메뉴 건너뛰기




Volumn 179, Issue 9, 2009, Pages 1298-1318

Incremental construction of classifier and discriminant ensembles

Author keywords

Classification; Classifier ensembles; Classifier fusion; Discriminant ensembles; Diversity; Machine learning; Stacking; Voting

Indexed keywords

CLASSIFIERS; POLYNOMIAL APPROXIMATION; ROBOT LEARNING;

EID: 60349123276     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2008.12.024     Document Type: Article
Times cited : (68)

References (65)
  • 1
    • 0030648544 scopus 로고    scopus 로고
    • F. Alimoǧlu, E. Alpaydi{dotless}n, Combining multiple representations and classifiers for pen-based handwritten digit recognition, in: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR'97, 1997, pp. 637-641.
    • F. Alimoǧlu, E. Alpaydi{dotless}n, Combining multiple representations and classifiers for pen-based handwritten digit recognition, in: Proceedings of the International Conference on Document Analysis and Recognition, ICDAR'97, 1997, pp. 637-641.
  • 2
    • 0033220742 scopus 로고    scopus 로고
    • Experimental evaluation of expert fusion strategies
    • Alkoot F.M., and Kittler J. Experimental evaluation of expert fusion strategies. Pattern Recognition Letters 20 11-13 (1999) 1361-1369
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1361-1369
    • Alkoot, F.M.1    Kittler, J.2
  • 3
    • 0033570831 scopus 로고    scopus 로고
    • Combined 5 × 2 cv F test for comparing supervised classification learning algorithms
    • Alpaydi{dotless}n E. Combined 5 × 2 cv F test for comparing supervised classification learning algorithms. Neural Computation 11 8 (1999) 1885-1892
    • (1999) Neural Computation , vol.11 , Issue.8 , pp. 1885-1892
    • Alpaydin, E.1
  • 4
    • 60349113827 scopus 로고    scopus 로고
    • UCI machine learning repository
    • A. Asuncion, D.J. Newman, UCI machine learning repository, 2007. .
    • (2007)
    • Asuncion, A.1    Newman, D.J.2
  • 5
    • 0037337904 scopus 로고    scopus 로고
    • Clustering ensembles of neural network models
    • Bakker B., and Heskes T. Clustering ensembles of neural network models. Neural Networks 16 2 (2003) 261-269
    • (2003) Neural Networks , vol.16 , Issue.2 , pp. 261-269
    • Bakker, B.1    Heskes, T.2
  • 7
    • 12144262779 scopus 로고    scopus 로고
    • Bio-molecular cancer prediction with random subspace ensembles of support vector machines
    • Bertoni A., Folgieri R., and Valentini G. Bio-molecular cancer prediction with random subspace ensembles of support vector machines. Neurocomputing 63 (2005) 535-539
    • (2005) Neurocomputing , vol.63 , pp. 535-539
    • Bertoni, A.1    Folgieri, R.2    Valentini, G.3
  • 8
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning 24 2 (1996) 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 9
    • 33746791981 scopus 로고    scopus 로고
    • On the impact of fusion strategies on classification errors for large ensembles of classifiers
    • Cabrera J.B.D. On the impact of fusion strategies on classification errors for large ensembles of classifiers. Pattern Recognition 39 (2006) 1963-1978
    • (2006) Pattern Recognition , vol.39 , pp. 1963-1978
    • Cabrera, J.B.D.1
  • 12
    • 25644439038 scopus 로고    scopus 로고
    • Cost-conscious classifier ensembles
    • Demir C., and Alpaydi{dotless}n E. Cost-conscious classifier ensembles. Pattern Recognition Letters 26 14 (2005) 2206-2214
    • (2005) Pattern Recognition Letters , vol.26 , Issue.14 , pp. 2206-2214
    • Demir, C.1    Alpaydin, E.2
  • 13
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demsar J. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 7 (2006) 1-30
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 14
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10 7 (1998) 1895-1923
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1923
    • Dietterich, T.G.1
  • 20
