-
2
-
-
0033207482
-
Combining predictors: comparison of five meta machine learning methods
-
Hansen J.V. Combining predictors: comparison of five meta machine learning methods. Inf. Sci. 1999, 119(1-2):91-105.
-
(1999)
Inf. Sci.
, vol.119
, Issue.1-2
, pp. 91-105
-
-
Hansen, J.V.1
-
3
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees. bagging, boosting, and randomization
-
Dietterich T. An experimental comparison of three methods for constructing ensembles of decision trees. bagging, boosting, and randomization. Mach. Learn. 2000, 40:139-158.
-
(2000)
Mach. Learn.
, vol.40
, pp. 139-158
-
-
Dietterich, T.1
-
4
-
-
0032021555
-
On combining classifiers
-
Kittler J., Hatef M., Duin R.P.W., Matas J. On combining classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20(3):226-239.
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
, Issue.3
, pp. 226-239
-
-
Kittler, J.1
Hatef, M.2
Duin, R.P.W.3
Matas, J.4
-
5
-
-
0030211964
-
Bagging Predictors
-
Breiman L. Bagging Predictors. Mach. Learn. 1996, 24:123-140.
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
6
-
-
0030419058
-
-
Experiments with a new boosting algorithm, in: Proceedings of the 13th International Conference of Machine Learning
-
Y. Freund, R. Schapire, Experiments with a new boosting algorithm, in: Proceedings of the 13th International Conference of Machine Learning, 1996, pp. 325-332.
-
(1996)
, pp. 325-332
-
-
Freund, Y.1
Schapire, R.2
-
7
-
-
0032661927
-
Using correspondence analysis to combine classifiers
-
Merz C.J. Using correspondence analysis to combine classifiers. Mach. Learn. 1999, 36(1):33-58.
-
(1999)
Mach. Learn.
, vol.36
, Issue.1
, pp. 33-58
-
-
Merz, C.J.1
-
8
-
-
60849105643
-
Constructing ensembles of classifiers by means of weighted instance selection
-
Garca-Pedrajas N. Constructing ensembles of classifiers by means of weighted instance selection. IEEE Trans. Neural Netw. 2009, 20(2):258-277.
-
(2009)
IEEE Trans. Neural Netw.
, vol.20
, Issue.2
, pp. 258-277
-
-
Garca-Pedrajas, N.1
-
9
-
-
33750127404
-
Accuracy/diversity and ensemble MLP classifier design
-
Windeatt T. Accuracy/diversity and ensemble MLP classifier design. IEEE Trans. Neural Netw. 2006, 17(5):1194-1211.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.5
, pp. 1194-1211
-
-
Windeatt, T.1
-
10
-
-
0032645080
-
An empirical comparison of voting classification algorithms. bagging, boosting, and variants
-
Bauer E., Kohavi R. An empirical comparison of voting classification algorithms. bagging, boosting, and variants. Mach. Learn. 1999, 36(1-2):105-139.
-
(1999)
Mach. Learn.
, vol.36
, Issue.1-2
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
11
-
-
34250744208
-
-
An empirical comparison of supervised learning algorithms, in: Proceedings of the 23rd International Conference of Machine Learning
-
R. Caruana, A. Niculescu-Mizil, An empirical comparison of supervised learning algorithms, in: Proceedings of the 23rd International Conference of Machine Learning, 2006, pp. 161-168.
-
(2006)
, pp. 161-168
-
-
Caruana, R.1
Niculescu-Mizil, A.2
-
13
-
-
0036567392
-
Ensembling neural networks. many could be better than all
-
Zhou Z.-H., Wu J., Tang W. Ensembling neural networks. many could be better than all. Artif. Intell. 2002, 137(1-2):239-263.
-
(2002)
Artif. Intell.
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.-H.1
Wu, J.2
Tang, W.3
-
14
-
-
13544267516
-
A dynamic classifier selection and combination approach to image region labeling
-
Singh S., Singh M. A dynamic classifier selection and combination approach to image region labeling. Signal Process. Image Commun. 2005, 20(3):219-231.
-
(2005)
Signal Process. Image Commun.
, vol.20
, Issue.3
, pp. 219-231
-
-
Singh, S.1
Singh, M.2
-
15
-
-
60349123276
-
Incremental construction of classifier and discriminant ensembles
-
Ulas A., Semerci M., Yildiz O.T., Alpaydin E. Incremental construction of classifier and discriminant ensembles. Inf. Sci. 2009, 179(9):1298-1318.
-
(2009)
Inf. Sci.
