메뉴 건너뛰기




Volumn 218, Issue 9, 2012, Pages 5019-5034

On finite difference methods for fourth-order fractional diffusion-wave and subdiffusion systems

Author keywords

Convergence; Diffusion wave system; Finite difference scheme; Solvability; Stability; Subdiffusion system

Indexed keywords

CONVERGENCE; DIFFUSION-WAVE SYSTEM; FINITE DIFFERENCE SCHEME; SOLVABILITY; SUBDIFFUSION;

EID: 83555172437     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2011.10.069     Document Type: Article
Times cited : (80)

References (40)
  • 1
    • 4043151477 scopus 로고    scopus 로고
    • The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics
    • R. Metzler, and J. Klafter The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics J. Phys. A 37 2004 R161 R208
    • (2004) J. Phys. A , vol.37
    • Metzler, R.1    Klafter, J.2
  • 2
    • 31144434675 scopus 로고    scopus 로고
    • From diffusion to anomalous diffusion: A century after Einstein's Brownian motion
    • I.M. Sokolov, and J. Klafter From diffusion to anomalous diffusion: a century after Einstein's Brownian motion Chaos 15 2005 026103
    • (2005) Chaos , vol.15 , pp. 026103
    • Sokolov, I.M.1    Klafter, J.2
  • 3
    • 0030651602 scopus 로고    scopus 로고
    • Analysis and design of fractional-order digital control systems
    • J.A. Tenreiro Machado Analysis and design of fractional-order digital control systems Syst. Anal. Model. Simul. 27 1997 107 122
    • (1997) Syst. Anal. Model. Simul. , vol.27 , pp. 107-122
    • Tenreiro MacHado, J.A.1
  • 4
    • 62849085116 scopus 로고    scopus 로고
    • A central difference numerical scheme for fractional optimal control problems
    • D. Baleanu, O. Defterli, and O.P. Agrawal A central difference numerical scheme for fractional optimal control problems J. Vip. Control 15 2009 583 597
    • (2009) J. Vip. Control , vol.15 , pp. 583-597
    • Baleanu, D.1    Defterli, O.2    Agrawal, O.P.3
  • 5
    • 0022076968 scopus 로고
    • Fractional calculus in the transient analysis of viscoelastically damped structures
    • R.L. Bagley, and P.J. Torvik Fractional calculus in the transient analysis of viscoelastically damped structures AIAA J. 23 1985 918 925
    • (1985) AIAA J. , vol.23 , pp. 918-925
    • Bagley, R.L.1    Torvik, P.J.2
  • 6
    • 0010178279 scopus 로고
    • An analog simulation of non integer order transfer functions for analysis of electrode processes
    • 449
    • M. Ichise, Y. Nagyanagi, and T. Kojima An analog simulation of non integer order transfer functions for analysis of electrode processes J. Electron. Chem. Interf. Electrochem. 33 1971 253 265 449
    • (1971) J. Electron. Chem. Interf. Electrochem. , vol.33 , pp. 253-265
    • Ichise, M.1    Nagyanagi, Y.2    Kojima, T.3
  • 7
    • 3042776917 scopus 로고    scopus 로고
    • Fractional calculus in the bioengineering
    • R.L. Magin Fractional calculus in the bioengineering Crit. Rev. Biomed. Eng. 32 2004 1 104
    • (2004) Crit. Rev. Biomed. Eng. , vol.32 , pp. 1-104
    • Magin, R.L.1
  • 8
    • 0030867045 scopus 로고    scopus 로고
    • Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids
    • Y.A. Rossikhin, and M.V. S hitikova Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids Appl. Mech. Rev. 50 1997 15 67
    • (1997) Appl. Mech. Rev. , vol.50 , pp. 15-67
    • Rossikhin, Y.A.1    Hitikova M V, S.2
  • 9
    • 0007096742 scopus 로고
    • Fractional diffusive waves in viscoelastic solids
    • J.I. Wegner, F.R. Norwood, (Eds.) Fairfield, NJ
    • F. Mainardi, Fractional diffusive waves in viscoelastic solids, in: J.I.Wegner, F.R. Norwood, (Eds.), Nonlinear Waves in Solids, ASME Book No. AMR, vol. 137, Fairfield, NJ, 1995, pp. 93-97.
    • (1995) Nonlinear Waves in Solids, ASME Book No. AMR , vol.137 , pp. 93-97
    • Mainardi, F.1
  • 10
    • 0001983732 scopus 로고    scopus 로고
    • Some basic problems in continuum and statistical mechanics
    • A. Carpinteri, F. Mainardi, Springer Wien
    • F. Mainardi Some basic problems in continuum and statistical mechanics A. Carpinteri, F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics 1997 Springer Wien
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics
    • Mainardi, F.1
  • 11
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • T.A.M. Langlands, and B.I. Henry The accuracy and stability of an implicit solution method for the fractional diffusion equation J. Comput. Phys. 205 2005 719 736
    • (2005) J. Comput. Phys. , vol.205 , pp. 719-736
    • Langlands, T.A.M.1    Henry, B.I.2
  • 12
