A human ortholog of archaeal DNA repair protein Hef is defective in Fanconi anemia complementation group M. Nat. Genet. 37:958-633
    • (2005) Nat. Genet. , vol.37 , pp. 958-633
    • Meetei, A.R.1    Medhurst, A.L.2    Ling, C.3    Xue, Y.4    Singh, T.R.5
  • 77
    • 0034100766 scopus 로고    scopus 로고
    • DNA interstrand cross-links induce futile repair synthesis in mammalian cell extracts
    • Mu D, Bessho T, Nechev LV, Chen DJ, Harris TM, et al. 2000. DNA interstrand cross-links induce futile repair synthesis in mammalian cell extracts. Mol. Cell. Biol. 20:2446-544
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 2446-2544
    • Mu, D.1    Bessho, T.2    Nechev, L.V.3    Chen, D.J.4    Harris, T.M.5
  • 78
    • 67649641641 scopus 로고    scopus 로고
    • Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair
    • Mu? noz IM, Hain K, D́eclais AC, Gardiner M, Toh GW, et al. 2009. Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair. Mol. Cell 35:116-277
    • (2009) Mol. Cell , vol.35 , pp. 116-277
    • Munoz Im, H.1
  • 80
    • 33847059931 scopus 로고    scopus 로고
    • The Fanconi anemia signalosome anchor
    • Niedernhofer LJ. 2007. The Fanconi anemia signalosome anchor. Mol. Cell 25:487-900
    • (2007) Mol. Cell , vol.25 , pp. 487-900
    • Niedernhofer, L.J.1
  • 81
    • 4344597147 scopus 로고    scopus 로고
    • The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair
    • Niedzwiedz W, Mosedale G, Johnson M, Ong CY, Pace P, Patel KJ. 2004. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell 15:607-200
    • (2004) Mol. Cell , vol.15 , pp. 607-200
    • Niedzwiedz, W.1    Mosedale, G.2    Johnson, M.3    Ong, C.Y.4    Pace, P.5    Patel, K.J.6
  • 82
    • 12444336898 scopus 로고    scopus 로고
    • X-ray and biochemical anatomy of an archaeal XPF/Rad1/Mus81 family nuclease: Similarity between its endonuclease domain and restriction enzymes
    • Nishino T, Komori K, Ishino Y, Morikawa K. 2003. X-ray and biochemical anatomy of an archaeal XPF/Rad1/Mus81 family nuclease: similarity between its endonuclease domain and restriction enzymes. Structure 11:445-577
    • (2003) Structure , vol.11 , pp. 445-577
    • Nishino, T.1    Komori, K.2    Ishino, Y.3    Morikawa, K.4
  • 83
    • 84856719568 scopus 로고    scopus 로고
    • CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold
    • Nishino T, Takeuchi K, Gascoigne KE, Suzuki A,Hori T, et al. 2012. CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell 148:487-5011
    • (2012) Cell , vol.148 , pp. 487-5011
    • Nishino, T.1    Takeuchi, K.2    Gascoigne, K.E.3    Suzuki, A.4    Hori, T.5
  • 84
    • 34247176149 scopus 로고    scopus 로고
    • Insights into Fanconi Anaemia from the structure of human FANCE
    • Nookala RK, Hussain S, Pellegrini L. 2007. Insights into Fanconi Anaemia from the structure of human FANCE. Nucleic Acids Res. 35:1638-488
    • (2007) Nucleic Acids Res. , vol.35 , pp. 1638-1498
    • Nookala, R.K.1    Hussain, S.2    Pellegrini, L.3
  • 85
    • 18444384217 scopus 로고    scopus 로고
    • FANCE: The link between Fanconi anaemia complex assembly and activity
    • Pace P, Johnson M, Tan WM, Mosedale G, Sng C, et al. 2002. FANCE: the link between Fanconi anaemia complex assembly and activity. EMBO J. 21:3414-233