    • 0033207482 scopus 로고    scopus 로고
    • Combining predictors: comparison of five meta machine learning methods
    • Hansen J.V. Combining predictors: comparison of five meta machine learning methods. Information Sciences 119 1-2 (1999) 91-105
    • (1999) Information Sciences , vol.119 , Issue.1-2 , pp. 91-105
    • Hansen, J.V.1
  • 23
    • 0042525838 scopus 로고    scopus 로고
    • A constructive algorithm for training cooperative neural network ensembles
    • Islam M., Yao X., and Murase K. A constructive algorithm for training cooperative neural network ensembles. IEEE Transactions on Neural Networks 14 (2003) 820-834
    • (2003) IEEE Transactions on Neural Networks , vol.14 , pp. 820-834
    • Islam, M.1    Yao, X.2    Murase, K.3
  • 25
    • 25144471298 scopus 로고    scopus 로고
    • Score normalization in multimodal biometric systems
    • Jain A., Nandakumar K., and Ross A. Score normalization in multimodal biometric systems. Pattern Recognition 38 (2005) 2270-2285
    • (2005) Pattern Recognition , vol.38 , pp. 2270-2285
    • Jain, A.1    Nandakumar, K.2    Ross, A.3
  • 32
    • 24144490154 scopus 로고    scopus 로고
    • Special issue on diversity in multiple classifier systems
    • Kuncheva L.I. Special issue on diversity in multiple classifier systems. Information Fusion 6 1 (2005) 1-115
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 1-115
    • Kuncheva, L.I.1
  • 34
    • 0036896235 scopus 로고    scopus 로고
    • An experimental study on diversity for bagging and boosting with linear classifiers
    • Kuncheva L.I., Skurichina M., and Duin R.P.W. An experimental study on diversity for bagging and boosting with linear classifiers. Information Fusion 3 4 (2002) 245-258
    • (2002) Information Fusion , vol.3 , Issue.4 , pp. 245-258
    • Kuncheva, L.I.1    Skurichina, M.2    Duin, R.P.W.3
  • 35
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L.I., and Whitaker C.J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning 51 2 (2003) 181-207
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 36
    • 4644373995 scopus 로고    scopus 로고
    • Classifier combination based on confidence transformation
    • Liu C.-L. Classifier combination based on confidence transformation. Pattern Recognition 38 (2005) 11-28
    • (2005) Pattern Recognition , vol.38 , pp. 11-28
    • Liu, C.-L.1
  • 40
    • 0032661927 scopus 로고    scopus 로고
    • Using correspondence analysis to combine classifiers
    • Merz C.J. Using correspondence analysis to combine classifiers. Machine Learning 36 1-2 (1999) 33-58
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 33-58
    • Merz, C.J.1
  • 41
    • 0030585190 scopus 로고    scopus 로고
    • Engineering multiversion neural-net systems
    • Partridge D., and Yates W.B. Engineering multiversion neural-net systems. Neural Computation 8 4 (1996) 869-893
    • (1996) Neural Computation , vol.8 , Issue.4 , pp. 869-893
    • Partridge, D.1    Yates, W.B.2
  • 42
    • 27844601116 scopus 로고    scopus 로고
    • Modeling the concept of majority opinion in group decision making
    • Pasi G., and Yager R.R. Modeling the concept of majority opinion in group decision making. Information Sciences 176 4 (2006) 390-414
    • (2006) Information Sciences , vol.176 , Issue.4 , pp. 390-414
    • Pasi, G.1    Yager, R.R.2
  • 45
    • 33751205340 scopus 로고    scopus 로고
    • Trainable fusion rules. I: Large sample size case
    • Raudys S. Trainable fusion rules. I: Large sample size case. Neural Networks 19 (2006) 1506-1516
    • (2006) Neural Networks , vol.19 , pp. 1506-1516
    • Raudys, S.1
  • 46
    • 33751229918 scopus 로고    scopus 로고
    • Trainable fusion rules. II: Small sample-size effects
    • Raudys S. Trainable fusion rules. II: Small sample-size effects. Neural Networks 19 (2006) 1517-1527
    • (2006) Neural Networks , vol.19 , pp. 1517-1527