    • 33646128485 scopus 로고    scopus 로고
    • Weighted average finite difference methods for fractional diffusion equations
    • S.B. Yuste Weighted average finite difference methods for fractional diffusion equations J. Comput. Phys. 216 2006 264 274
    • (2006) J. Comput. Phys. , vol.216 , pp. 264-274
    • Yuste, S.B.1
  • 13
    • 46049119633 scopus 로고    scopus 로고
    • Implicit finite difference approximation for time fractional diffusion equation
    • D.A. Murio Implicit finite difference approximation for time fractional diffusion equation Comput. Math. Appl. 56 2008 1138 1145
    • (2008) Comput. Math. Appl. , vol.56 , pp. 1138-1145
    • Murio, D.A.1
  • 14
    • 40849115179 scopus 로고    scopus 로고
    • Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation
    • C.M. Chen, F. Liu, and K. Burrage Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation Appl. Math. Comput. 198 2008 754 769
    • (2008) Appl. Math. Comput. , vol.198 , pp. 754-769
    • Chen, C.M.1    Liu, F.2    Burrage, K.3
  • 15
    • 68949098580 scopus 로고    scopus 로고
    • A finite difference method for fractional partial differential equation
    • Y. Zhang A finite difference method for fractional partial differential equation Appl. Math. Comput. 215 2009 524 529
    • (2009) Appl. Math. Comput. , vol.215 , pp. 524-529
    • Zhang, Y.1
  • 16
    • 25444463578 scopus 로고    scopus 로고
    • Finite difference methods for two-dimensional fractional dispersion equation
    • M.M. Meerschaert, H.P. Scheffler, and C. Tadjeran Finite difference methods for two-dimensional fractional dispersion equation J. Comput. Phys. 211 2006 249 261
    • (2006) J. Comput. Phys. , vol.211 , pp. 249-261
    • Meerschaert, M.M.1    Scheffler, H.P.2    Tadjeran, C.3
  • 17
    • 28044468843 scopus 로고    scopus 로고
    • Finite difference approximation for two-sided space-fractional partial differential equations
    • M.M. Meerschaert, and C. Tadjeran Finite difference approximation for two-sided space-fractional partial differential equations Appl. Numer. Math. 56 2006 80 90
    • (2006) Appl. Numer. Math. , vol.56 , pp. 80-90
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 18
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximation for fractional advection-dispersion flow equation
    • M.M. Meerschaert, and C. Tadjeran Finite difference approximation for fractional advection-dispersion flow equation J. Comput. Appl. Math. 172 2003 65 67
    • (2003) J. Comput. Appl. Math. , vol.172 , pp. 65-67
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 19
    • 41349099804 scopus 로고    scopus 로고
    • Stochastic solution of space-time fractional diffusion equations
    • M.M. Meerschaert, D.A. Benson, H.P. Scheffler, and B. Baeumer Stochastic solution of space-time fractional diffusion equations Phys. Rev. E 65 2002 1103 1106
    • (2002) Phys. Rev. e , vol.65 , pp. 1103-1106
    • Meerschaert, M.M.1    Benson, D.A.2    Scheffler, H.P.3    Baeumer, B.4
  • 21
    • 31744438550 scopus 로고    scopus 로고
    • A second-order accurate numerical approximation for the fractional diffusion equation
    • C. Tadjeran, M.M. Meerschaert, and H.P. Scheffler A second-order accurate numerical approximation for the fractional diffusion equation J. Comput. Phys. 213 2006 205 213
    • (2006) J. Comput. Phys. , vol.213 , pp. 205-213
    • Tadjeran, C.1    Meerschaert, M.M.2    Scheffler, H.P.3
  • 22
    • 33845628108 scopus 로고    scopus 로고
    • A second-order accurate numerical method for the two-dimensional fractional diffusion equation
    • C. Tadjeran, and M.M. Meerschaert A second-order accurate numerical method for the two-dimensional fractional diffusion equation J. Comput. Phys. 220 2007 813 823
    • (2007) J. Comput. Phys. , vol.220 , pp. 813-823
    • Tadjeran, C.1    Meerschaert, M.M.2
  • 23
    • 69049086472 scopus 로고    scopus 로고
    • Compact finite difference method for the fractional diffusion equation
    • M. Cui Compact finite difference method for the fractional diffusion equation J. Comput. Phys. 228 2009 7792 7804
    • (2009) J. Comput. Phys. , vol.228 , pp. 7792-7804
    • Cui, M.1
  • 24
    • 67349231192 scopus 로고    scopus 로고
    • Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
    • F. Liu, C. Yang, and K. Burrage Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term J. Comput. Appl. Math. 231 2009 160 176
    • (2009) J. Comput. Appl. Math. , vol.231 , pp. 160-176
    • Liu, F.1    Yang, C.2    Burrage, K.3
  • 25
    • 51749116733 scopus 로고    scopus 로고
