-
1
-
-
0001311725
-
Stochastic solutions for fractional Cauchy problems
-
1874479 1057.35102
-
B. Baeumer and M.M. Meerschaert, Stochastic solutions for fractional Cauchy problems. Fract. Calc. Appl. Anal. 4, No 4 (2001), 481-500.
-
(2001)
Fract. Calc. Appl. Anal.
, vol.4
, Issue.4
, pp. 481-500
-
-
Baeumer, B.1
Meerschaert, M.M.2
-
2
-
-
48349133740
-
Inhomogeneous fractional diffusion eqautions
-
2268419 1202.86005
-
B. Baeumer, S. Kurita and M.M. Meerschaert, Inhomogeneous fractional diffusion eqautions. Fract. Calc. Appl. Anal., 8, No 4 (2005), 371-376; at http://www.math.bas.bg/~fcaa.
-
(2005)
Fract. Calc. Appl. Anal.
, vol.8
, Issue.4
, pp. 371-376
-
-
Baeumer, B.1
Kurita, S.2
Meerschaert, M.M.3
-
3
-
-
84869179719
-
Product rule for vector fractional derivatives
-
2944111
-
D. Bolster, M.M. Meerschaert and A. Sikorskii, Product rule for vector fractional derivatives. Fract. Calc. Appl. Anal. 15, No 3 (2012), 463-478; DOI:10.2478/s13540-012-0033-0; at http://link.springer.com/article/10.2478/ s13540-012-0033-0.
-
(2012)
Fract. Calc. Appl. Anal.
, vol.15
, Issue.3
, pp. 463-478
-
-
Bolster, D.1
Meerschaert, M.M.2
Sikorskii, A.3
-
4
-
-
0242693197
-
Modified Szabo's wave equation models for lossy media obeying frequency power law
-
10.1121/1.1621392
-
W. Chen, S. Holm, Modified Szabo's wave equation models for lossy media obeying frequency power law. J. Acoust. Soc. Am. 114 (2003), 2570-2754.
-
(2003)
J. Acoust. Soc. Am.
, vol.114
, pp. 2570-2754
-
-
Chen, W.1
Holm, S.2
-
5
-
-
34250899368
-
Analysis of fractional differential equations with multi-orders
-
2332373 1176.34008 10.1142/S0218348X07003472
-
W. Deng, C. Li, Q. Guo, Analysis of fractional differential equations with multi-orders. Fractals 15, No 2 (2007), 173-182.
-
(2007)
Fractals
, vol.15
, Issue.2
, pp. 173-182
-
-
Deng, W.1
Li, C.2
Guo, Q.3
-
6
-
-
33947133956
-
Stability analysis of linear fractional differential system with multiple time-delays
-
2312588 1185.34115 10.1007/s11071-006-9094-0
-
W. Deng, C. Li, J. Lu, Stability analysis of linear fractional differential system with multiple time-delays. Nonlinear Dynamics 48, No 4 (2007), 409-416.
-
(2007)
Nonlinear Dynamics
, vol.48
, Issue.4
, pp. 409-416
-
-
Deng, W.1
Li, C.2
Lu, J.3
-
9
-
-
77951184169
-
An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation
-
2667749 1231.65178
-
Y. Gu, P. Zhuang, F. Liu, An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Computer Modeling in Eng. & Sciences 56 (2010), 303-334.
-
(2010)
Computer Modeling in Eng. & Sciences
, vol.56
, pp. 303-334
-
-
Gu, Y.1
Zhuang, P.2
Liu, F.3
-
10
-
-
64249135201
-
Numerical approximation of a fractional-in-space diffusion equation (I)
-
2252038 1126.26009
-
M. Ilic, F. Liu, I. Turner, V. Anh, Numerical approximation of a fractional-in-space diffusion equation (I). Fract. Calc. Appl. Anal., 8, No 3 (2005), 323-341; at http://www.math.bas.bg/~fcaa.
-
(2005)
Fract. Calc. Appl. Anal.
, vol.8
, Issue.3
, pp. 323-341
-
-
Ilic, M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
11
-
-
64249104309
-
Numerical approximation of a fractional-in-space diffusion equation (II) - With nonhomogeneous boundary conditions
-
2300467 1132.35507
-
M. Ilic, F. Liu, I. Turner, V. Anh, Numerical approximation of a fractional-in-space diffusion equation (II) - with nonhomogeneous boundary conditions. Fract. Calc. Appl. Anal., 9, No 4 (2006), 333-349; at http://www.math.bas.bg/~fcaa.
-
(2006)
Fract. Calc. Appl. Anal.
, vol.9
, Issue.4
, pp. 333-349
-
-
Ilic, M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
12
-
-
84862824195
-
Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain
-
2879284 1234.35300 10.1016/j.jmaa.2011.12.055
-
H. Jiang, F. Liu, I. Turner, K. Burrage, Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J. Math. Anal. Appl. 389 (2012), 1117-1127.
-
(2012)
J. Math. Anal. Appl.
, vol.389
, pp. 1117-1127
-
-
Jiang, H.1
Liu, F.2
Turner, I.3
Burrage, K.4
-
13
-
-
56749132453
-
Analytical time-domain Green's functions for power-law media
-
10.1121/1.2977669
-
J.K. Kelly, R.J. McGough, M.M. Meerschaert, Analytical time-domain Green's functions for power-law media. J. Acoust. Soc. Am. 124 (2008), 2861-2872.
