메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 1835-1863

A refined margin analysis for boosting algorithms via equilibrium margin

Author keywords

Boosting; Margin bounds; Voting classifier

Indexed keywords

BENCHMARK DATA; BOOSTING; BOOSTING ALGORITHM; DISTRIBUTION BOUNDS; EMPIRICAL ERRORS; GENERALIZATION ERROR; MARGIN ANALYSIS; MARGIN BOUNDS; MARGIN THEORY; REFINED ANALYSIS; TEST ERRORS; THEORETICAL EXPLANATION; TRAINING DATA; UPPER BOUND; VOTING CLASSIFIERS;

EID: 79960142790     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (61)

References (34)
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting and variants
    • E. Bauer and R. Kohavi. An empirical comparison of voting classification algorithms: Bagging, boosting and variants. Machine Learning, 36:105-139, 1999.
    • (1999) Machine Learning , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 4
    • 0346786584 scopus 로고    scopus 로고
    • Arcing classifiers
    • L. Breiman. Arcing classifiers. The Annals of Statistics, 26:801-849, 1998. (Pubitemid 128450035)
    • (1998) Annals of Statistics , vol.26 , Issue.3 , pp. 801-849
    • Breiman, L.1
  • 5
    • 0000275022 scopus 로고    scopus 로고
    • Prediction games and arcing algorithms
    • L. Breiman. Prediction games and arcing algorithms. Neural Computation, 11:1493-1517, 1999.
    • (1999) Neural Computation , vol.11 , pp. 1493-1517
    • Breiman, L.1
  • 6
    • 14644395930 scopus 로고    scopus 로고
    • Population theory for boosting ensembles
    • L. Breiman. Population theory for boosting ensembles. Annals of Statistics, 32:1-11, 2004.
    • (2004) Annals of Statistics , vol.32 , pp. 1-11
    • Breiman, L.1
  • 8
    • 0002457759 scopus 로고
    • Bounds for the uniform deviation of empirical measures
    • L. Devroye. Bounds for the uniform deviation of empirical measures. Journal of Multivariate Analysis, 12:72-79, 1982.
    • (1982) Journal of Multivariate Analysis , vol.12 , pp. 72-79
    • Devroye, L.1
  • 9
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
    • T. Dietterich. An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization. Machine Learning, 40:139-157, 2000.
    • (2000) Machine Learning , vol.40 , pp. 139-157
    • Dietterich, T.1
  • 11
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55:119-139, 1997. (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 12
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting
    • J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. Annals of Statistics, 28:337-407, 2000. (Pubitemid 33227445)
    • (2000) Annals of Statistics , vol.28 , Issue.2 SPI , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 14
    • 84947403595 scopus 로고
    • Probability inequalities for sum of bounded random variables
    • W. Hoeffding. Probability inequalities for sum of bounded random variables. Journal of American Statistical Society, 58:13-30, 1963.
    • (1963) Journal of American Statistical Society , vol.58 , pp. 13-30
    • Hoeffding, W.1
  • 15
    • 26444545593 scopus 로고    scopus 로고
    • Process consistency for AdaBoost
    • DOI 10.1214/aos/1079120128
    • W. Jiang. Process consistency for adaboost. The Annals of Statistics, 32:13-29, 2004. (Pubitemid 41449303)
    • (2004) Annals of Statistics , vol.32 , Issue.1 , pp. 13-29
    • Jiang, W.1
  • 16
    • 0036104545 scopus 로고    scopus 로고
    • Empirical margin distributions and bounding the generalization error of combined classifiers
    • V. Koltchinskii and D. Panchenko. Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics, 30:1-50, 2002. (Pubitemid 37095367)
    • (2002) Annals of Statistics , vol.30 , Issue.1 , pp. 1-50
    • Koltchinskii, V.1    Panchenko, D.2
  • 17
    • 26444607491 scopus 로고    scopus 로고
    • Complexities of convex combinations and bounding the generalization error in classification
    • DOI 10.1214/009053605000000228
    • V. Koltchinskii and D. Panchenko. Complexities of convex combinations and bounding the generalization error in classification. Annals of Statistics, 33:1455-1496, 2005. (Pubitemid 41423978)
    • (2005) Annals of Statistics , vol.33 , Issue.4 , pp. 1455-1496
    • Koltchinskii, V.1    Panchenko, D.2
  • 18
    • 21844462365 scopus 로고    scopus 로고
    • Tutorial on practical prediction theory for classification
    • J. Langford. Tutorial on practical prediction theory for classification. Journal of Machine Learning Research, 6:273-306, 2005.
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 273-306
    • Langford, J.1
  • 19
    • 9444269961 scopus 로고    scopus 로고
    • On the Bayes-risk consistency of regularized boosting methods
    • DOI 10.1214/aos/1079120129
    • G. Lugosi and Nicolas Vayatis. On the bayes-risk consistency of regularized boosting methods. The Annals of Statistics, 32:30-55, 2004. (Pubitemid 41449304)
    • (2004) Annals of Statistics , vol.32 , Issue.1 , pp. 30-55
    • Lugosi, G.1    Vayatis, N.2
  • 20
    • 41549131613 scopus 로고    scopus 로고
    • Evidence contrary to the statistical view of boosting
    • D. Mease and A. Wyner. Evidence contrary to the statistical view of boosting. Journal of Machine Learning Research, 9:131-156, 2008. (Pubitemid 351469030)
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 131-156
    • Mease, D.1    Wyner, A.2
  • 25
    • 47849088969 scopus 로고    scopus 로고
    • The dynamics of AdaBoost: Cyclic behavior and convergence of margins
    • Dec
    • C. Rudin, I. Daubechies, and R. Schapire. The dynamics of AdaBoost: Cyclic behavior and convergence of margins. Journal of Machine Learning Research, 5:1557-1595, Dec 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 1557-1595
    • Rudin, C.1    Daubechies, I.2    Schapire, R.3
  • 26
    • 50849110153 scopus 로고    scopus 로고
    • Analysis of boosting algorithms using the smooth margin function
    • C. Rudin, I. Daubechies, and R. Schapire. Analysis of boosting algorithms using the smooth margin function. Annals of Statistics, 35:2723-2768, 2007.
    • (2007) Annals of Statistics , vol.35 , pp. 2723-2768
    • Rudin, C.1    Daubechies, I.2    Schapire, R.3
  • 28
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • R. Schapire, Y. Freund, P. Bartlett, and W. Lee. Boosting the margin: A new explanation for the effectiveness of voting methods. Annals of Statistics, 26:1651-1686, 1998. (Pubitemid 128376902)
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 30
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. N. Vapnik and A. YA. Chervonenkis. On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and Its Applications, 16:264-280, 1971.
    • (1971) Theory of Probability and Its Applications , vol.16 , pp. 264-280
    • Vapnik, V.N.1    Chervonenkis, A.Y.A.2
  • 34
    • 4644257995 scopus 로고    scopus 로고
    • Statistical behavior and consistency of classification methods based on convex risk minimization
    • T. Zhang. Statistical behavior and consistency of classification methods based on convex risk minimization. The Annals of Statistics, 32:56-85, 2004.
    • (2004) The Annals of Statistics , vol.32 , pp. 56-85
    • Zhang, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.