-
2
-
-
33645505792
-
Convexity, classification, and risk bounds
-
DOI 10.1198/016214505000000907
-
P. Bartlett, M. Jordan, and J.D. McAuliffe. Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101:138-156, 2006. (Pubitemid 43500031)
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.473
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
3
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting and variants
-
E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Machine Learning, 36:105-139, 1999.
-
(1999)
Machine Learning
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
4
-
-
0346786584
-
Arcing classifiers
-
L. Breiman. Arcing classifiers. The Annals of Statistics, 26:801-849, 1998. (Pubitemid 128450035)
-
(1998)
Annals of Statistics
, vol.26
, Issue.3
, pp. 801-849
-
-
Breiman, L.1
-
5
-
-
0000275022
-
Prediction games and arcing algorithms
-
L. Breiman. Prediction games and arcing algorithms. Neural Computation, 11:1493-1517, 1999.
-
(1999)
Neural Computation
, vol.11
, pp. 1493-1517
-
-
Breiman, L.1
-
6
-
-
14644395930
-
Population theory for boosting ensembles
-
L. Breiman. Population theory for boosting ensembles. Annals of Statistics, 32:1-11, 2004.
-
(2004)
Annals of Statistics
, vol.32
, pp. 1-11
-
-
Breiman, L.1
-
8
-
-
0002457759
-
Bounds for the uniform deviation of empirical measures
-
L. Devroye. Bounds for the uniform deviation of empirical measures. Journal of Multivariate Analysis, 12:72-79, 1982.
-
(1982)
Journal of Multivariate Analysis
, vol.12
, pp. 72-79
-
-
Devroye, L.1
-
9
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
-
T. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40:139-157, 2000.
-
(2000)
Machine Learning
, vol.40
, pp. 139-157
-
-
Dietterich, T.1
-
11
-
-
0031211090
-
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
-
Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55:119-139, 1997. (Pubitemid 127433398)
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
12
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28:337-407, 2000. (Pubitemid 33227445)
-
(2000)
Annals of Statistics
, vol.28
, Issue.2 SPI
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
14
-
-
84947403595
-
Probability inequalities for sum of bounded random variables
-
W. Hoeffding. Probability inequalities for sum of bounded random variables. Journal of American Statistical Society, 58:13-30, 1963.
-
(1963)
Journal of American Statistical Society
, vol.58
, pp. 13-30
-
-
Hoeffding, W.1
-
15
-
-
26444545593
-
Process consistency for AdaBoost
-
DOI 10.1214/aos/1079120128
-
W. Jiang. Process consistency for adaboost. The Annals of Statistics, 32:13-29, 2004. (Pubitemid 41449303)
-
(2004)
Annals of Statistics
, vol.32
, Issue.1
, pp. 13-29
-
-
Jiang, W.1
-
16
-
-
0036104545
-
Empirical margin distributions and bounding the generalization error of combined classifiers
-
V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30:1-50, 2002. (Pubitemid 37095367)
-
(2002)
Annals of Statistics
, vol.30
, Issue.1
, pp. 1-50
-
-
Koltchinskii, V.1
Panchenko, D.2
-
17
-
-
26444607491
-
Complexities of convex combinations and bounding the generalization error in classification
-
DOI 10.1214/009053605000000228
-
V. Koltchinskii and D. Panchenko. Complexities of convex combinations and bounding the generalization error in classification. Annals of Statistics, 33:1455-1496, 2005. (Pubitemid 41423978)
-
(2005)
Annals of Statistics
, vol.33
, Issue.4
, pp. 1455-1496
-
-
Koltchinskii, V.1
Panchenko, D.2
-
18
-
-
21844462365
-
Tutorial on practical prediction theory for classification
-
J. Langford. Tutorial on practical prediction theory for classification. Journal of Machine Learning Research, 6:273-306, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 273-306
-
-
Langford, J.1
-
19
-
-
9444269961
-
On the Bayes-risk consistency of regularized boosting methods
-
DOI 10.1214/aos/1079120129
-
G. Lugosi and Nicolas Vayatis. On the bayes-risk consistency of regularized boosting methods. The Annals of Statistics, 32:30-55, 2004. (Pubitemid 41449304)
-
(2004)
Annals of Statistics
, vol.32
, Issue.1
, pp. 30-55
-
-
Lugosi, G.1
Vayatis, N.2
-
20
-
-
41549131613
-
Evidence contrary to the statistical view of boosting
-
D. Mease and A. Wyner. Evidence contrary to the statistical view of boosting. Journal of Machine Learning Research, 9:131-156, 2008. (Pubitemid 351469030)
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 131-156
-
-
Mease, D.1
Wyner, A.2
-
26
-
-
50849110153
-
Analysis of boosting algorithms using the smooth margin function
-
C. Rudin, I. Daubechies, and R. Schapire. Analysis of boosting algorithms using the smooth margin function. Annals of Statistics, 35:2723-2768, 2007.
-
(2007)
Annals of Statistics
, vol.35
, pp. 2723-2768
-
-
Rudin, C.1
Daubechies, I.2
Schapire, R.3
-
28
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
R. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26:1651-1686, 1998. (Pubitemid 128376902)
-
(1998)
Annals of Statistics
, vol.26
, Issue.5
, pp. 1651-1686
-
-
Schapire, R.E.1
Freund, Y.2
Bartlett, P.3
Lee, W.S.4
-
30
-
-
0001024505
-
On the uniform convergence of relative frequencies of events to their probabilities
-
V. N. Vapnik and A. YA. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and Its Applications, 16:264-280, 1971.
-
(1971)
Theory of Probability and Its Applications
, vol.16
, pp. 264-280
-
-
Vapnik, V.N.1
Chervonenkis, A.Y.A.2
-
33
-
-
80053436012
-
On the margin explanation of boosting algorithms
-
L. Wang, M. Sugiyama, C. Yang, Z. Zhou, and J. Feng. On the margin explanation of boosting algorithms. In 21th Annual Conference on Learning Theory, 2008.
-
(2008)
21th Annual Conference on Learning Theory
-
-
Wang, L.1
Sugiyama, M.2
Yang, C.3
Zhou, Z.4
Feng, J.5
-
34
-
-
4644257995
-
Statistical behavior and consistency of classification methods based on convex risk minimization
-
T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. The Annals of Statistics, 32:56-85, 2004.
-
(2004)
The Annals of Statistics
, vol.32
, pp. 56-85
-
-
Zhang, T.1
|