메뉴 건너뛰기




Volumn 293, Issue , 2015, Pages 142-156

A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations

Author keywords

Caputo derivative; Fractional diffusion wave equations; Operational matrix; Shifted Jacobi polynomials; Tau method

Indexed keywords

DIFFUSION; JACOBIAN MATRICES; POLYNOMIALS; WAVE EQUATIONS;

EID: 84898537327     PISSN: 00219991     EISSN: 10902716     Source Type: Journal    
DOI: 10.1016/j.jcp.2014.03.039     Document Type: Article
Times cited : (204)

References (40)
  • 1
    • 30244493399 scopus 로고    scopus 로고
    • Long memory processes and fractional integration in econometrics
    • Baillie R.T. Long memory processes and fractional integration in econometrics. J. Econom. 1996, 73:5-59.
    • (1996) J. Econom. , vol.73 , pp. 5-59
    • Baillie, R.T.1
  • 2
    • 84907996080 scopus 로고    scopus 로고
    • A new operational matrix of fractional integration for shifted Jacobi polynomials
    • in press
    • Bhrawy A.H., Tharwat M.M., Alghamdi M.A. A new operational matrix of fractional integration for shifted Jacobi polynomials. Bull. Malays. Math. Soc. 2014, in press.
    • (2014) Bull. Malays. Math. Soc.
    • Bhrawy, A.H.1    Tharwat, M.M.2    Alghamdi, M.A.3
  • 4
    • 84880635193 scopus 로고    scopus 로고
    • Sharp decay rates for wave equations with a fractional damping via new method in the Fourier space
    • Charo R.C., Luz C.R., Ikehata R. Sharp decay rates for wave equations with a fractional damping via new method in the Fourier space. J. Math. Anal. Appl. 2013, 408:247-255.
    • (2013) J. Math. Anal. Appl. , vol.408 , pp. 247-255
    • Charo, R.C.1    Luz, C.R.2    Ikehata, R.3
  • 5
    • 84867573206 scopus 로고    scopus 로고
    • The analytical solution and numerical solution of the fractional diffusion-wave equation with damping
    • Chen J., Liu F., Anh V., Shen S., Liu Q., Liao C. The analytical solution and numerical solution of the fractional diffusion-wave equation with damping. Appl. Math. Comput. 2012, 219:1737-1748.
    • (2012) Appl. Math. Comput. , vol.219 , pp. 1737-1748
    • Chen, J.1    Liu, F.2    Anh, V.3    Shen, S.4    Liu, Q.5    Liao, C.6
  • 6
    • 69049086472 scopus 로고    scopus 로고
    • Compact finite difference method for the fractional diffusion equation
    • Cui M.R. Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 2009, 228:7792-7804.
    • (2009) J. Comput. Phys. , vol.228 , pp. 7792-7804
    • Cui, M.R.1
  • 7
    • 84874394694 scopus 로고    scopus 로고
    • Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation
    • Cui M.R. Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation. Numer. Algorithms 2013, 62:383-409.
    • (2013) Numer. Algorithms , vol.62 , pp. 383-409
    • Cui, M.R.1
  • 8
    • 84899547717 scopus 로고    scopus 로고
    • Sumudu transform method for solving fractional differential equations and fractional diffusion-wave equation
    • Darzi R., Mohammadzade B., Mousavi S., Beheshti R. Sumudu transform method for solving fractional differential equations and fractional diffusion-wave equation. J. Math. Comput. Sci. 2013, 6:79-84.
    • (2013) J. Math. Comput. Sci. , vol.6 , pp. 79-84
    • Darzi, R.1    Mohammadzade, B.2    Mousavi, S.3    Beheshti, R.4
  • 9
    • 80052270048 scopus 로고    scopus 로고
    • A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
    • Doha E.H., Bhrawy A.H., Ezz-Eldien S.S. A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 2011, 62:2364-2373.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 2364-2373
    • Doha, E.H.1    Bhrawy, A.H.2    Ezz-Eldien, S.S.3
  • 10
    • 84861893481 scopus 로고    scopus 로고
    • A new Jacobi operational matrix: an application for solving fractional differential equations
    • Doha E.H., Bhrawy A.H., Ezz-Eldien S.S. A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 2012, 36:4931-4943.
    • (2012) Appl. Math. Model. , vol.36 , pp. 4931-4943
    • Doha, E.H.1    Bhrawy, A.H.2    Ezz-Eldien, S.S.3
  • 11
    • 84890864220 scopus 로고    scopus 로고
    • Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method
    • Doha E.H., Bhrawy A.H., Ezz-Eldien S.S. Numerical approximations for fractional diffusion equations via a Chebyshev spectral-tau method. Cent. Eur. J. Phys. 2013, 11:1494-1503.
    • (2013) Cent. Eur. J. Phys. , vol.11 , pp. 1494-1503
    • Doha, E.H.1    Bhrawy, A.H.2    Ezz-Eldien, S.S.3
  • 12
    • 77952888765 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional diffusion-wave equation
    • Du R., Cao W.R., Sun Z.Z. A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 2010, 34:2998-3007.
