메뉴 건너뛰기




Volumn 139, Issue , 2014, Pages 289-297

A spectral clustering based ensemble pruning approach

Author keywords

Classifier similarity; Ensemble pruning; Spectral clustering

Indexed keywords

COMPUTER APPLICATIONS; NEURAL NETWORKS;

EID: 84901050845     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.02.030     Document Type: Article
Times cited : (52)

References (55)
  • 2
    • 0033207482 scopus 로고    scopus 로고
    • Combining predictors: comparison of five meta machine learning methods
    • Hansen J.V. Combining predictors: comparison of five meta machine learning methods. Inf. Sci. 1999, 119(1-2):91-105.
    • (1999) Inf. Sci. , vol.119 , Issue.1-2 , pp. 91-105
    • Hansen, J.V.1
  • 3
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees. bagging, boosting, and randomization
    • Dietterich T. An experimental comparison of three methods for constructing ensembles of decision trees. bagging, boosting, and randomization. Mach. Learn. 2000, 40:139-158.
    • (2000) Mach. Learn. , vol.40 , pp. 139-158
    • Dietterich, T.1
  • 5
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman L. Bagging Predictors. Mach. Learn. 1996, 24:123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 6
    • 0030419058 scopus 로고    scopus 로고
    • Experiments with a new boosting algorithm, in: Proceedings of the 13th International Conference of Machine Learning
    • Y. Freund, R. Schapire, Experiments with a new boosting algorithm, in: Proceedings of the 13th International Conference of Machine Learning, 1996, pp. 325-332.
    • (1996) , pp. 325-332
    • Freund, Y.1    Schapire, R.2
  • 7
    • 0032661927 scopus 로고    scopus 로고
    • Using correspondence analysis to combine classifiers
    • Merz C.J. Using correspondence analysis to combine classifiers. Mach. Learn. 1999, 36(1):33-58.
    • (1999) Mach. Learn. , vol.36 , Issue.1 , pp. 33-58
    • Merz, C.J.1
  • 8
    • 60849105643 scopus 로고    scopus 로고
    • Constructing ensembles of classifiers by means of weighted instance selection
    • Garca-Pedrajas N. Constructing ensembles of classifiers by means of weighted instance selection. IEEE Trans. Neural Netw. 2009, 20(2):258-277.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.2 , pp. 258-277
    • Garca-Pedrajas, N.1
  • 9
    • 33750127404 scopus 로고    scopus 로고
    • Accuracy/diversity and ensemble MLP classifier design
    • Windeatt T. Accuracy/diversity and ensemble MLP classifier design. IEEE Trans. Neural Netw. 2006, 17(5):1194-1211.
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.5 , pp. 1194-1211
    • Windeatt, T.1
  • 10
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms. bagging, boosting, and variants
    • Bauer E., Kohavi R. An empirical comparison of voting classification algorithms. bagging, boosting, and variants. Mach. Learn. 1999, 36(1-2):105-139.
    • (1999) Mach. Learn. , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 11
    • 34250744208 scopus 로고    scopus 로고
    • An empirical comparison of supervised learning algorithms, in: Proceedings of the 23rd International Conference of Machine Learning
    • R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning algorithms, in: Proceedings of the 23rd International Conference of Machine Learning, 2006, pp. 161-168.
    • (2006) , pp. 161-168
    • Caruana, R.1    Niculescu-Mizil, A.2
  • 13
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks. many could be better than all
    • Zhou Z.-H., Wu J., Tang W. Ensembling neural networks. many could be better than all. Artif. Intell. 2002, 137(1-2):239-263.
    • (2002) Artif. Intell. , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3
  • 14
    • 13544267516 scopus 로고    scopus 로고
    • A dynamic classifier selection and combination approach to image region labeling