    • (2002) EMBO J. , vol.21 , pp. 3414-3243
    • Pace, P.1    Johnson, M.2    Tan, W.M.3    Mosedale, G.4    Sng, C.5
  • 87
    • 84856156658 scopus 로고    scopus 로고
    • Oxidative stress in Fanconi anaemia: From cells andmolecules toward prospects in clinical management
    • Pagano G, Talamanca AA, Castello G, Pallard ́o FV, Zatterale A, Degan P. 2011. Oxidative stress in Fanconi anaemia: from cells andmolecules toward prospects in clinical management. Biol. Chem. 393:11-211
    • (2011) Biol. Chem. , vol.393 , pp. 11-211
    • Pagano, G.1    Talamanca, A.A.2    Castello, G.3    Pallard́o, F.V.4    Zatterale, A.5    Degan, P.6
  • 88
    • 78149447326 scopus 로고    scopus 로고
    • Convergence of Rad6/Rad18 and Fanconi anemia tumor suppressor pathways upon DNA damage
    • Park HK, Wang H, Zhang J, Datta S, Fei P. 2010. Convergence of Rad6/Rad18 and Fanconi anemia tumor suppressor pathways upon DNA damage. PLoS ONE 5:e133133
    • (2010) PLoS ONE , vol.5
    • Park, H.K.1    Wang, H.2    Zhang, J.3    Datta, S.4    Fei, P.5
  • 90
    • 33846625493 scopus 로고    scopus 로고
    • PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene
    • Rahman N, Seal S, Thompson D, Kelly P, Renwick A, et al. 2007. PALB2, which encodes a BRCA2-interacting protein, is a breast cancer susceptibility gene. Nat. Genet. 39:165-677
    • (2007) Nat. Genet. , vol.39 , pp. 165-677
    • Rahman, N.1    Seal, S.2    Thompson, D.3    Kelly, P.4    Renwick, A.5
  • 91
    • 51549098159 scopus 로고    scopus 로고
    • Mechanism of replication-coupled DNA interstrand crosslink repair
    • Raschle M, Knipscheer P, Enoiu M, Angelov T, Sun J, et al. 2008. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134:969-800
    • (2008) Cell , vol.134 , pp. 969-800
    • Raschle, M.1    Knipscheer, P.2    Enoiu, M.3    Angelov, T.4    Sun, J.5
  • 92
    • 33846569450 scopus 로고    scopus 로고
    • Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer
    • Reid S, Schindler D, Hanenberg H, Barker K, Hanks S, et al. 2007. Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat. Genet. 39:162-644
    • (2007) Nat. Genet. , vol.39 , pp. 162-644
    • Reid, S.1    Schindler, D.2    Hanenberg, H.3    Barker, K.4    Hanks, S.5
  • 93
    • 82955235602 scopus 로고    scopus 로고
    • Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway
    • Rosado IV, Langevin F, Crossan GP, Takata M, Patel KJ. 2011. Formaldehyde catabolism is essential in cells deficient for the Fanconi anemia DNA-repair pathway. Nat. Struct. Mol. Biol. 18:1432-344
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 1432-1354
    • Rosado, I.V.1    Langevin, F.2    Crossan, G.P.3    Takata, M.4    Patel, K.J.5
  • 94
    • 67949085157 scopus 로고    scopus 로고
    • The Walker Bmotif in avian FANCMis required to limit sister chromatid exchanges but is dispensable forDNAcrosslink repair
    • Rosado IV,NiedzwiedzW, Alpi AF, Patel KJ. 2009. TheWalker Bmotif in avian FANCMis required to limit sister chromatid exchanges but is dispensable forDNAcrosslink repair. NucleicAcids Res. 37:4360-700
    • (2009) NucleicAcids Res. , vol.37 , pp. 4360-4700
    • Rosado, I.V.1    Niedzwiedz, W.2    Alpi, A.F.3    Patel, K.J.4
  • 95
