메뉴 건너뛰기




Volumn 37, Issue 4, 2012, Pages 488-498

A new selective neural network ensemble with negative correlation

Author keywords

Feature selection; Hierarchical fair competition based parallel genetic algorithm; Negative correlation; Neural network ensemble; Selective neural network ensemble

Indexed keywords

FEATURE EXTRACTION; NEURAL NETWORKS;

EID: 84857820925     PISSN: 0924669X     EISSN: 15737497     Source Type: Journal    
DOI: 10.1007/s10489-012-0342-3     Document Type: Article
Times cited : (32)

References (39)
  • 1
    • 80052970383 scopus 로고    scopus 로고
    • Rough sets for adapting wavelet neural networks as a new classifier system
    • Hassan YF (2011) Rough sets for adapting wavelet neural networks as a new classifier system. Appl Intell 35(2): 260-268
    • (2011) Appl Intell , vol.35 , Issue.2 , pp. 260-268
    • Hassan, Y.F.1
  • 2
    • 0032638011 scopus 로고    scopus 로고
    • A neural-statistical approach to multitemporal and multisource remote-sensing image classification
    • Bruzzone L, Prieto DF, Serpico SB (1999) A neural-statistical approach to multitemporal and multisource remote-sensing image classification. IEEE Trans Geosci Remote Sens 37: 1350-1359
    • (1999) IEEE Trans Geosci Remote Sens , vol.37 , pp. 1350-1359
    • Bruzzone, L.1    Prieto, D.F.2    Serpico, S.B.3
  • 3
    • 23044449890 scopus 로고    scopus 로고
    • Color clustering and learning for image segmentation based on neural networks
    • Dong G, Xie M (2005) Color clustering and learning for image segmentation based on neural networks. IEEE Trans Neural Netw 16: 925-936
    • (2005) IEEE Trans Neural Netw , vol.16 , pp. 925-936
    • Dong, G.1    Xie, M.2
  • 4
    • 0030365938 scopus 로고    scopus 로고
    • Error correlation and error reduction in ensemble classifiers
    • Tumar K, Ghosh J (1996) Error correlation and error reduction in ensemble classifiers. Connect Sci 8: 385-404
    • (1996) Connect Sci , vol.8 , pp. 385-404
    • Tumar, K.1    Ghosh, J.2
  • 5
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • Optiz D, Maclin R (1999) Popular ensemble methods: an empirical study. J Artif Intell Res 11: 169-198
    • (1999) J Artif Intell Res , vol.11 , pp. 169-198
    • Optiz, D.1    Maclin, R.2
  • 10
    • 0036146402 scopus 로고    scopus 로고
    • Lung cancer cell identification based on artificial neural network ensembles
    • Zhou Z, Jiang Y, Yang Y, Chen S (2002) Lung cancer cell identification based on artificial neural network ensembles. Artif Intell Med 24, 25-36
    • (2002) Artif Intell Med , vol.24 , pp. 25-36
    • Zhou, Z.1    Jiang, Y.2    Yang, Y.3    Chen, S.4
  • 11
    • 34547558060 scopus 로고    scopus 로고
    • A genetic feature weighting scheme for pattern recognition
    • Lee H, Kim E, Park M (2007) A genetic feature weighting scheme for pattern recognition. Integr Comput-Aided Eng 14(2): 161-171
    • (2007) Integr Comput-Aided Eng , vol.14 , Issue.2 , pp. 161-171
    • Lee, H.1    Kim, E.2    Park, M.3
  • 12
    • 77956777107 scopus 로고    scopus 로고
    • Multi-objective genetic algorithms for grouping problems
    • Korkmaz EE (2010) Multi-objective genetic algorithms for grouping problems. Appl Intell 33(2): 179-192
    • (2010) Appl Intell , vol.33 , Issue.2 , pp. 179-192
    • Korkmaz, E.E.1
  • 13
    • 40649122254 scopus 로고    scopus 로고
    • Evolutionary ensemble of diverse artificial neural networks using speciation
    • Kim K-J, Cho S-B (2008) Evolutionary ensemble of diverse artificial neural networks using speciation. Neurocomputing 71(7-9): 1604-1608
    • (2008) Neurocomputing , vol.71 , Issue.7-9 , pp. 1604-1608
    • Kim, K.-J.1    Cho, S.-B.2
  • 14
    • 0029297062 scopus 로고
    • Structure optimization of fuzzy neural network by genetic algorithm
    • Ishigami H, Fukuda T, Shibata T, Arai F (1995) Structure optimization of fuzzy neural network by genetic algorithm. Fuzzy Sets Syst 71: 257-264
    • (1995) Fuzzy Sets Syst , vol.71 , pp. 257-264