, vol.179
, Issue.9
, pp. 1298-1318
-
-
Ulas, A.1
Semerci, M.2
Yildiz, O.T.3
Alpaydin, E.4
-
18
-
-
58249090787
-
A generalized adaptive ensemble generation and aggregation approach for multiple classifier systems
-
Chen L., Kamel M.S. A generalized adaptive ensemble generation and aggregation approach for multiple classifier systems. Pattern Recognit. 2009, 42:629-644.
-
(2009)
Pattern Recognit.
, vol.42
, pp. 629-644
-
-
Chen, L.1
Kamel, M.S.2
-
19
-
-
33750460241
-
Using boosting to prune bagging ensembles
-
Martínez-Muñoz G., Suárez A. Using boosting to prune bagging ensembles. Pattern Recognit. Lett. 2007, 28(1):156-165.
-
(2007)
Pattern Recognit. Lett.
, vol.28
, Issue.1
, pp. 156-165
-
-
Martínez-Muñoz, G.1
Suárez, A.2
-
20
-
-
33745794076
-
Ensemble pruning via semi-definite programming
-
Zhang Y., Burer S., Street W.N. Ensemble pruning via semi-definite programming. J. Mach. Learn. Res. 2006, 7:1315-1338.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1315-1338
-
-
Zhang, Y.1
Burer, S.2
Street, W.N.3
-
21
-
-
22844439516
-
Switching class labels to generate classification ensembles
-
Martínez-Muñoz G., Suárez A. Switching class labels to generate classification ensembles. Pattern Recognit. 2005, 38(10):1483-1494.
-
(2005)
Pattern Recognit.
, vol.38
, Issue.10
, pp. 1483-1494
-
-
Martínez-Muñoz, G.1
Suárez, A.2
-
22
-
-
33947231519
-
A comparison of decision tree ensemble creation techniques
-
Banfield R.E., Hall L.O., Bowyer K.W., Kegelmeyer W.P. A comparison of decision tree ensemble creation techniques. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29(1):173-180.
-
(2007)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.29
, Issue.1
, pp. 173-180
-
-
Banfield, R.E.1
Hall, L.O.2
Bowyer, K.W.3
Kegelmeyer, W.P.4
-
23
-
-
84889092001
-
Using Bayesian networks for selecting classifiers in GP ensembles
-
Stefano C.D., Folino G., Fontanella F., Scotto di Freca A. Using Bayesian networks for selecting classifiers in GP ensembles. Inf. Sci. 2014, 258:200-216.
-
(2014)
Inf. Sci.
, vol.258
, pp. 200-216
-
-
Stefano, C.D.1
Folino, G.2
Fontanella, F.3
Scotto di Freca, A.4
-
24
-
-
0036532571
-
Switching between selection and fusion in combining classifiers: an experiment
-
Kuncheva L. Switching between selection and fusion in combining classifiers: an experiment. IEEE Trans. Syst. Man Cybern. Part B 2002, 32(2):146-156.
-
(2002)
IEEE Trans. Syst. Man Cybern. Part B
, vol.32
, Issue.2
, pp. 146-156
-
-
Kuncheva, L.1
-
25
-
-
84887611642
-
Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers
-
Lysiak R., Kurzynski M., Woloszynski T. Optimal selection of ensemble classifiers using measures of competence and diversity of base classifiers. Neurocomputing 2014, 126:29-35.
-
(2014)
Neurocomputing
, vol.126
, pp. 29-35
-
-
Lysiak, R.1
Kurzynski, M.2
Woloszynski, T.3
-
26
-
-
84858340899
-
-
A taxonomy and short review of ensemble selection, in: Proceedings of Workshop on Supervised and Unsupervised Ensemble Methods and their Applications
-
G. Tsoumakas, I. Partalas, I. Vlahavas, A taxonomy and short review of ensemble selection, in: Proceedings of Workshop on Supervised and Unsupervised Ensemble Methods and their Applications, 2008, pp. 41-46.
-
(2008)
, pp. 41-46
-
-
Tsoumakas, G.1
Partalas, I.2
Vlahavas, I.3
-
27
-
-
84892436024
-
An effective ensemble pruning algorithm based on frequent patterns
-
Zhou H., Zhao X., Wang X. An effective ensemble pruning algorithm based on frequent patterns. Knowl. Based Syst. 2014, 56:79-85.
-
(2014)
Knowl. Based Syst.
, vol.56
, pp. 79-85
-
-
Zhou, H.1
Zhao, X.2
Wang, X.3
-
28
-
-
0002289220
-
-
Pruning adaptive boosting, in: Proceedings of the 14th International Conference of Machine Learning
-
D.D. Margineantu, T.G. Dietterich, Pruning adaptive boosting, in: Proceedings of the 14th International Conference of Machine Learning, 1997, pp. 211-218.
