메뉴 건너뛰기




Volumn 37, Issue 11, 2011, Pages 1290-1295

Dynamic selection and circulating combination for multiple classifier systems

Author keywords

Circulating combination; Complementarity factor; Dynamic selection; Multiple classifier systems

Indexed keywords

CIRCULATING COMBINATION; CLASSIFICATION MODELS; CLASSIFIER SELECTION; COMBINING CLASSIFIERS; COMPLEMENTARITY FACTOR; DYNAMIC SELECTION; HANDWRITTEN DIGIT RECOGNITION; MULTIPLE CLASSIFIER SYSTEMS; OPTIMAL SUBSETS;

EID: 83255181453     PISSN: 02544156     EISSN: None     Source Type: Journal    
DOI: 10.3724/SP.J.1004.2011.01290     Document Type: Article
Times cited : (13)

References (21)
  • 3
    • 70349322734 scopus 로고    scopus 로고
    • An information theoretic perspective on multiple classifier systems
    • Reykjavik, Iceland: Springer-Verlag
    • Brown G. An information theoretic perspective on multiple classifier systems. In: Proceedings of the 8th International Workshop on Multiple Classifier Systems. Reykjavik, Iceland: Springer-Verlag, 2009. 344-353
    • (2009) Proceedings of the 8th International Workshop on Multiple Classifier Systems , pp. 344-353
    • Brown, G.1
  • 4
    • 10444224737 scopus 로고    scopus 로고
    • Classifier selection for majority voting
    • Ruta D, Gabrys B. Classifier selection for majority voting. Information Fusion, 2005, 6(1): 63-81
    • (2005) Information Fusion , vol.6 , Issue.1 , pp. 63-81
    • Ruta, D.1    Gabrys, B.2
  • 5
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou Z H, Wu J X, Tang W. Ensembling neural networks: many could be better than all. Artificial Intelligence, 2002, 137(1-2): 239-263
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.H.1    Wu, J.X.2    Tang, W.3
  • 7
    • 38349135448 scopus 로고    scopus 로고
    • From dynamic classifier selection to dynamic ensemble selection
    • Ko A H R, Sabourin R, Britto A S. From dynamic classifier selection to dynamic ensemble selection. Pattern Recognition, 2008, 41(5): 1735-1748
    • (2008) Pattern Recognition , vol.41 , Issue.5 , pp. 1735-1748
    • Ko, A.H.R.1    Sabourin, R.2    Britto, A.S.3
  • 8
    • 58249090787 scopus 로고    scopus 로고
    • A generalized adaptive ensemble generation and aggregation approach for multiple classifier systems
    • Chen L, Kamel M S. A generalized adaptive ensemble generation and aggregation approach for multiple classifier systems. Pattern Recognition, 2009, 42(5): 629-644
    • (2009) Pattern Recognition , vol.42 , Issue.5 , pp. 629-644
    • Chen, L.1    Kamel, M.S.2
  • 9
    • 0035457787 scopus 로고    scopus 로고
    • Multiple classifier combination by clustering and selection
    • Liu R, Yuan B. Multiple classifier combination by clustering and selection. Information Fusion, 2001, 2(3): 163-168
    • (2001) Information Fusion , vol.2 , Issue.3 , pp. 163-168
    • Liu, R.1    Yuan, B.2
  • 11
    • 40149107260 scopus 로고    scopus 로고
    • Classifier ensemble selection using hybrid genetic algorithms
    • Kim Y W, Oh I S. Classifier ensemble selection using hybrid genetic algorithms. Pattern Recognition Letters, 2008, 29(6): 796-802
    • (2008) Pattern Recognition Letters , vol.29 , Issue.6 , pp. 796-802
    • Kim, Y.W.1    Oh, I.S.2
  • 12
    • 58649110205 scopus 로고    scopus 로고
    • Over fitting cautious selection of classifier ensembles with genetic algorithms
    • Santos E M, Sabourin R, Maupin P. Over fitting cautious selection of classifier ensembles with genetic algorithms. Information Fusion, 2009, 10(2): 150-162
    • (2009) Information Fusion , vol.10 , Issue.2 , pp. 150-162
    • Santos, E.M.1    Sabourin, R.2    Maupin, P.3
  • 13
    • 77951774214 scopus 로고    scopus 로고
    • Method of classifier selection using the genetic approach
    • Jackowski K, Wozniak M. Method of classifier selection using the genetic approach. Expert Systems, 2010, 27(2): 114-128
    • (2010) Expert Systems , vol.27 , Issue.2 , pp. 114-128
    • Jackowski, K.1    Wozniak, M.2
  • 15
    • 24044449939 scopus 로고    scopus 로고
    • A study on the performances of dynamic classifier selection based on local accuracy estimation
    • Didaci L, Giacinto G, Foli F, Marcialis G L. A study on the performances of dynamic classifier selection based on local accuracy estimation. Pattern Recognition, 2005, 38(11): 2188-2191
    • (2005) Pattern Recognition , vol.38 , Issue.11 , pp. 2188-2191
    • Didaci, L.1    Giacinto, G.2    Foli, F.3    Marcialis, G.L.4
  • 17
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensemble and their relationship with the ensemble accuracy
    • Kuncheva L I, Whitaker C J. Measures of diversity in classifier ensemble and their relationship with the ensemble accuracy. Machine Learning, 2003, 51(2): 181-207
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 19
    • 39049084699 scopus 로고    scopus 로고
    • On-line handwritten digit recognition based on trajectory and velocity modeling
    • Kherallah M, Haddad L, Alimi A M, Mitiche A. On-line handwritten digit recognition based on trajectory and velocity modeling. Pattern Recognition Letters, 2008, 29(5): 580-594
    • (2008) Pattern Recognition Letters , vol.29 , Issue.5 , pp. 580-594
    • Kherallah, M.1    Haddad, L.2    Alimi, A.M.3    Mitiche, A.4
  • 21
    • 38049107867 scopus 로고    scopus 로고
    • Training sample selection method for neural networks based on nearset neighbor rule
    • Hao Hong-Wei, Jiang Rong-Rong. Training sample selection method for neural networks based on nearset neighbor rule. Acta Automatica Sinica, 2007, 33(12): 1247-1251
    • (2007) Acta Automatica Sinica , vol.33 , Issue.12 , pp. 1247-1251
    • Hao, H.-W.1    Jiang, R.-R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.