    • Ishigami, H.1    Fukuda, T.2    Shibata, T.3    Arai, F.4
  • 15
    • 0037276988 scopus 로고    scopus 로고
    • Tuning of the structure and parameters of a neural network using an improved genetic algorithm
    • Leung F, Lam H, Tam K (2003) Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans Neural Netw 14(1): 79-88
    • (2003) IEEE Trans Neural Netw , vol.14 , Issue.1 , pp. 79-88
    • Leung, F.1    Lam, H.2    Tam, K.3
  • 16
    • 33144466864 scopus 로고    scopus 로고
    • Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm
    • Tsai J, Chou J, Liu T (2006) Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm. IEEE Trans Neural Netw 17(1): 69-80
    • (2006) IEEE Trans Neural Netw , vol.17 , Issue.1 , pp. 69-80
    • Tsai, J.1    Chou, J.2    Liu, T.3
  • 17
    • 84863022806 scopus 로고    scopus 로고
    • A new approach to simultaneous localization and map building with implicit model learning using neuro evolutionary optimization
    • Kang J-G, Kim S, An S-Y, Oh S-Y (2012) A new approach to simultaneous localization and map building with implicit model learning using neuro evolutionary optimization. Appl Intell 36(1): 242-269
    • (2012) Appl Intell , vol.36 , Issue.1 , pp. 242-269
    • Kang, J.-G.1    Kim, S.2    An, S.-Y.3    Oh, S.-Y.4
  • 18
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • Yao X (1999) Evolving artificial neural networks. Proc IEEE 87(9): 1423-1447
    • (1999) Proc IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 19
    • 0000661341 scopus 로고    scopus 로고
    • Generating accurate and diverse members of a neural-network ensemble
    • Optitz D, Shavlik J (1999) Generating accurate and diverse members of a neural-network ensemble. Adv Neural Inf Process Syst 8: 535-541
    • (1999) Adv Neural Inf Process Syst , vol.8 , pp. 535-541
    • Optitz, D.1    Shavlik, J.2
  • 20
    • 0033337397 scopus 로고    scopus 로고
    • Genetic drift in genetic algorithm selection schemes
    • Rogers A, Prugel-Bennett A (1999) Genetic drift in genetic algorithm selection schemes. IEEE Trans Evol Comput 3(4): 298-303
    • (1999) IEEE Trans Evol Comput , vol.3 , Issue.4 , pp. 298-303
    • Rogers, A.1    Prugel-Bennett, A.2
  • 21
    • 55649119349 scopus 로고    scopus 로고
    • Structural and parametric design of fuzzy inference systems using hierarchical fair competitionbased parallel genetic algorithms and information granulation
    • Choi J, Oh S, Pedrycz W (2008) Structural and parametric design of fuzzy inference systems using hierarchical fair competitionbased parallel genetic algorithms and information granulation. Int J Approx Reason 49: 631-648
    • (2008) Int J Approx Reason , vol.49 , pp. 631-648
    • Choi, J.1    Oh, S.2    Pedrycz, W.3
  • 23
    • 42549169322 scopus 로고    scopus 로고
    • Locality-preserved maximum information projection
    • Wang H, Chen S, Zheng W (2008) Locality-preserved maximum information projection. IEEE Trans Neural Netw 19(4): 571-585
    • (2008) IEEE Trans Neural Netw , vol.19 , Issue.4 , pp. 571-585
    • Wang, H.1    Chen, S.2    Zheng, W.3
  • 24
    • 27844458593 scopus 로고    scopus 로고
    • Efficient huge-scale feature selection with speciated genetic algorithm
    • Hong J, Cho S (2006) Efficient huge-scale feature selection with speciated genetic algorithm. Pattern Recognit Lett 27: 143-150
    • (2006) Pattern Recognit Lett , vol.27 , pp. 143-150
    • Hong, J.1    Cho, S.2
  • 25
    • 77951111106 scopus 로고    scopus 로고
    • An efficient design of nearest neighbor classifier for various-scale problems
    • Lee H, Hong S, Nizami IF, Kim E (2010) An efficient design of nearest neighbor classifier for various-scale problems. Pattern Recognit Lett 31(9): 1020-1027
    • (2010) Pattern Recognit Lett , vol.31 , Issue.9 , pp. 1020-1027
    • Lee, H.1    Hong, S.2    Nizami, I.F.3    Kim, E.4
  • 26
    • 9944264996 scopus 로고    scopus 로고
    • A new symbiotic evolution-based fuzzyneural approach to fault diagnosis of marine propulsion systems