    • Singh S., Singh M. A dynamic classifier selection and combination approach to image region labeling. Signal Process. Image Commun. 2005, 20(3):219-231.
    • (2005) Signal Process. Image Commun. , vol.20 , Issue.3 , pp. 219-231
    • Singh, S.1    Singh, M.2
  • 15
    • 60349123276 scopus 로고    scopus 로고
    • Incremental construction of classifier and discriminant ensembles
    • Ulas A., Semerci M., Yildiz O.T., Alpaydin E. Incremental construction of classifier and discriminant ensembles. Inf. Sci. 2009, 179(9):1298-1318.
    • (2009) Inf. Sci. , vol.179 , Issue.9 , pp. 1298-1318
    • Ulas, A.1    Semerci, M.2    Yildiz, O.T.3    Alpaydin, E.4
  • 18
    • 58249090787 scopus 로고    scopus 로고
    • A generalized adaptive ensemble generation and aggregation approach for multiple classifier systems
    • Chen L., Kamel M.S. A generalized adaptive ensemble generation and aggregation approach for multiple classifier systems. Pattern Recognit. 2009, 42:629-644.
    • (2009) Pattern Recognit. , vol.42 , pp. 629-644
    • Chen, L.1    Kamel, M.S.2
  • 20
    • 33745794076 scopus 로고    scopus 로고
    • Ensemble pruning via semi-definite programming
    • Zhang Y., Burer S., Street W.N. Ensemble pruning via semi-definite programming. J. Mach. Learn. Res. 2006, 7:1315-1338.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1315-1338
    • Zhang, Y.1    Burer, S.2    Street, W.N.3
  • 21
    • 22844439516 scopus 로고    scopus 로고
    • Switching class labels to generate classification ensembles
    • Martínez-Muñoz G., Suárez A. Switching class labels to generate classification ensembles. Pattern Recognit. 2005, 38(10):1483-1494.
    • (2005) Pattern Recognit. , vol.38 , Issue.10 , pp. 1483-1494
    • Martínez-Muñoz, G.1    Suárez, A.2
  • 23
    • 84889092001 scopus 로고    scopus 로고
    • Using Bayesian networks for selecting classifiers in GP ensembles
    • Stefano C.D., Folino G., Fontanella F., Scotto di Freca A. Using Bayesian networks for selecting classifiers in GP ensembles. Inf. Sci. 2014, 258:200-216.
    • (2014) Inf. Sci. , vol.258 , pp. 200-216
    • Stefano, C.D.1    Folino, G.2    Fontanella, F.3    Scotto di Freca, A.4
  • 24
    • 0036532571 scopus 로고    scopus 로고
    • Switching between selection and fusion in combining classifiers: an experiment
    • Kuncheva L. Switching between selection and fusion in combining classifiers: an experiment. IEEE Trans. Syst. Man Cybern. Part B 2002, 32(2):146-156.
    • (2002) IEEE Trans. Syst. Man Cybern. Part B , vol.32 , Issue.2 , pp. 146-156
    • Kuncheva, L.1
  • 25
    • 84887611642 scopus 로고    scopus 로고
    • Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers
    • Lysiak R., Kurzynski M., Woloszynski T. Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers. Neurocomputing 2014, 126:29-35.
    • (2014) Neurocomputing , vol.126 , pp. 29-35
    • Lysiak, R.1    Kurzynski, M.2    Woloszynski, T.3
  • 26
    • 84858340899 scopus 로고    scopus 로고
    • A taxonomy and short review of ensemble selection, in: Proceedings of Workshop on Supervised and Unsupervised Ensemble Methods and their Applications
    • G. Tsoumakas, I. Partalas, I. Vlahavas, A taxonomy and short review of ensemble selection, in: Proceedings of Workshop on Supervised and Unsupervised Ensemble Methods and their Applications, 2008, pp. 41-46.
    • (2008) , pp. 41-46
    • Tsoumakas, G.1    Partalas, I.2    Vlahavas, I.3
  • 27
    • 84892436024 scopus 로고    scopus 로고
    • An effective ensemble pruning algorithm based on frequent patterns
    • Zhou H., Zhao X., Wang X. An effective ensemble pruning algorithm based on frequent patterns. Knowl. Based Syst. 2014, 56:79-85.
    • (2014) Knowl. Based Syst. , vol.56 , pp. 79-85
    • Zhou, H.1    Zhao, X.2    Wang, X.3
  • 28
    • 0002289220 scopus 로고    scopus 로고
    • Pruning adaptive boosting, in: Proceedings of the 14th International Conference of Machine Learning
