메뉴 건너뛰기




Volumn 40, Issue 4, 2014, Pages 660-674

Classifier ensemble with diversity: effectiveness analysis and ensemble optimization

Author keywords

Classifier ensemble; Diversity; Effectiveness analysis; Optimization

Indexed keywords

QUADRATIC PROGRAMMING; VECTOR SPACES;

EID: 84899736144     PISSN: 02544156     EISSN: None     Source Type: Journal    
DOI: 10.3724/SP.J.1004.2014.00660     Document Type: Article
Times cited : (22)

References (68)
  • 4
    • 84857820925 scopus 로고    scopus 로고
    • A new selective neural network ensemble with negative correlation
    • Lee H, Kim E, Pedrycz W. A new selective neural network ensemble with negative correlation. Applied Intelligence, 2012, 37 (4): 488-498
    • (2012) Applied Intelligence , vol.37 , Issue.4 , pp. 488-498
    • Lee, H.1    Kim, E.2    Pedrycz, W.3
  • 5
    • 4644373995 scopus 로고    scopus 로고
    • Classifier combination based on confidence transformation
    • Liu C L. Classifier combination based on confidence transformation. Pattern Recognition, 2005, 38 (1): 11-28
    • (2005) Pattern Recognition , vol.38 , Issue.1 , pp. 11-28
    • Liu, C.L.1
  • 6
    • 0036609602 scopus 로고    scopus 로고
    • Relationships between combination methods and measures of diversity in combining classi-fiers
    • Shipp C A, Kuncheva L K. Relationships between combination methods and measures of diversity in combining classi-fiers. Information Fusion, 2002, 3 (2): 135-148
    • (2002) Information Fusion , vol.3 , Issue.2 , pp. 135-148
    • Shipp, C.A.1    Kuncheva, L.K.2
  • 11
    • 79955722171 scopus 로고    scopus 로고
    • Multiple kernel linear programming support vector regression incorporating prior knowledge
    • Zhou Jin-Zhu, Huang Jin. Multiple kernel linear programming support vector regression incorporating prior knowledge. Acta Automatica Sinica, 2011, 37 (3): 360-370
    • (2011) Acta Automatica Sinica , vol.37 , Issue.3 , pp. 360-370
    • Zhou, J.-Z.1    Huang, J.2
  • 13
    • 84855780778 scopus 로고    scopus 로고
    • Multilabel classification using heterogeneous ensemble of multi-label classifiers
    • Tahir M A, Kittlera J, Bouridaneb A. Multilabel classification using heterogeneous ensemble of multi-label classifiers. Pattern Recognition Letters, 2012, 33 (5): 513-523
    • (2012) Pattern Recognition Letters , vol.33 , Issue.5 , pp. 513-523
    • Tahir, M.A.1    Kittlera, J.2    Bouridaneb, A.3
  • 14
    • 41549141939 scopus 로고    scopus 로고
    • Boosting algorithms: Regularization, prediction and model fitting
    • BÄuhlmann P, Hothorn T. Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, 2007, 22 (4): 477-505
    • (2007) Statistical Science , vol.22 , Issue.4 , pp. 477-505
    • Bäuhlmann, P.1    Hothorn, T.2
  • 15
    • 41549131613 scopus 로고    scopus 로고
    • Evidence contrary to the statistical view of boosting
    • Mease D, Wyner A. Evidence contrary to the statistical view of boosting. Journal of Machine Learning Research, 2008, 9: 131-156
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 131-156
    • Mease, D.1    Wyner, A.2
  • 17
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L. Bagging predictors. Machine Learning, 1996, 24 (2): 123-140
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 18
    • 58149321460 scopus 로고
    • Boosting a weak learning algorithm by majority
    • Freund Y. Boosting a weak learning algorithm by majority. Information and Computation, 1995, 121 (2): 256-285
    • (1995) Information and Computation , vol.121 , Issue.2 , pp. 256-285
    • Freund, Y.1
  • 20
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D H. Stacked generalization. Neural Networks, 1992, 5 (2): 241-260
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-260
    • Wolpert, D.H.1
  • 21
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning, 2001, 45 (1): 5-32
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 23
    • 33745938582 scopus 로고    scopus 로고
    • LS-Ensem: A ensemble method for regression
    • Yu Ling, Wu Tie-Jun. LS-Ensem: A ensemble method for regression. Chinese Journal of Computers, 2006, 29 (5): 719-726
    • (2006) Chinese Journal of Computers , vol.29 , Issue.5 , pp. 719-726
    • Yu, L.1    Wu, T.-J.2
  • 24
    • 51149111853 scopus 로고    scopus 로고
    • A new age estimation method based on ensemble learning
    • Zhang Yu, Zhou Zhi-Hua. A new age estimation method based on ensemble learning. Acta Automatica Sinica, 2008, 34 (8): 997-1000