    • (2010) Appl. Math. Model. , vol.34 , pp. 2998-3007
    • Du, R.1    Cao, W.R.2    Sun, Z.Z.3
  • 13
    • 78649334165 scopus 로고    scopus 로고
    • A compact finite difference scheme for the fractional sub-diffusion equations
    • Gao G.H., Sun Z.Z. A compact finite difference scheme for the fractional sub-diffusion equations. J. Comput. Phys. 2011, 230:586-595.
    • (2011) J. Comput. Phys. , vol.230 , pp. 586-595
    • Gao, G.H.1    Sun, Z.Z.2
  • 14
    • 84860213355 scopus 로고    scopus 로고
    • Extending the D'Alembert solution to space-time modified Riemann-Liouville fractional wave equations
    • Godinho C.F.L., Weberszpil J., Helayel-Neto J.A. Extending the D'Alembert solution to space-time modified Riemann-Liouville fractional wave equations. Chaos Solitons Fractals 2012, 45:765-771.
    • (2012) Chaos Solitons Fractals , vol.45 , pp. 765-771
    • Godinho, C.F.L.1    Weberszpil, J.2    Helayel-Neto, J.A.3
  • 15
    • 0007042083 scopus 로고    scopus 로고
    • Nonlinear oscillation with fractional derivative and its applications
    • He J.H. Nonlinear oscillation with fractional derivative and its applications. International Conference on Vibrating Engineering 1998, 288-291.
    • (1998) International Conference on Vibrating Engineering , pp. 288-291
    • He, J.H.1
  • 16
    • 0347763940 scopus 로고    scopus 로고
    • Some applications of nonlinear fractional differential equations and their applications
    • He J.H. Some applications of nonlinear fractional differential equations and their applications. Bull. Sci. Technol. 1999, 15(2):86-90.
    • (1999) Bull. Sci. Technol. , vol.15 , Issue.2 , pp. 86-90
    • He, J.H.1
  • 17
    • 79957810507 scopus 로고    scopus 로고
    • A compact finite difference scheme for the fourth-order fractional diffusion-wave system
    • Hu X., Zhang L. A compact finite difference scheme for the fourth-order fractional diffusion-wave system. Comput. Phys. Commun. 2011, 182:1645-1650.
    • (2011) Comput. Phys. Commun. , vol.182 , pp. 1645-1650
    • Hu, X.1    Zhang, L.2
  • 18
    • 83555172437 scopus 로고    scopus 로고
    • On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems
    • Hu X., Zhang L. On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems. Appl. Math. Comput. 2012, 218:5019-5034.
    • (2012) Appl. Math. Comput. , vol.218 , pp. 5019-5034
    • Hu, X.1    Zhang, L.2
  • 19
    • 35348938590 scopus 로고    scopus 로고
    • Solving fractional diffusion and wave equations by modified homotopy perturbation method
    • Jafari H., Momani S. Solving fractional diffusion and wave equations by modified homotopy perturbation method. Phys. Lett. A 2007, 370:388-396.
    • (2007) Phys. Lett. A , vol.370 , pp. 388-396
    • Jafari, H.1    Momani, S.2
  • 20
    • 84868196073 scopus 로고    scopus 로고
    • Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain
    • Jiang H., Liu F., Turner I., Burrage K. Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 2012, 64:3377-3388.
    • (2012) Comput. Math. Appl. , vol.64 , pp. 3377-3388
    • Jiang, H.1    Liu, F.2    Turner, I.3    Burrage, K.4
  • 21
    • 79952454978 scopus 로고    scopus 로고
    • Numerical approaches to fractional calculus and fractional ordinary differential equation
    • Li C.P., Chen A., Ye J.J. Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys. 2011, 230:3352-3368.
    • (2011) J. Comput. Phys. , vol.230 , pp. 3352-3368
    • Li, C.P.1    Chen, A.2    Ye, J.J.3
  • 22
    • 79960990048 scopus 로고    scopus 로고
    • Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion
    • Li C.P., Zhao Z.G., Chen Y.Q. Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 2011, 62:855-875.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 855-875
    • Li, C.P.1    Zhao, Z.G.2    Chen, Y.Q.3
  • 23
  • 25
    • 3042776917 scopus 로고    scopus 로고
    • Fractional calculus in bioengineering
    • Magin R.L. Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 2004, 32(1):1-104.
    • (2004) Crit. Rev. Biomed. Eng. , vol.32 , Issue.1 , pp. 1-104
    • Magin, R.L.1
  • 26
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: 'Some basic problems in continuum and statistical mechanics'
    • Springer-Verlag, New York, A. Carpinteri, F. Mainardi (Eds.)
    • Mainardi F. Fractional calculus: 'Some basic problems in continuum and statistical mechanics'. Fractals and Fractional Calculus in Continuum Mechanics 1997, 291-348. Springer-Verlag, New York. A. Carpinteri, F. Mainardi (Eds.).
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics , pp. 291-348
    • Mainardi, F.1
  • 27
    • 84926570205 scopus 로고
