메뉴 건너뛰기




Volumn 36, Issue 1, 1999, Pages 33-58

Using correspondence analysis to combine classifiers

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER SIMULATION; LEARNING ALGORITHMS; NEURAL NETWORKS; PREDICTIVE CONTROL SYSTEMS; STATISTICAL METHODS;

EID: 0032661927     PISSN: 08856125     EISSN: None     Source Type: Journal    
DOI: 10.1023/a:1007559205422     Document Type: Article
Times cited : (180)

References (37)
  • 1
    • 0344297414 scopus 로고
    • Learning multiple relational rule-based models
    • D. Fisher & H. Lenz (Eds.), Fort Lauderdale, FL: Springer-Verlag
    • Ali, K., & Pazzani, M. (1995). Learning multiple relational rule-based models. In D. Fisher & H. Lenz (Eds.), Learning from data: Artificial intelligence and statistics (Vol. 5). Fort Lauderdale, FL: Springer-Verlag.
    • (1995) Learning from Data: Artificial Intelligence and Statistics , vol.5
    • Ali, K.1    Pazzani, M.2
  • 2
    • 0004224961 scopus 로고
    • (Technical Report). Department of Statistics, University of California at Berkeley
    • Breiman, L. (1994). Heuristics of instability in model selection (Technical Report). Department of Statistics, University of California at Berkeley.
    • (1994) Heuristics of Instability in Model Selection
    • Breiman, L.1
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 5
    • 34249966007 scopus 로고
    • The CN2 induction algorithm
    • Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3(4), 261-283.
    • (1989) Machine Learning , vol.3 , Issue.4 , pp. 261-283
    • Clark, P.1    Niblett, T.2
  • 6
    • 34250080806 scopus 로고
    • A weighted nearest neighbor algorithm for learning with symbolic features
    • Cost, S., & Salzberg, S. (1993). A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning, 10(1), 57-78.
    • (1993) Machine Learning , vol.10 , Issue.1 , pp. 57-78
    • Cost, S.1    Salzberg, S.2
  • 11
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Also appeared in COLT90
    • Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121(2), 256-285. Also appeared in COLT90.
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 17
    • 0000262562 scopus 로고
    • Hierarchical mixtures of experts and the EM algorithm
    • Jordan, M.I., & Jacobs, R.A. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6, 181-214.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.I.1    Jacobs, R.A.2
  • 18
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • G. Tesauro, D. Touretzky, & T Leen (Eds.), MIT Press
    • Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active learning. In G. Tesauro, D. Touretzky, & T Leen (Eds.), Advances in neural information processing systems (Vol. 7, pp. 231-238). MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 21
    • 85153941282 scopus 로고
    • Bias, variance and the combination of least squares estimators
    • G. Tesauro, D. Touretzky, & T. Leen (Eds.), MIT Press
    • Meir, R. (1995). Bias, variance and the combination of least squares estimators. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural information processing systems (Vol. 7, pp. 295-302). MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 295-302
    • Meir, R.1
  • 22
    • 0010687619 scopus 로고
    • Dynamical selection of learning algorithms
    • D. Fisher & H. Lenz (Eds.), Springer Verlag
    • Merz, C.J. (1995). Dynamical selection of learning algorithms. In D. Fisher & H. Lenz (Eds.), Learning from data: Artificial intelligence and statistics (Vol. 2). Springer Verlag.
    • (1995) Learning from Data: Artificial Intelligence and Statistics , vol.2
    • Merz, C.J.1
  • 26
    • 85156192015 scopus 로고    scopus 로고
    • Generating accurate and diverse members of a neural-network ensemble
    • D.S. Touretzky, M.C. Mozer, & M.E. Hasselmo (Eds.), MIT Press
    • Opitz, D.W., & Shavlik, J.W. (1996). Generating accurate and diverse members of a neural-network ensemble. In D.S. Touretzky, M.C. Mozer, & M.E. Hasselmo (Eds.), Advances in neural information processing systems (Vol. 8, pp. 535-541). MIT Press.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 535-541
    • Opitz, D.W.1    Shavlik, J.W.2
  • 27
    • 0345159806 scopus 로고
    • Putting it all together: Methods for combining neural networks
    • J.D. Cowan, G. Tesauro, & J. Alspector (Eds.), Morgan Kaufmann Publishers
    • Perrone, M.P. (1994). Putting it all together: Methods for combining neural networks. In J.D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems (Vol. 6, pp. 1188-1189). Morgan Kaufmann Publishers.
    • (1994) Advances in Neural Information Processing Systems , vol.6 , pp. 1188-1189
    • Perrone, M.P.1
  • 28
    • 0000926506 scopus 로고
    • When networks disagree: Ensemble methods for hybrid neural networks
    • R.J. Mammone (Ed.), London: Chapman & Hall
    • Perrone, M.P., & Cooper, L.N. (1993). When networks disagree: Ensemble methods for hybrid neural networks. In R.J. Mammone (Ed.), Artificial neural networks for speech and vision (pp. 126-142). London: Chapman & Hall.
    • (1993) Artificial Neural Networks for Speech and Vision , pp. 126-142
    • Perrone, M.P.1    Cooper, L.N.2
  • 33
    • 27144463192 scopus 로고    scopus 로고
    • On comparing classifiers: Pitfalls to avoid and a recommended approach
    • Salzberg, S. (1997). On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1(3).
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.3
    • Salzberg, S.1
  • 34
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R.E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.E.1
  • 36
    • 85153970023 scopus 로고
    • Combining estimators using non-constant weighting functions
    • G. Tesauro, D. Touretzky, & T. Leen (Eds.), MIT Press
    • Tresp, V., & Taniguchi, M. (1995). Combining estimators using non-constant weighting functions. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural information processing systems (Vol. 7, pp. 419-426). MIT Press.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 419-426
    • Tresp, V.1    Taniguchi, M.2
  • 37
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert, D.H. (1992). Stacked generalization. Neural Networks, 5, 241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.