    • (2008) Acta Automatica Sinica , vol.34 , Issue.8 , pp. 997-1000
    • Zhang, Y.1    Zhou, Z.-H.2
  • 25
    • 38049156146 scopus 로고    scopus 로고
    • A doubleobjective rank level classifier fusion method
    • Liu Ming, Yuan Bao-Zong, Miao Zhen-Jiang. A doubleobjective rank level classifier fusion method. Acta Automatica Sinica, 2007, 33 (12): 1276-1282
    • (2007) Acta Automatica Sinica , vol.33 , Issue.12 , pp. 1276-1282
    • Liu, M.1    Yuan, B.-Z.2    Miao, Z.-J.3
  • 26
    • 84867180349 scopus 로고    scopus 로고
    • Image annotation using the ensemble learning
    • Jiang Li-Xing, Hou Jin. Image annotation using the ensemble learning. Acta Automatica Sinica, 2012, 38 (8): 1257-1262
    • (2012) Acta Automatica Sinica , vol.38 , Issue.8 , pp. 1257-1262
    • Jiang, L.-X.1    Hou, J.2
  • 27
    • 83255175294 scopus 로고    scopus 로고
    • Ensemble system of double granularity RNN by linear combination
    • Zhang Liang, Huang Shu-Guang, Hu Rong-Gui. Ensemble system of double granularity RNN by linear combination. Acta Automatica Sinica, 2011, 37 (11): 1402-1406
    • (2011) Acta Automatica Sinica , vol.37 , Issue.11 , pp. 1402-1406
    • Zhang, L.1    Huang, S.-G.2    Hu, R.-G.3
  • 28
    • 84861708592 scopus 로고    scopus 로고
    • A random network ensemble model based generalized network community mining algorithm
    • Yang Bo, Liu Jie, Liu Da-You. A random network ensemble model based generalized network community mining algorithm. Acta Automatica Sinica, 2012, 38 (5): 812-822
    • (2012) Acta Automatica Sinica , vol.38 , Issue.5 , pp. 812-822
    • Yang, B.1    Liu, J.2    Liu, D.-Y.3
  • 29
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich T G. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning, 2000, 40 (2): 139-158
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-158
    • Dietterich, T.G.1
  • 30
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva L I, Whitaker C J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 2003, 51 (2): 181-207
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 31
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire R E, Freund Y, Bartlett P L, Lee W S. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 1998, 26 (5): 1651-1686
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.L.3    Lee, W.S.4
  • 32
    • 0033485370 scopus 로고    scopus 로고
    • Ensemble learning via negative correlation
    • Liu Y, Yao X. Ensemble learning via negative correlation. Neural Networks, 1999, 12 (10): 1399-1404
    • (1999) Neural Networks , vol.12 , Issue.10 , pp. 1399-1404
    • Liu, Y.1    Yao, X.2
  • 35
    • 0031361611 scopus 로고    scopus 로고
    • Machine learning research: four current directions
    • Dietterich T G. Machine learning research: four current directions. AI Magazine, 1997, 18 (4): 97-136
    • (1997) AI Magazine , vol.18 , Issue.4 , pp. 97-136
    • Dietterich, T.G.1
  • 37
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification processes
    • Giacinto G, Roli F. Design of effective neural network ensembles for image classification processes. Image Vision and Computing Journal, 2000, 19: 699-707
    • (2000) Image Vision and Computing Journal , vol.19 , pp. 699-707
    • Giacinto, G.1    Roli, F.2
  • 39
    • 14744284163 scopus 로고    scopus 로고
    • The kappa statistic in reliability studies: Use, interpretation, and sample size requirements
    • Sim J, Wright C C. The kappa statistic in reliability studies: Use, interpretation, and sample size requirements. Physical Therapy, 2005, 85 (3): 257-268
    • (2005) Physical Therapy , vol.85 , Issue.3 , pp. 257-268
    • Sim, J.1    Wright, C.C.2
  • 42
    • 0003954942 scopus 로고    scopus 로고
    • Diversity versus quality in classi-fication ensembles based on feature selection
    • Technical Report TCD-CS-2000-02, Department of Computer Science, Trinity College Dublin, Ireland
    • Cunningham P, Carney J. Diversity versus quality in classi-fication ensembles based on feature selection. Technical Report TCD-CS-2000-02, Department of Computer Science, Trinity College Dublin, Ireland, 2000
    • (2000)
    • Cunningham, P.1    Carney, J.2
  • 43
    • 0031244715 scopus 로고    scopus 로고
    • Software diversity: Practical statistics for its measurement and exploitation
    • Partridge D, Krzanowski W J. Software diversity: Practical statistics for its measurement and exploitation. Information and Software Technology, 1997, 39 (10): 707-717