    • 79960560401 scopus 로고    scopus 로고
    • How high are carrier frequencies of rare recessive syndromes? Contemporary estimates for Fanconi Anemia in the United States and Israel
    • Rosenberg PS, Tamary H, Alter BP. 2011. How high are carrier frequencies of rare recessive syndromes? Contemporary estimates for Fanconi Anemia in the United States and Israel. Am. J. Med. Genet. A 155:1877-833
    • (2011) Am. J. Med. Genet. A , vol.155 , pp. 1877
    • Rosenberg, P.S.1    Tamary, H.2    Alter, B.P.3
  • 96
    • 84857411787 scopus 로고    scopus 로고
    • Y-family DNA polymerases and their role in tolerance of cellular DNA damage
    • Sale JE, Lehmann AR, Woodgate R. 2012. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat. Rev. Mol. Cell Biol. 13:141-522
    • (2012) Nat. Rev. Mol. Cell Biol. , vol.13 , pp. 141-522
    • Sale, J.E.1    Lehmann, A.R.2    Woodgate, R.3
  • 97
    • 84866912486 scopus 로고    scopus 로고
    • Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase
    • Sareen A, Chaudhury I, Adams N, Sobeck A. 2012. Fanconi anemia proteins FANCD2 and FANCI exhibit different DNA damage responses during S-phase. Nucleic Acids Res. 40:8425-399
    • (2012) Nucleic Acids Res. , vol.40 , pp. 8425-8399
    • Sareen, A.1    Chaudhury, I.2    Adams, N.3    Sobeck, A.4
  • 98
    • 84861558075 scopus 로고    scopus 로고
    • DNA robustly stimulates FANCD2 monoubiquitylation in the complex with FANCI
    • Sato K, Toda K, Ishiai M, Takata M, Kurumizaka H. 2012. DNA robustly stimulates FANCD2 monoubiquitylation in the complex with FANCI. Nucleic Acids Res. 40:4553-611
    • (2012) Nucleic Acids Res. , vol.40 , pp. 4553-4611
    • Sato, K.1    Toda, K.2    Ishiai, M.3    Takata, M.4    Kurumizaka, H.5
  • 99
    • 84876343734 scopus 로고    scopus 로고
    • FANCJ couples replication past natural fork barriers with maintenance of chromatin structure
    • Schwab RA, Nieminuszczy J, Shin-ya K, Niedzwiedz W. 2013. FANCJ couples replication past natural fork barriers with maintenance of chromatin structure. J. Cell Biol. 201:33-488
    • (2013) J. Cell Biol. , vol.201 , pp. 33-488
    • Schwab, R.A.1    Nieminuszczy, J.2    Shin-Ya, K.3    Niedzwiedz, W.4
  • 100
    • 84859484153 scopus 로고    scopus 로고
    • Exome sequencing reveals a novel Fanconi group defined by XRCC2 mutation
    • Shamseldin HE, ElfakiM, Alkuraya FS. 2012. Exome sequencing reveals a novel Fanconi group defined by XRCC2 mutation. J. Med. Genet. 49:184-866
    • (2012) J. Med. Genet. , vol.49 , pp. 184-866
    • Shamseldin, H.E.1    Elfaki, M.2    Alkuraya, F.S.3
  • 101
    • 77949563363 scopus 로고    scopus 로고
    • MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM
    • Singh TR, Saro D, Ali AM, Zheng XF, Du CH, et al. 2010. MHF1-MHF2, a histone-fold-containing protein complex, participates in the Fanconi anemia pathway via FANCM. Mol. Cell 37:879-866
    • (2010) Mol. Cell , vol.37 , pp. 879-866
    • Singh, T.R.1    Saro, D.2    Ali, A.M.3    Zheng, X.F.4    Du, C.H.5
  • 103
    • 77954286076 scopus 로고    scopus 로고
    • A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair
    • Smogorzewska A, Desetty R, Saito TT, Schlabach M, Lach FP, et al. 2010. A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol. Cell 39:36-477