    • Juo H, Chang H (2004) A new symbiotic evolution-based fuzzyneural approach to fault diagnosis of marine propulsion systems. Eng Appl Artif Intell 17: 919-930
    • (2004) Eng Appl Artif Intell , vol.17 , pp. 919-930
    • Juo, H.1    Chang, H.2
  • 27
    • 70449604739 scopus 로고    scopus 로고
    • A new genetic feature selection with neural network ensemble
    • Lee H, Hong S, Kim E (2009) A new genetic feature selection with neural network ensemble. Int J Comput Math 86(7): 1105-1117
    • (2009) Int J Comput Math , vol.86 , Issue.7 , pp. 1105-1117
    • Lee, H.1    Hong, S.2    Kim, E.3
  • 29
    • 79959374923 scopus 로고    scopus 로고
    • Ensembles of ARTMAPbased neural networks: An experimental study
    • Canuto A, Santos A, Vergas R (2011) Ensembles of ARTMAPbased neural networks: an experimental study. Appl Intell 35(1): 1-17
    • (2011) Appl Intell , vol.35 , Issue.1 , pp. 1-17
    • Canuto, A.1    Santos, A.2    Vergas, R.3
  • 30
    • 84873990132 scopus 로고    scopus 로고
    • The hierarchical fair competition (HFC) model for parallel evolutionary algorithms
    • Hu JJ, Goodman ED (2002) The hierarchical fair competition (HFC) model for parallel evolutionary algorithms. In: Proc congress on evolutionary computation, pp 45-94
    • (2002) Proc congress on evolutionary computation , pp. 45-94
    • Hu, J.J.1    Goodman, E.D.2
  • 31
    • 50149097761 scopus 로고    scopus 로고
    • Identification of fuzzy models using a successive tuning method with a variant identification ratio
    • Choi J, Oh S, Pedrycz W (2008) Identification of fuzzy models using a successive tuning method with a variant identification ratio. Fuzzy Sets Syst 159: 2873-2889
    • (2008) Fuzzy Sets Syst , vol.159 , pp. 2873-2889
    • Choi, J.1    Oh, S.2    Pedrycz, W.3
  • 32
    • 0034315099 scopus 로고    scopus 로고
    • Evolutionary ensembles with negative correlation learning
    • Liu Y, Yao X, Higuchi T (2000) Evolutionary ensembles with negative correlation learning. IEEE Trans Evol Comput 4(4): 380-387
    • (2000) IEEE Trans Evol Comput , vol.4 , Issue.4 , pp. 380-387
    • Liu, Y.1    Yao, X.2    Higuchi, T.3
  • 33
    • 55349141814 scopus 로고    scopus 로고
    • An efficient gait recognition based on a selective neural network ensemble
    • Lee H, Hong S, Kim E (2008) An efficient gait recognition based on a selective neural network ensemble. Int J Imaging Syst Technol 18(4): 237-241
    • (2008) Int J Imaging Syst Technol , vol.18 , Issue.4 , pp. 237-241
    • Lee, H.1    Hong, S.2    Kim, E.3
  • 34
    • 33750936586 scopus 로고    scopus 로고
    • Ensemble classifiers based on correlation analysis for DNA microarray classification
    • Kim K-J, Cho S-B (2007) Ensemble classifiers based on correlation analysis for DNA microarray classification. Appl Soft Comput 7(1): 398-410
    • (2007) Appl Soft Comput , vol.7 , Issue.1 , pp. 398-410
    • Kim, K.-J.1    Cho, S.-B.2
  • 35
    • 0003408496 scopus 로고
    • Technical report, Dept of Information and Computer Science, Univ of California, Irvine, Calif
    • Murphy PM, Aha DW (1994) UCI repository for machine learning databases. Technical report, Dept of Information and Computer Science, Univ of California, Irvine, Calif
    • (1994) UCI repository for machine learning databases
    • Murphy, P.M.1    Aha, D.W.2
  • 36
    • 0034730186 scopus 로고    scopus 로고
    • Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas
    • Lossos L et al (2000) Ongoing immunoglobulin somatic mutation in germinal center B cell-like but not in activated B cell-like diffuse large cell lymphomas. Proc Natl Acad Sci USA 97: 10209-10213
    • (2000) Proc Natl Acad Sci USA , vol.97 , pp. 10209-10213
    • Lossos, L.1
  • 37
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • Tan H et al (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415: 436-442
    • (2002) Nature , vol.415 , pp. 436-442
    • Tan, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.