    • Finite difference approximations for the fractional Fokker-Planck equation
    • S. Chen, F. Liu, P. Zhang, and V. Anh Finite difference approximations for the fractional Fokker-Planck equation Appl. Math. Model. 33 2009 256 273
    • (2009) Appl. Math. Model. , vol.33 , pp. 256-273
    • Chen, S.1    Liu, F.2    Zhang, P.3    Anh, V.4
  • 26
    • 30744474991 scopus 로고    scopus 로고
    • A fully discrete difference scheme for a diffusion-wave system
    • Z.Z. Sun, and X. Wu A fully discrete difference scheme for a diffusion-wave system Appl. Numer. Math. 56 2006 193 209
    • (2006) Appl. Numer. Math. , vol.56 , pp. 193-209
    • Sun, Z.Z.1    Wu, X.2
  • 27
    • 77952888765 scopus 로고    scopus 로고
    • A compact difference scheme for the fractional diffusion-wave equation
    • R. Du, W.R. Cao, and Z.Z. Sun A compact difference scheme for the fractional diffusion-wave equation Appl. Math. Model. 34 2010 2998 3007
    • (2010) Appl. Math. Model. , vol.34 , pp. 2998-3007
    • Du, R.1    Cao, W.R.2    Sun, Z.Z.3
  • 28
    • 78649334165 scopus 로고    scopus 로고
    • A compact finite difference scheme for the fractional sub-diffusion equations
    • G. Gao, and Z.z. Sun A compact finite difference scheme for the fractional sub-diffusion equations J. Comput. Phys. 230 2011 586 595
    • (2011) J. Comput. Phys. , vol.230 , pp. 586-595
    • Gao, G.1    Sun, Z.Z.2
  • 30
    • 0029250726 scopus 로고
    • Boundary fractional derivative control of the wave equation
    • B. Modje, and G. Montseny Boundary fractional derivative control of the wave equation IEEE Transactions on Automatic Control 40 1995 378 382
    • (1995) IEEE Transactions on Automatic Control , vol.40 , pp. 378-382
    • Modje, B.1    Montseny, G.2
  • 33
    • 47049131727 scopus 로고    scopus 로고
    • Solving a fourth-order fractional diffusion wave equation in a bounded domain by decomposition method
    • H. Jafari, M. Dehghan, and K. Sayevand Solving a fourth-order fractional diffusion wave equation in a bounded domain by decomposition method Numer. Methods Partial Diff. Eqn. 24 2008 1115 1126
    • (2008) Numer. Methods Partial Diff. Eqn. , vol.24 , pp. 1115-1126
    • Jafari, H.1    Dehghan, M.2    Sayevand, K.3
  • 34
    • 0001859932 scopus 로고    scopus 로고
    • A general solution for the fourth-order fractional diffusion-wave equation
    • O.P. Agrawal A general solution for the fourth-order fractional diffusion-wave equation Fract. Calculus Appl. Anal. 3 2000 1 12
    • (2000) Fract. Calculus Appl. Anal. , vol.3 , pp. 1-12
    • Agrawal, O.P.1
  • 35
    • 0035359131 scopus 로고    scopus 로고
    • A general solution for the fourth-order fractional diffusion-wave equation defined in bounded domain
    • O.P. Agrawal A general solution for the fourth-order fractional diffusion-wave equation defined in bounded domain Comput. Struct. 79 2001 1497 1501
    • (2001) Comput. Struct. , vol.79 , pp. 1497-1501
    • Agrawal, O.P.1
  • 36
    • 79953758205 scopus 로고    scopus 로고
    • Fractional calculus - A new approach to the analysis of generalized fourth-order diffusion-wave equations
    • A. Golbabai, and K. Sayevand Fractional calculus - a new approach to the analysis of generalized fourth-order diffusion-wave equations Comput. Math. Appl. 67 2011 2227 2231
    • (2011) Comput. Math. Appl. , vol.67 , pp. 2227-2231
    • Golbabai, A.1    Sayevand, K.2
  • 37
    • 70349731416 scopus 로고    scopus 로고
    • A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation
    • T. Wang, and B. Guo A robust semi-explicit difference scheme for the Kuramoto-Tsuzuki equation J. Comput. Appl. Math. 233 2009 878 888
    • (2009) J. Comput. Appl. Math. , vol.233 , pp. 878-888
    • Wang, T.1    Guo, B.2
  • 38
    • 44949235391 scopus 로고    scopus 로고
    • A new conservative finite difference scheme for the Rosenau equation
    • K. Omrani, F. Abidi, T. Achouri, and N. Khiari A new conservative finite difference scheme for the Rosenau equation Appl. Math. Comput. 201 2008 35 43
    • (2008) Appl. Math. Comput. , vol.201 , pp. 35-43
    • Omrani, K.1    Abidi, F.2    Achouri, T.3    Khiari, N.4
  • 39
    • 0000145521 scopus 로고    scopus 로고
    • On Mittag-Leffler-type functions in fractional evolution processes
    • F. Mainardi, and R. Gorenflo On Mittag-Leffler-type functions in fractional evolution processes J. Comput. Appl. Math. 118 2000 283 299
    • (2000) J. Comput. Appl. Math. , vol.118 , pp. 283-299
    • Mainardi, F.1    Gorenflo, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.