-
(1997)
, pp. 211-218
-
-
Margineantu, D.D.1
Dietterich, T.G.2
-
29
-
-
11144281845
-
-
Aggregation ordering in bagging, in: Proceedings of IASTED International Conference on Artificial Intelligence and Applications
-
G. Martínez-Muñoz, A. Suárez, Aggregation ordering in bagging, in: Proceedings of IASTED International Conference on Artificial Intelligence and Applications, 2004, pp. 258-263.
-
(2004)
, pp. 258-263
-
-
Martínez-Muñoz, G.1
Suárez, A.2
-
30
-
-
33749247099
-
-
Pruning in Ordered Bagging Ensembles, in: Proceedings of the 23rd International Conference of Machine Learning
-
G. Martínez-Muñoz, A. Suárez, Pruning in Ordered Bagging Ensembles, in: Proceedings of the 23rd International Conference of Machine Learning, 2006, pp. 609-616.
-
(2006)
, pp. 609-616
-
-
Martínez-Muñoz, G.1
Suárez, A.2
-
31
-
-
8344279588
-
-
Selective ensemble of decision trees, in: Q. Liu, Y. Yao, A. Skowron (Eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Springer
-
Z.-H. Zhou, W. Tang, Selective ensemble of decision trees, in: Q. Liu, Y. Yao, A. Skowron (Eds.), Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing, Springer, 2003, pp. 476-483.
-
(2003)
, pp. 476-483
-
-
Zhou, Z.-H.1
Tang, W.2
-
32
-
-
84884210298
-
A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot
-
Dai Q. A novel ensemble pruning algorithm based on randomized greedy selective strategy and ballot. Neurocomputing 2013, 122:258-265.
-
(2013)
Neurocomputing
, vol.122
, pp. 258-265
-
-
Dai, Q.1
-
33
-
-
58549093526
-
Collective-agreement-based pruning of ensembles
-
Rokach L. Collective-agreement-based pruning of ensembles. Comput. Stat. Data Anal. 2009, 53:1015-1026.
-
(2009)
Comput. Stat. Data Anal.
, vol.53
, pp. 1015-1026
-
-
Rokach, L.1
-
34
-
-
32044473249
-
Using diversity of errors for selecting members of a committee classifier
-
Aksela M., Laaksonen J. Using diversity of errors for selecting members of a committee classifier. Pattern Recognit. 2006, 39:608-623.
-
(2006)
Pattern Recognit.
, vol.39
, pp. 608-623
-
-
Aksela, M.1
Laaksonen, J.2
-
35
-
-
77953650340
-
Information theoretic combination of pattern classifiers
-
Meynet J., Thiran J.-P. Information theoretic combination of pattern classifiers. Pattern Recognit. 2010, 43:3412-3421.
-
(2010)
Pattern Recognit.
, vol.43
, pp. 3412-3421
-
-
Meynet, J.1
Thiran, J.-P.2
-
36
-
-
77958150674
-
A dynamic classifier ensemble selection approach for noise data
-
Xiao J., He C., Jiang X., Liu D. A dynamic classifier ensemble selection approach for noise data. Inf. Sci. 2010, 180:3402-3421.
-
(2010)
Inf. Sci.
, vol.180
, pp. 3402-3421
-
-
Xiao, J.1
He, C.2
Jiang, X.3
Liu, D.4
-
38
-
-
84994037050
-
Dynamic classifier selection based on multiple classifier behavior
-
Giacinto G., Roli F. Dynamic classifier selection based on multiple classifier behavior. Pattern Recognit. 2001, 34(9):1879-1881.
-
(2001)
Pattern Recognit.
, vol.34
, Issue.9
, pp. 1879-1881
-
-
Giacinto, G.1
Roli, F.2
-
39
-
-
45549107002
-
A dynamic overproduce-and-choose strategy for the selection of classifier ensembles
-
Santos E.M.D., Sabourin R., Maupin P. A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern Recognit. 2008, 41(10):2993-3009.
-
(2008)
Pattern Recognit.
, vol.41
, Issue.10
, pp. 2993-3009
-
-
Santos, E.M.D.1
Sabourin, R.2
Maupin, P.3
-
40
-
-
72249084689
-
A hybrid approach for efficient ensembles
-
Zhu D. A hybrid approach for efficient ensembles. Decis. Support Syst. 2010, 48:480-487.
-
(2010)
Decis. Support Syst.