    • D.D. Margineantu, T.G. Dietterich, Pruning adaptive boosting, in: Proceedings of the 14th International Conference of Machine Learning, 1997, pp. 211-218.
    • (1997) , pp. 211-218
    • Margineantu, D.D.1    Dietterich, T.G.2
  • 29
    • 11144281845 scopus 로고    scopus 로고
    • Aggregation ordering in bagging, in: Proceedings of IASTED International Conference on Artificial Intelligence and Applications
    • G. Martínez-Muñoz, A. Suárez, Aggregation ordering in bagging, in: Proceedings of IASTED International Conference on Artificial Intelligence and Applications, 2004, pp. 258-263.
    • (2004) , pp. 258-263
    • Martínez-Muñoz, G.1    Suárez, A.2
  • 30
    • 33749247099 scopus 로고    scopus 로고
    • Pruning in Ordered Bagging Ensembles, in: Proceedings of the 23rd International Conference of Machine Learning
    • G. Martínez-Muñoz, A. Suárez, Pruning in Ordered Bagging Ensembles, in: Proceedings of the 23rd International Conference of Machine Learning, 2006, pp. 609-616.
    • (2006) , pp. 609-616
    • Martínez-Muñoz, G.1    Suárez, A.2
  • 31
    • 8344279588 scopus 로고    scopus 로고
    • Selective ensemble of decision trees, in: Q. Liu, Y. Yao, A. Skowron (Eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Springer
    • Z.-H. Zhou, W. Tang, Selective ensemble of decision trees, in: Q. Liu, Y. Yao, A. Skowron (Eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Springer, 2003, pp. 476-483.
    • (2003) , pp. 476-483
    • Zhou, Z.-H.1    Tang, W.2
  • 32
    • 84884210298 scopus 로고    scopus 로고
    • A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot
    • Dai Q. A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot. Neurocomputing 2013, 122:258-265.
    • (2013) Neurocomputing , vol.122 , pp. 258-265
    • Dai, Q.1
  • 33
    • 58549093526 scopus 로고    scopus 로고
    • Collective-agreement-based pruning of ensembles
    • Rokach L. Collective-agreement-based pruning of ensembles. Comput. Stat. Data Anal. 2009, 53:1015-1026.
    • (2009) Comput. Stat. Data Anal. , vol.53 , pp. 1015-1026
    • Rokach, L.1
  • 34
    • 32044473249 scopus 로고    scopus 로고
    • Using diversity of errors for selecting members of a committee classifier
    • Aksela M., Laaksonen J. Using diversity of errors for selecting members of a committee classifier. Pattern Recognit. 2006, 39:608-623.
    • (2006) Pattern Recognit. , vol.39 , pp. 608-623
    • Aksela, M.1    Laaksonen, J.2
  • 35
    • 77953650340 scopus 로고    scopus 로고
    • Information theoretic combination of pattern classifiers
    • Meynet J., Thiran J.-P. Information theoretic combination of pattern classifiers. Pattern Recognit. 2010, 43:3412-3421.
    • (2010) Pattern Recognit. , vol.43 , pp. 3412-3421
    • Meynet, J.1    Thiran, J.-P.2
  • 36
    • 77958150674 scopus 로고    scopus 로고
    • A dynamic classifier ensemble selection approach for noise data
    • Xiao J., He C., Jiang X., Liu D. A dynamic classifier ensemble selection approach for noise data. Inf. Sci. 2010, 180:3402-3421.
    • (2010) Inf. Sci. , vol.180 , pp. 3402-3421
    • Xiao, J.1    He, C.2    Jiang, X.3    Liu, D.4
  • 38
    • 84994037050 scopus 로고    scopus 로고
    • Dynamic classifier selection based on multiple classifier behavior
    • Giacinto G., Roli F. Dynamic classifier selection based on multiple classifier behavior. Pattern Recognit. 2001, 34(9):1879-1881.
    • (2001) Pattern Recognit. , vol.34 , Issue.9 , pp. 1879-1881
    • Giacinto, G.1    Roli, F.2
  • 39
    • 45549107002 scopus 로고    scopus 로고
    • A dynamic overproduce-and-choose strategy for the selection of classifier ensembles
    • Santos E.M.D., Sabourin R., Maupin P. A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern Recognit. 2008, 41(10):2993-3009.
    • (2008) Pattern Recognit. , vol.41 , Issue.10 , pp. 2993-3009
    • Santos, E.M.D.1    Sabourin, R.2    Maupin, P.3