    • Raudys, S.1
  • 49
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • Ruta D., and Gabrys B. Classifier selection for majority voting. Information Fusion 6 1 (2005) 63-81
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 50
    • 45549107002 scopus 로고    scopus 로고
    • A dynamic overproduce-and-choose strategy for the selection of classifier ensembles
    • Santos E.M.D., Sabourin R., and Maupin P. A dynamic overproduce-and-choose strategy for the selection of classifier ensembles. Pattern Recognition 41 (2008) 2993-3009
    • (2008) Pattern Recognition , vol.41 , pp. 2993-3009
    • Santos, E.M.D.1    Sabourin, R.2    Maupin, P.3
  • 52
    • 33749250604 scopus 로고    scopus 로고
    • Experimental study for the comparison of classifier combination methods
    • Sohn S.Y., and Shin H.W. Experimental study for the comparison of classifier combination methods. Pattern Recognition 40 (2007) 33-40
    • (2007) Pattern Recognition , vol.40 , pp. 33-40
    • Sohn, S.Y.1    Shin, H.W.2
  • 54
    • 0033713738 scopus 로고    scopus 로고
    • Combining multiple classifiers by averaging or multiplying?
    • Tax D.M.J., van Breukelen M., Duin R.P., and Kittler J. Combining multiple classifiers by averaging or multiplying?. Pattern Recognition 33 9 (2000) 1475-1485
    • (2000) Pattern Recognition , vol.33 , Issue.9 , pp. 1475-1485
    • Tax, D.M.J.1    van Breukelen, M.2    Duin, R.P.3    Kittler, J.4
  • 56
    • 0033893813 scopus 로고    scopus 로고
    • Optimal linear combination of neural networks for improving classification performance
    • Ueda N. Optimal linear combination of neural networks for improving classification performance. IEEE Transactions on Pattern Analysis and Machine Intelligence 22 2 (2000) 207-215
    • (2000) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.22 , Issue.2 , pp. 207-215
    • Ueda, N.1
  • 58
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 5 (1992) 241-259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 60
    • 60349110904 scopus 로고    scopus 로고
    • O.T. Yi{dotless}ldi{dotless}z, E. Alpaydi{dotless}n, Linear discriminant trees, in: Proceedings of the International Conference on Machine Learning, ICML'00, 2000, pp. 1175-1182.
    • O.T. Yi{dotless}ldi{dotless}z, E. Alpaydi{dotless}n, Linear discriminant trees, in: Proceedings of the International Conference on Machine Learning, ICML'00, 2000, pp. 1175-1182.
  • 61
    • 60349096188 scopus 로고    scopus 로고
    • O.T. Yi{dotless}ldi{dotless}z, A. Ulaş, M. Semerci, E. Alpaydi{dotless}n, AYSU: machine learning data sets for model combination, 2007. .
    • O.T. Yi{dotless}ldi{dotless}z, A. Ulaş, M. Semerci, E. Alpaydi{dotless}n, AYSU: machine learning data sets for model combination, 2007. .
  • 62
    • 44449124996 scopus 로고    scopus 로고
    • RotBoost: a technique for combining rotation forest and AdaBoost
    • Zhang C.-X., and Zhang J.-S. RotBoost: a technique for combining rotation forest and AdaBoost. Pattern Recognition Letters 29 10 (2008) 1524-1536
    • (2008) Pattern Recognition Letters , vol.29 , Issue.10 , pp. 1524-1536
    • Zhang, C.-X.1    Zhang, J.-S.2
  • 63
    • 2442688288 scopus 로고    scopus 로고
    • Genetic programming in classifying large-scale data: an ensemble method
    • Zhang Y., and Bhattacharyya S. Genetic programming in classifying large-scale data: an ensemble method. Information Sciences 163 1-3 (2004) 85-101
    • (2004) Information Sciences , vol.163 , Issue.1-3 , pp. 85-101
    • Zhang, Y.1    Bhattacharyya, S.2
  • 65
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: many could be better than all
    • Zhou Z.-H., Wu J., and Tang W. Ensembling neural networks: many could be better than all. Artificial Intelligence 137 (2002) 239-263
    • (2002) Artificial Intelligence , vol.137 , pp. 239-263
    • Zhou, Z.-H.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.