    • (1997) Information and Software Technology , vol.39 , Issue.10 , pp. 707-717
    • Partridge, D.1    Krzanowski, W.J.2
  • 44
    • 0030085913 scopus 로고    scopus 로고
    • Analysis of decision boundaries in linearly combined neural classifiers
    • Tumber K, Ghosh J. Analysis of decision boundaries in linearly combined neural classifiers. Pattern Recognition, 1996, 29 (2): 341-348
    • (1996) Pattern Recognition , vol.29 , Issue.2 , pp. 341-348
    • Tumber, K.1    Ghosh, J.2
  • 45
    • 33749018252 scopus 로고    scopus 로고
    • An analysis of diversity measures
    • Tang E K, Suganthan P N, Yao X. An analysis of diversity measures. Machine Learning, 2006, 65 (1): 247-271
    • (2006) Machine Learning , vol.65 , Issue.1 , pp. 247-271
    • Tang, E.K.1    Suganthan, P.N.2    Yao, X.3
  • 49
    • 0034335155 scopus 로고    scopus 로고
    • Combining classifiers based on analysis of correlation and eRective supplement
    • Jing Xiao-Yuan, Yang Jing-Yu. Combining classifiers based on analysis of correlation and eRective supplement. Acta Automatica Sinica, 2000, 26 (6): 741-747
    • (2000) Acta Automatica Sinica , vol.26 , Issue.6 , pp. 741-747
    • Jing, X.-Y.1    Yang, J.-Y.2
  • 50
    • 83255181453 scopus 로고    scopus 로고
    • Dynamic selection and circulating combination for multiple classifier systems
    • Hao Hong-Wei, Wang Zhi-Bin, Yin Xu-Cheng, Chen Zhi-Qiang. Dynamic selection and circulating combination for multiple classifier systems. Acta Automatica Sinica, 2011, 37 (11): 1290-1295
    • (2011) Acta Automatica Sinica , vol.37 , Issue.11 , pp. 1290-1295
    • Hao, H.-W.1    Wang, Z.-B.2    Yin, X.-C.3    Chen, Z.-Q.4
  • 53
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Krogh A, Vedelsby J. Neural network ensembles, cross validation, and active learning. Neural Information Processing Systems, 1995, 7: 231-238
    • (1995) Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 55
    • 84901459245 scopus 로고    scopus 로고
    • Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization
    • Canberra, Australia: IEEE
    • Abbass H A. Pareto neuro-evolution: Constructing ensemble of neural networks using multi-objective optimization. In: Proceedings of the 2003 IEEE Conference on Evolutionary Computation. Canberra, Australia: IEEE, 2003. 2074-2080
    • (2003) Proceedings of the 2003 IEEE Conference on Evolutionary Computation , pp. 2074-2080
    • Abbass, H.A.1
  • 57
    • 32144456690 scopus 로고    scopus 로고
    • DIVACE: Diverse and accurate ensemble learning algorithm
    • Chandra A, Yao X. DIVACE: Diverse and accurate ensemble learning algorithm. Computer Science, 2004, 3177: 619-625
    • (2004) Computer Science , vol.3177 , pp. 619-625
    • Chandra, A.1    Yao, X.2
  • 58
  • 61
    • 84899766121 scopus 로고    scopus 로고
    • On the doubt about margin explanation of boosting
    • available
    • Gao W, Zhou Z H. On the Doubt About Margin Explanation of Boosting [Online], available: http://arxiv.org/abs/1009.3613, September 19, 2010
    • (2010) , vol.19
    • Gao, W.1    Zhou, Z.H.2
  • 63
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou Z H, Wu J X, Tang W. Ensembling neural networks: Many could be better than all. Artificial Intelligence, 2002, 137 (1-2): 239-263
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.X.2    Tang, W.3
  • 64
    • 80052690052 scopus 로고    scopus 로고
    • A survey of selective ensemble learning algorithms
    • Zhang Chun-Xia, Zhang Jiang-She. A survey of selective ensemble learning algorithms. Chinese Journal of Computers, 2011, 34 (8): 1399-1410
    • (2011) Chinese Journal of Computers , vol.34 , Issue.8 , pp. 1399-1410
    • Zhang, C.-X.1    Zhang, J.-S.2
  • 67
    • 78649934709 scopus 로고    scopus 로고
    • Uci machine learning repository
    • available
    • Frank A, Asuncion A. UCI Machine Learning Repository [Online], available: http://www.ics.uci.edu/-mlearn/, October 25, 2010
    • (2010) , vol.25
    • Frank, A.1    Asuncion, A.2
  • 68
    • 84899721651 scopus 로고    scopus 로고
    • Image processing research laboratory in hefei university of technology
    • Image Processing Research Laboratory in Hefei University of Technology [Online], available: http://wwwi1.hfut.edu.cn/organ/images/imagelab/download/usps.htm, November 19, 2007
    • (2007) , vol.19


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.