  • 40
    • 72249084689 scopus 로고    scopus 로고
    • A hybrid approach for efficient ensembles
    • Zhu D. A hybrid approach for efficient ensembles. Decis. Support Syst. 2010, 48:480-487.
    • (2010) Decis. Support Syst. , vol.48 , pp. 480-487
    • Zhu, D.1
  • 41
    • 0037337904 scopus 로고    scopus 로고
    • Clustering ensembles of neural network models
    • Bakker B., Heskes T. Clustering ensembles of neural network models. Neural Netw. 2003, 16:261-269.
    • (2003) Neural Netw. , vol.16 , pp. 261-269
    • Bakker, B.1    Heskes, T.2
  • 42
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Freund Y., Schapire R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55(1):119-139.
    • (1997) J. Comput. Syst. Sci. , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 43
    • 84857719327 scopus 로고    scopus 로고
    • Cluster-oriented ensemble classifier. impact of multicluster characterization on ensemble classifier learning
    • Verma B., Rahman A. Cluster-oriented ensemble classifier. impact of multicluster characterization on ensemble classifier learning. IEEE Trans. Knowl. Data Eng. 2012, 24(4):605-618.
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.4 , pp. 605-618
    • Verma, B.1    Rahman, A.2
  • 44
    • 24044547645 scopus 로고    scopus 로고
    • Controlling the diversity in classifier ensembles through a measure of agreement
    • Zouari H., Heutte L., Lecourtier Y. Controlling the diversity in classifier ensembles through a measure of agreement. Pattern Recognit. 2005, 38:2195-2199.
    • (2005) Pattern Recognit. , vol.38 , pp. 2195-2199
    • Zouari, H.1    Heutte, L.2    Lecourtier, Y.3
  • 45
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L.I., Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 2003, 51(2):181-207.
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 46
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification purposes
    • Giacinto G., Roli F. Design of effective neural network ensembles for image classification purposes. Image Vis. Comput. 2001, 19(9-10):699-707.
    • (2001) Image Vis. Comput. , vol.19 , Issue.9-10 , pp. 699-707
    • Giacinto, G.1    Roli, F.2
  • 47
    • 0001308326 scopus 로고
    • On the association of attributes in statistics
    • Yule G. On the association of attributes in statistics. Biometrika 1903, 2:121-134.
    • (1903) Biometrika , vol.2 , pp. 121-134
    • Yule, G.1
  • 48
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • Tang E.K., Suganthan P.N., Yao X. An analysis of diversity measures. Mach. Learn. 2006, 65(1):247-271.
    • (2006) Mach. Learn. , vol.65 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 49
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • Luxburg U.V. A tutorial on spectral clustering. Stat. Comput. 2007, 17(4):395-416.
    • (2007) Stat. Comput. , vol.17 , Issue.4 , pp. 395-416
    • Luxburg, U.V.1
  • 50
    • 0004236492 scopus 로고    scopus 로고
    • Johns Hopkins University Press, Baltimore, Maryland, US
    • Golub G.H., Van Loan C.F. Matrix Computations 1996, Johns Hopkins University Press, Baltimore, Maryland, US. 3rd edition.
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 51
    • 0004514718 scopus 로고    scopus 로고
    • Controllability of matrix eigenvalue algorithms: the inverse power method
    • Helmke U., Fuhrmann P.A. Controllability of matrix eigenvalue algorithms: the inverse power method. Syst. Control Lett. 2000, 41(1):57-66.
    • (2000) Syst. Control Lett. , vol.41 , Issue.1 , pp. 57-66
    • Helmke, U.1    Fuhrmann, P.A.2
  • 53
    • 84901068041 scopus 로고    scopus 로고
    • UCI Machine Learning Repository, 〈〉.
    • A. Asuncion, D. Newman, UCI Machine Learning Repository, 〈〉. http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • Asuncion, A.1    Newman, D.2
  • 54
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.