    • (2010) Mol. Cell , vol.39 , pp. 36-477
    • Smogorzewska, A.1    Desetty, R.2    Saito, T.T.3    Schlabach, M.4    Lach, F.P.5
  • 104
    • 34247110291 scopus 로고    scopus 로고
    • Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair
    • Smogorzewska A, Matsuoka S, Vinciguerra P, McDonaldER3rd, HurovKE, et al. 2007. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129:289-3011
    • (2007) Cell , vol.129 , pp. 289-3011
    • Smogorzewska, A.1    Matsuoka, S.2    Vinciguerra, P.3    McDonald III, E.R.4    Hurov, K.E.5
  • 105
    • 78649778694 scopus 로고    scopus 로고
    • RAD51C: A novel cancer susceptibility gene is linked to Fanconi anemia and breast cancer
    • Somyajit K, Subramanya S, Nagaraju G. 2010. RAD51C: a novel cancer susceptibility gene is linked to Fanconi anemia and breast cancer. Carcinogenesis 31:2031-388
    • (2010) Carcinogenesis , vol.31 , pp. 2031-2388
    • Somyajit, K.1    Subramanya, S.2    Nagaraju, G.3
  • 106
    • 0026521238 scopus 로고
    • Cloning of cDNAs for Fanconi's anaemia by functional complementation
    • Strathdee CA, Gavish H, ShannonWR, Buchwald M. 1992. Cloning of cDNAs for Fanconi's anaemia by functional complementation. Nature 356:763-677
    • (1992) Nature , vol.356 , pp. 763-677
    • Strathdee, C.A.1    Gavish, H.2    Shannon, W.R.3    Buchwald, M.4
  • 107
    • 67649662604 scopus 로고    scopus 로고
    • Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair
    • Svendsen JM, Smogorzewska A, Sowa ME, O'Connell BC, Gygi SP, et al. 2009. Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell 138:63-777
    • (2009) Cell , vol.138 , pp. 63-777
    • Svendsen, J.M.1    Smogorzewska, A.2    Sowa, M.E.3    O'Connell, B.C.4    Gygi, S.P.5
  • 108
    • 66349096607 scopus 로고    scopus 로고
    • PALB2 is an integral component of the BRCA complex required for homologous recombination repair
    • Sy SM, Huen MS, Chen J. 2009. PALB2 is an integral component of the BRCA complex required for homologous recombination repair. Proc. Natl. Acad. Sci. USA 106:7155-600
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 7155-7600
    • Sy, S.M.1    Huen, M.S.2    Chen, J.3
  • 109
    • 0037123768 scopus 로고    scopus 로고
    • Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways
    • Taniguchi T, Garcia-Higuera I, Xu B, Andreassen PR, Gregory RC, et al. 2002. Convergence of the fanconi anemia and ataxia telangiectasia signaling pathways. Cell 109:459-722
    • (2002) Cell , vol.109 , pp. 459-722
    • Taniguchi, T.1    Garcia-Higuera, I.2    Xu, B.3    Andreassen, P.R.4    Gregory, R.C.5
  • 110
    • 84860263013 scopus 로고    scopus 로고
    • The structure of the FANCM-MHF complex reveals physical features for functional assembly
    • Tao Y, Jin C, Li X, Qi S, Chu L, et al. 2012. The structure of the FANCM-MHF complex reveals physical features for functional assembly. Nat. Commun. 3:7822
    • (2012) Nat. Commun. , vol.3 , pp. 7822
    • Tao, Y.1    Jin, C.2    Li, X.3    Qi, S.4    Chu, L.5
  • 111
    • 2942735213 scopus 로고    scopus 로고
    • The Fanconi anemia core complex forms four complexes of different sizes in different subcellular compartments