    • Some noises with 1/f spectrum, a bridge between direct current and white noise
    • Mandelbrot B. Some noises with 1/f spectrum, a bridge between direct current and white noise. IEEE Trans. Inf. Theory 1967, 13(2):289-298.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , Issue.2 , pp. 289-298
    • Mandelbrot, B.1
  • 28
    • 4043151477 scopus 로고    scopus 로고
    • The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics
    • Metzler R., Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 2004, 37:161-208.
    • (2004) J. Phys. A , vol.37 , pp. 161-208
    • Metzler, R.1    Klafter, J.2
  • 29
    • 34748865972 scopus 로고    scopus 로고
    • Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations
    • Momani S., Odibat Z. Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations. Comput. Math. Appl. 2007, 54:910-919.
    • (2007) Comput. Math. Appl. , vol.54 , pp. 910-919
    • Momani, S.1    Odibat, Z.2
  • 30
    • 35349007529 scopus 로고    scopus 로고
    • Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation
    • Momani S., Odibat Z., Erturk V.S. Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation. Phys. Lett. A 2007, 370:379-387.
    • (2007) Phys. Lett. A , vol.370 , pp. 379-387
    • Momani, S.1    Odibat, Z.2    Erturk, V.S.3
  • 31
    • 0021448875 scopus 로고
    • To the theoretical explanation of the universal response
    • Nigmatullin R.R. To the theoretical explanation of the universal response. Phys. Status Solidi, B Basic Res. 1984, 123(2):739-745.
    • (1984) Phys. Status Solidi, B Basic Res. , vol.123 , Issue.2 , pp. 739-745
    • Nigmatullin, R.R.1
  • 32
    • 0022492943 scopus 로고
    • Realization of the generalized transfer equation in a medium with fractal geometry
    • Nigmatullin R.R. Realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi, B Basic Res. 1986, 133(1):425-430.
    • (1986) Phys. Status Solidi, B Basic Res. , vol.133 , Issue.1 , pp. 425-430
    • Nigmatullin, R.R.1
  • 34
    • 84884805515 scopus 로고    scopus 로고
    • An efficient Chebyshev-tau method for solving the space fractional diffusion equations
    • Ren R., Li H., Jiang W., Song M. An efficient Chebyshev-tau method for solving the space fractional diffusion equations. Appl. Math. Comput. 2013, 224:259-267.
    • (2013) Appl. Math. Comput. , vol.224 , pp. 259-267
    • Ren, R.1    Li, H.2    Jiang, W.3    Song, M.4
  • 35
    • 84868502319 scopus 로고    scopus 로고
    • Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions
    • Ren J., Sun Z.-Z., Zhao X. Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 2013, 232:456-467.
    • (2013) J. Comput. Phys. , vol.232 , pp. 456-467
    • Ren, J.1    Sun, Z.-Z.2    Zhao, X.3
  • 36
    • 0030867045 scopus 로고    scopus 로고
    • Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids
    • Rossikhin Y.A., Shitikova M.V. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl. Mech. Rev. 1997, 50:15-67.
    • (1997) Appl. Mech. Rev. , vol.50 , pp. 15-67
    • Rossikhin, Y.A.1    Shitikova, M.V.2
  • 37
    • 79960977916 scopus 로고    scopus 로고
    • A tau approach for solution of the space fractional diffusion equation
    • Saadatmandi A., Dehghan M. A tau approach for solution of the space fractional diffusion equation. Comput. Math. Appl. 2011, 62:1135-1142.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 1135-1142
    • Saadatmandi, A.1    Dehghan, M.2
  • 38
    • 84886296093 scopus 로고    scopus 로고
    • Stable multi-domain spectral penalty methods for fractional partial differential equations
    • Xu Q., Hesthaven J.S. Stable multi-domain spectral penalty methods for fractional partial differential equations. J. Comput. Phys. 2014, 257:241-258.
    • (2014) J. Comput. Phys. , vol.257 , pp. 241-258
    • Xu, Q.1    Hesthaven, J.S.2
  • 39
    • 84886791142 scopus 로고    scopus 로고
    • Exponentially accurate spectral and spectral element methods for fractional ODEs
    • Zayernouri M., Karniadakis G.E. Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comput. Phys. 2014, 257:460-480.
    • (2014) J. Comput. Phys. , vol.257 , pp. 460-480
    • Zayernouri, M.1    Karniadakis, G.E.2
  • 40
    • 84892586026 scopus 로고    scopus 로고
    • The use of finite difference/element approaches for solving the time-fractional subdiffusion equation
    • Zeng F., Li C., Liu F., Turner I. The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 2013, 35(6):A2976-A3000.
    • (2013) SIAM J. Sci. Comput. , vol.35 , Issue.6 , pp. A2976-A3000
    • Zeng, F.1    Li, C.2    Liu, F.3    Turner, I.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.