-
1
-
-
0344297414
-
Learning multiple relational rule-based models
-
D. Fisher & H. Lenz (Eds.), Fort Lauderdale, FL: Springer-Verlag
-
Ali, K., & Pazzani, M. (1995). Learning multiple relational rule-based models. In D. Fisher & H. Lenz (Eds.), Learning from data: Artificial intelligence and statistics (Vol. 5). Fort Lauderdale, FL: Springer-Verlag.
-
(1995)
Learning from Data: Artificial Intelligence and Statistics
, vol.5
-
-
Ali, K.1
Pazzani, M.2
-
2
-
-
0004224961
-
-
(Technical Report). Department of Statistics, University of California at Berkeley
-
Breiman, L. (1994). Heuristics of instability in model selection (Technical Report). Department of Statistics, University of California at Berkeley.
-
(1994)
Heuristics of Instability in Model Selection
-
-
Breiman, L.1
-
3
-
-
0030211964
-
Bagging predictors
-
Breiman, L. (1996). Bagging predictors. Machine Learning, 24(2), 123-140.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
5
-
-
34249966007
-
The CN2 induction algorithm
-
Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3(4), 261-283.
-
(1989)
Machine Learning
, vol.3
, Issue.4
, pp. 261-283
-
-
Clark, P.1
Niblett, T.2
-
6
-
-
34250080806
-
A weighted nearest neighbor algorithm for learning with symbolic features
-
Cost, S., & Salzberg, S. (1993). A weighted nearest neighbor algorithm for learning with symbolic features. Machine Learning, 10(1), 57-78.
-
(1993)
Machine Learning
, vol.10
, Issue.1
, pp. 57-78
-
-
Cost, S.1
Salzberg, S.2
-
11
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Also appeared in COLT90
-
Freund, Y. (1995). Boosting a weak learning algorithm by majority. Information and Computation, 121(2), 256-285. Also appeared in COLT90.
-
(1995)
Information and Computation
, vol.121
, Issue.2
, pp. 256-285
-
-
Freund, Y.1
-
15
-
-
0028259890
-
Decision combination in multiple classifier systems
-
Ho, K., Hull, J.J., & Srihari, S.N. (1994). Decision combination in multiple classifier systems. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-16(1), 66-75.
-
(1994)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.PAMI-16
, Issue.1
, pp. 66-75
-
-
Ho, K.1
Hull, J.J.2
Srihari, S.N.3
-
16
-
-
0001940458
-
Adaptive mixtures of local experts
-
Jacobs, R.A., Jordan, M.I., Nowlan, S.J., & Hinton, G.E. (1991). Adaptive mixtures of local experts. Neural Computation, 3(1), 79-87.
-
(1991)
Neural Computation
, vol.3
, Issue.1
, pp. 79-87
-
-
Jacobs, R.A.1
Jordan, M.I.2
Nowlan, S.J.3
Hinton, G.E.4
-
17
-
-
0000262562
-
Hierarchical mixtures of experts and the EM algorithm
-
Jordan, M.I., & Jacobs, R.A. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation, 6, 181-214.
-
(1994)
Neural Computation
, vol.6
, pp. 181-214
-
-
Jordan, M.I.1
Jacobs, R.A.2
-
18
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
G. Tesauro, D. Touretzky, & T Leen (Eds.), MIT Press
-
Krogh, A., & Vedelsby, J. (1995). Neural network ensembles, cross validation, and active learning. In G. Tesauro, D. Touretzky, & T Leen (Eds.), Advances in neural information processing systems (Vol. 7, pp. 231-238). MIT Press.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 231-238
-
-
Krogh, A.1
Vedelsby, J.2
-
21
-
-
85153941282
-
Bias, variance and the combination of least squares estimators
-
G. Tesauro, D. Touretzky, & T. Leen (Eds.), MIT Press
-
Meir, R. (1995). Bias, variance and the combination of least squares estimators. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural information processing systems (Vol. 7, pp. 295-302). MIT Press.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 295-302
-
-
Meir, R.1
-
22
-
-
0010687619
-
Dynamical selection of learning algorithms
-
D. Fisher & H. Lenz (Eds.), Springer Verlag
-
Merz, C.J. (1995). Dynamical selection of learning algorithms. In D. Fisher & H. Lenz (Eds.), Learning from data: Artificial intelligence and statistics (Vol. 2). Springer Verlag.