    • Thomashevski A, High AA, Drozd M, Shabanowitz J, Hunt DF, et al. 2004. The Fanconi anemia core complex forms four complexes of different sizes in different subcellular compartments. J. Biol. Chem. 279:26201-99
    • (2004) J. Biol. Chem. , vol.279 , pp. 26201-26299
    • Thomashevski, A.1    High, A.A.2    Drozd, M.3    Shabanowitz, J.4    Hunt, D.F.5
  • 112
  • 114
    • 33645787286 scopus 로고    scopus 로고
    • The Fanconi anemia gene network is conserved from zebrafish to human
    • Titus TA, Selvig DR, Qin B, Wilson C, Starks AM, et al. 2006. The Fanconi anemia gene network is conserved from zebrafish to human. Gene 371:211-233
    • (2006) Gene , vol.371 , pp. 211-233
    • Titus, T.A.1    Selvig, D.R.2    Qin, B.3    Wilson, C.4    Starks, A.M.5
  • 115
    • 28844480409 scopus 로고    scopus 로고
    • The structure of the human ERCC1/XPF interaction domains reveals a complementary role for the two proteins in nucleotide excision repair
    • Tripsianes K, Folkers G, Ab E, Das D, Odijk H, et al. 2005. The structure of the human ERCC1/XPF interaction domains reveals a complementary role for the two proteins in nucleotide excision repair. Structure 13:1849-588
    • (2005) Structure , vol.13 , pp. 1849-1598
    • Tripsianes, K.1    Folkers, G.2    Ab, E.3    Das, D.4    Odijk, H.5
  • 117
    • 23844548251 scopus 로고    scopus 로고
    • Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF-ERCC1
    • Tsodikov OV, Enzlin JH, Scharer OD, Ellenberger T. 2005. Crystal structure and DNA binding functions of ERCC1, a subunit of the DNA structure-specific endonuclease XPF-ERCC1. Proc. Natl. Acad. Sci. USA 102:11236-411
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 11236-11411
    • Tsodikov, O.V.1    Enzlin, J.H.2    Scharer, O.D.3    Ellenberger, T.4
  • 118
    • 77953915005 scopus 로고    scopus 로고
    • Ubiquitin signalling in DNA replication and repair
    • Ulrich HD, Walden H. 2010. Ubiquitin signalling in DNA replication and repair. Nat. Rev. Mol. Cell Biol. 11:479-899
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 479-899
    • Ulrich, H.D.1    Walden, H.2
  • 120
    • 72149108745 scopus 로고    scopus 로고
    • FANCM: A landing pad for the Fanconi Anemia and Bloom's Syndrome complexes
    • Vinciguerra P, D'Andrea AD. 2009. FANCM: a landing pad for the Fanconi Anemia and Bloom's Syndrome complexes. Mol. Cell 36:916-177
    • (2009) Mol. Cell , vol.36 , pp. 916-177
    • Vinciguerra, P.1    D'Andrea, A.D.2
  • 121
    • 34548759123 scopus 로고    scopus 로고
    • Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins
    • Wang W. 2007. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nat. Rev. Genet. 8:735-488
    • (2007) Nat. Rev. Genet. , vol.8 , pp. 735-488
    • Wang, W.1
  • 122
    • 84883488596 scopus 로고    scopus 로고
    • Structural peculiarities of the (MHF1-MHF2)4 octamer provide a long DNA binding patch to anchor the MHF-FANCM complex to chromatin: A solution SAXS study
    • Wang W, GuoQ, Shtykova EV, LiuG, Xu J, et al. 2013. Structural peculiarities of the (MHF1-MHF2)4 octamer provide a long DNA binding patch to anchor the MHF-FANCM complex to chromatin: a solution SAXS study. FEBS Lett. 587:2912-177
    • (2013) FEBS Lett. , vol.587 , pp. 2912-2187
    • Wang, W.1    Guoq Shtykova, E.V.2    Liug Xu, J.3
  • 124
    • 84876861783 scopus 로고    scopus 로고