, vol.48
, pp. 480-487
-
-
Zhu, D.1
-
41
-
-
0037337904
-
Clustering ensembles of neural network models
-
Bakker B., Heskes T. Clustering ensembles of neural network models. Neural Netw. 2003, 16:261-269.
-
(2003)
Neural Netw.
, vol.16
, pp. 261-269
-
-
Bakker, B.1
Heskes, T.2
-
42
-
-
0031211090
-
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
-
Freund Y., Schapire R.E. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. Comput. Syst. Sci. 1997, 55(1):119-139.
-
(1997)
J. Comput. Syst. Sci.
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
43
-
-
84857719327
-
Cluster-oriented ensemble classifier. impact of multicluster characterization on ensemble classifier learning
-
Verma B., Rahman A. Cluster-oriented ensemble classifier. impact of multicluster characterization on ensemble classifier learning. IEEE Trans. Knowl. Data Eng. 2012, 24(4):605-618.
-
(2012)
IEEE Trans. Knowl. Data Eng.
, vol.24
, Issue.4
, pp. 605-618
-
-
Verma, B.1
Rahman, A.2
-
44
-
-
24044547645
-
Controlling the diversity in classifier ensembles through a measure of agreement
-
Zouari H., Heutte L., Lecourtier Y. Controlling the diversity in classifier ensembles through a measure of agreement. Pattern Recognit. 2005, 38:2195-2199.
-
(2005)
Pattern Recognit.
, vol.38
, pp. 2195-2199
-
-
Zouari, H.1
Heutte, L.2
Lecourtier, Y.3
-
45
-
-
0037403516
-
Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
-
Kuncheva L.I., Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach. Learn. 2003, 51(2):181-207.
-
(2003)
Mach. Learn.
, vol.51
, Issue.2
, pp. 181-207
-
-
Kuncheva, L.I.1
Whitaker, C.J.2
-
46
-
-
0035420134
-
Design of effective neural network ensembles for image classification purposes
-
Giacinto G., Roli F. Design of effective neural network ensembles for image classification purposes. Image Vis. Comput. 2001, 19(9-10):699-707.
-
(2001)
Image Vis. Comput.
, vol.19
, Issue.9-10
, pp. 699-707
-
-
Giacinto, G.1
Roli, F.2
-
47
-
-
0001308326
-
On the association of attributes in statistics
-
Yule G. On the association of attributes in statistics. Biometrika 1903, 2:121-134.
-
(1903)
Biometrika
, vol.2
, pp. 121-134
-
-
Yule, G.1
-
48
-
-
33749018252
-
An analysis of diversity measures
-
Tang E.K., Suganthan P.N., Yao X. An analysis of diversity measures. Mach. Learn. 2006, 65(1):247-271.
-
(2006)
Mach. Learn.
, vol.65
, Issue.1
, pp. 247-271
-
-
Tang, E.K.1
Suganthan, P.N.2
Yao, X.3
-
49
-
-
34548583274
-
A tutorial on spectral clustering
-
Luxburg U.V. A tutorial on spectral clustering. Stat. Comput. 2007, 17(4):395-416.
-
(2007)
Stat. Comput.
, vol.17
, Issue.4
, pp. 395-416
-
-
Luxburg, U.V.1
-
50
-
-
0004236492
-
-
Johns Hopkins University Press, Baltimore, Maryland, US
-
Golub G.H., Van Loan C.F. Matrix Computations 1996, Johns Hopkins University Press, Baltimore, Maryland, US. 3rd edition.
-
(1996)
Matrix Computations
-
-
Golub, G.H.1
Van Loan, C.F.2
-
51
-
-
0004514718
-
Controllability of matrix eigenvalue algorithms: the inverse power method
-
Helmke U., Fuhrmann P.A. Controllability of matrix eigenvalue algorithms: the inverse power method. Syst. Control Lett. 2000, 41(1):57-66.
-
(2000)
Syst. Control Lett.
, vol.41
, Issue.1
, pp. 57-66
-
-
Helmke, U.1
Fuhrmann, P.A.2
-
52
-
-
0003802343
-
-
Chapman and Hall, UK
-
Breiman L., Friedman J.H., Olshen R.A., Stone C.J. Classification and Regression Trees 1984, Chapman and Hall, UK.
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.H.2
Olshen, R.A.3
Stone, C.J.4
-
53
-
-
84901068041
-
-
UCI Machine Learning Repository, 〈〉.
-
A. Asuncion, D. Newman, UCI Machine Learning Repository, 〈〉. http://www.ics.uci.edu/~mlearn/MLRepository.html.
-
-
-
Asuncion, A.1
Newman, D.2
-
54
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7:1-30.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demšar, J.1
|