-
(1995)
Learning from Data: Artificial Intelligence and Statistics
, vol.2
-
-
Merz, C.J.1
-
25
-
-
0027709263
-
OC1: Randomized induction of oblique decision trees
-
AAAI Pres
-
Murthy, S., Kasif, S., Salzberg, S., & Beigel, R. (1993). OC1: Randomized induction of oblique decision trees. Proceedings of AAAI-93. AAAI Pres.
-
(1993)
Proceedings of AAAI-93
-
-
Murthy, S.1
Kasif, S.2
Salzberg, S.3
Beigel, R.4
-
26
-
-
85156192015
-
Generating accurate and diverse members of a neural-network ensemble
-
D.S. Touretzky, M.C. Mozer, & M.E. Hasselmo (Eds.), MIT Press
-
Opitz, D.W., & Shavlik, J.W. (1996). Generating accurate and diverse members of a neural-network ensemble. In D.S. Touretzky, M.C. Mozer, & M.E. Hasselmo (Eds.), Advances in neural information processing systems (Vol. 8, pp. 535-541). MIT Press.
-
(1996)
Advances in Neural Information Processing Systems
, vol.8
, pp. 535-541
-
-
Opitz, D.W.1
Shavlik, J.W.2
-
27
-
-
0345159806
-
Putting it all together: Methods for combining neural networks
-
J.D. Cowan, G. Tesauro, & J. Alspector (Eds.), Morgan Kaufmann Publishers
-
Perrone, M.P. (1994). Putting it all together: Methods for combining neural networks. In J.D. Cowan, G. Tesauro, & J. Alspector (Eds.), Advances in neural information processing systems (Vol. 6, pp. 1188-1189). Morgan Kaufmann Publishers.
-
(1994)
Advances in Neural Information Processing Systems
, vol.6
, pp. 1188-1189
-
-
Perrone, M.P.1
-
28
-
-
0000926506
-
When networks disagree: Ensemble methods for hybrid neural networks
-
R.J. Mammone (Ed.), London: Chapman & Hall
-
Perrone, M.P., & Cooper, L.N. (1993). When networks disagree: Ensemble methods for hybrid neural networks. In R.J. Mammone (Ed.), Artificial neural networks for speech and vision (pp. 126-142). London: Chapman & Hall.
-
(1993)
Artificial Neural Networks for Speech and Vision
, pp. 126-142
-
-
Perrone, M.P.1
Cooper, L.N.2
-
32
-
-
0000646059
-
Learning internal representations by error propagation
-
D.E. Rumelhart, J.L. McClelland, & the PDP research group (Eds.), Foundations. MIT Press
-
Rumelhart, D.E., Hinton, G.E., & Williams, R.J. (1986). Learning internal representations by error propagation. In D.E. Rumelhart, J.L. McClelland, & the PDP research group (Eds.), Parallel distributed processing: Explorations in the microstructure of cognition (Vol. 1: Foundations). MIT Press.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstructure of Cognition
, vol.1
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
33
-
-
27144463192
-
On comparing classifiers: Pitfalls to avoid and a recommended approach
-
Salzberg, S. (1997). On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Mining and Knowledge Discovery, 1(3).
-
(1997)
Data Mining and Knowledge Discovery
, vol.1
, Issue.3
-
-
Salzberg, S.1
-
34
-
-
0025448521
-
The strength of weak learnability
-
Schapire, R.E. (1990). The strength of weak learnability. Machine Learning, 5(2), 197-227.
-
(1990)
Machine Learning
, vol.5
, Issue.2
, pp. 197-227
-
-
Schapire, R.E.1
-
36
-
-
85153970023
-
Combining estimators using non-constant weighting functions
-
G. Tesauro, D. Touretzky, & T. Leen (Eds.), MIT Press
-
Tresp, V., & Taniguchi, M. (1995). Combining estimators using non-constant weighting functions. In G. Tesauro, D. Touretzky, & T. Leen (Eds.), Advances in neural information processing systems (Vol. 7, pp. 419-426). MIT Press.
-
(1995)
Advances in Neural Information Processing Systems
, vol.7
, pp. 419-426
-
-
Tresp, V.1
Taniguchi, M.2
-
37
-
-
0026692226
-
Stacked generalization
-
Wolpert, D.H. (1992). Stacked generalization. Neural Networks, 5, 241-259.
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.H.1
|