    • FANCM and FAAP24 maintain genome stability via cooperative as well as unique functions
    • Wang Y, Leung JW, Jiang Y, Lowery MG, Do H, et al. 2013. FANCM and FAAP24 maintain genome stability via cooperative as well as unique functions. Mol. Cell 49:997-10099
    • (2013) Mol. Cell , vol.49 , pp. 997-10099
    • Wang, Y.1    Leung, J.W.2    Jiang, Y.3    Lowery, M.G.4    Do, H.5
  • 125
    • 44349174992 scopus 로고    scopus 로고
    • FANCM of the Fanconi anemia core complex is required for both monoubiquitination and DNA repair
    • Xue Y, Li Y, Guo R, Ling C, Wang W. 2008. FANCM of the Fanconi anemia core complex is required for both monoubiquitination and DNA repair. Hum. Mol. Genet. 17:1641-522
    • (2008) Hum. Mol. Genet. , vol.17 , pp. 1641-1532
    • Xue, Y.1    Li, Y.2    Guo, R.3    Ling, C.4    Wang, W.5
  • 126
    • 79955580794 scopus 로고    scopus 로고
    • Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway
    • Yamamoto KN, Kobayashi S, Tsuda M, Kurumizaka H, Takata M, et al. 2011. Involvement of SLX4 in interstrand cross-link repair is regulated by the Fanconi anemia pathway. Proc. Natl. Acad. Sci. USA 108:6492-966
    • (2011) Proc. Natl. Acad. Sci. USA , vol.108 , pp. 6492-6966
    • Yamamoto, K.N.1    Kobayashi, S.2    Tsuda, M.3    Kurumizaka, H.4    Takata, M.5
  • 127
    • 77949701960 scopus 로고    scopus 로고
    • A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability
    • Yan Z, DelannoyM, Ling C, Daee D, Osman F, et al. 2010. A histone-fold complex and FANCM form a conserved DNA-remodeling complex to maintain genome stability. Mol. Cell 37:865-788
    • (2010) Mol. Cell , vol.37 , pp. 865-788
    • Yan, Z.1    Delannoym Ling, C.2    Daee, D.3    Osman, F.4
  • 128
    • 84863850588 scopus 로고    scopus 로고
    • A ubiquitin-binding protein, FAAP20, links RNF8-mediated ubiquitination to the Fanconi anemia DNA repair network
    • Yan Z, Guo R, Paramasivam M, Shen W, Ling C, et al. 2012. A ubiquitin-binding protein, FAAP20, links RNF8-mediated ubiquitination to the Fanconi anemia DNA repair network. Mol. Cell 47:61-755
    • (2012) Mol. Cell , vol.47 , pp. 61-755
    • Yan, Z.1    Guo, R.2    Paramasivam, M.3    Shen, W.4    Ling, C.5
  • 129
    • 69949175901 scopus 로고    scopus 로고
    • FANCI protein binds to DNA and interacts with FANCD2 to recognize branched structures
    • Yuan F, El Hokayem J, Zhou W, Zhang Y. 2009. FANCI protein binds to DNA and interacts with FANCD2 to recognize branched structures. J. Biol. Chem. 284:24443-522
    • (2009) J. Biol. Chem. , vol.284 , pp. 24443-24522
    • Yuan, F.1    El Hokayem, J.2    Zhou, W.3    Zhang, Y.4
  • 130
    • 84863161760 scopus 로고    scopus 로고
    • Fanconi anemia complementation groupA(FANCA) protein has intrinsic affinity for nucleic acids with preference for single-stranded forms
    • Yuan F, Qian L, Zhao X, Liu JY, Song L, et al. 2012. Fanconi anemia complementation groupA(FANCA) protein has intrinsic affinity for nucleic acids with preference for single-stranded forms. J. Biol. Chem. 287:4800-77
    • (2012) J. Biol. Chem. , vol.287 , pp. 4800-4877
    • Yuan, F.1    Qian, L.2    Zhao, X.3    Liu, J.Y.4    Song, L.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.