-
(2008)
J. Acoust. Soc. Am.
, vol.124
, pp. 2861-2872
-
-
Kelly, J.K.1
McGough, R.J.2
Meerschaert, M.M.3
-
14
-
-
84868198807
-
Spectral approximations to the fractional integral and derivative
-
2944106
-
C. Li, F. Zeng, F. Liu, Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15, No 3 (2012), 383-406; DOI:10.2478/s13540-012-0028-x; at http://link.springer.com/article/10.2478/ s13540-012-0028-x
-
(2012)
Fract. Calc. Appl. Anal.
, vol.15
, Issue.3
, pp. 383-406
-
-
Li, C.1
Zeng, F.2
Liu, F.3
-
15
-
-
9644281076
-
Full wave modeling of therapeutic ultrasound: Efficient time-domain implementation of the frequency power-law attenuation
-
10.1121/1.1798355
-
M. Liebler, S. Ginter, T. Dreyer, R.E. Riedlinger, Full wave modeling of therapeutic ultrasound: Efficient time-domain implementation of the frequency power-law attenuation. J. Acoust. Soc. Am. 116 (2004), 2742-2750.
-
(2004)
J. Acoust. Soc. Am.
, vol.116
, pp. 2742-2750
-
-
Liebler, M.1
Ginter, S.2
Dreyer, T.3
Riedlinger, R.E.4
-
16
-
-
1542425102
-
Numerical solution of the space fractional Fokker-Planck equation
-
2057973 1036.82019 10.1016/j.cam.2003.09.028
-
F. Liu, V. Anh, I. Turner, Numerical solution of the space fractional Fokker-Planck equation. J. Comp. Appl. Math. 166 (2004), 209-219.
-
(2004)
J. Comp. Appl. Math.
, vol.166
, pp. 209-219
-
-
Liu, F.1
Anh, V.2
Turner, I.3
-
17
-
-
34547673244
-
Stability and convergence of the difference methods for the space-time fractional advectiondiffusion equation
-
1193.76093 10.1016/j.amc.2006.08.162
-
F. Liu, P. Zhuang, V. Anh, I. Turner, K. Burrag, Stability and convergence of the difference methods for the space-time fractional advectiondiffusion equation. J. Comp. Appl. Math. 191 (2007), 12-20.
-
(2007)
J. Comp. Appl. Math.
, vol.191
, pp. 12-20
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
Burrag, K.5
-
18
-
-
67349231192
-
Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
-
2532659 1170.65107 10.1016/j.cam.2009.02.013
-
F. Liu, C. Yang, K. Burrage, Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comp. Appl. Math. 231 (2009), 160-176.
-
(2009)
J. Comp. Appl. Math.
, vol.231
, pp. 160-176
-
-
Liu, F.1
Yang, C.2
Burrage, K.3
-
19
-
-
84871742819
-
Numerical methods and analysis for a class of fractional advection-dispersion models
-
2989329
-
F. Liu, P. Zhuang, K. Burrage, Numerical methods and analysis for a class of fractional advection-dispersion models. Computers and Math. with Appl. 63 (2012), 1-22.
-
(2012)
Computers and Math. with Appl.
, vol.63
, pp. 1-22
-
-
Liu, F.1
Zhuang, P.2
Burrage, K.3
-
20
-
-
33846798041
-
Approximation of the Lévy- Feller advection-dispersion process by random walk and finite difference method
-
2298036 1112.65006 10.1016/j.jcp.2006.06.005
-
Q. Liu, F. Liu, I. Turner, V. Anh, Approximation of the Lévy- Feller advection-dispersion process by random walk and finite difference method. J. Comp. Phys. 222 (2007), 57-70.
-
(2007)
J. Comp. Phys.
, vol.222
, pp. 57-70
-
-
Liu, Q.1
Liu, F.2
Turner, I.3
Anh, V.4
-
21
-
-
79251616666
-
An implicit RBF meshless approach for time fractional diffusion equations
-
2812854 06032194 10.1007/s00466-011-0573-x
-
Q. Liu, Y. Gu, P. Zhuang, F. Liu, Y. Nie, An implicit RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48 (2011), 1-12.
-
(2011)
Comput. Mech.
, vol.48
, pp. 1-12
-
-
Liu, Q.1
Gu, Y.2
Zhuang, P.3
Liu, F.4
Nie, Y.5
-
22
-
-
77957822720
-
Initial-boundary-value problems for the generalized multiterm time-fractional diffusion equation
-
2729240 1202.35339 10.1016/j.jmaa.2010.08.048
-
Y. Luchko, Initial-boundary-value problems for the generalized multiterm time-fractional diffusion equation. J. Math. Anal. Appl. 374 (2011), 538-548.
-
(2011)
J. Math. Anal. Appl.
, vol.374
, pp. 538-548
-
-
Luchko, Y.1
-
24
-
-
25444516522
-
Vector Grünwald formula for fractional derivatives
-
2077400 1084.65024
-
M.M. Meerschaert, J. Mortensen, H.P. Scheffler, Vector Grünwald formula for fractional derivatives. Fract. Calc. Appl. Anal. 7, No 1 (2004), 61-82.
-
(2004)
Fract. Calc. Appl. Anal.
, vol.7
, Issue.1
, pp. 61-82
-
-
Meerschaert, M.M.1
Mortensen, J.2
Scheffler, H.P.3
-
25
-
-
4444368867
-
Finite difference approximations for fractional advection-dispersion flow equations
-
2091131 1126.76346 10.1016/j.cam.2004.01.033
-
M.M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations. J. Comp. Appl. Math. 172 (2004), 65-77.
-
(2004)
J. Comp. Appl. Math.
, vol.172
, pp. 65-77
-
-
Meerschaert, M.M.1
Tadjeran, C.2
-
26
-
-
84871013921
-
Stochastic solution to a time-fractional attenuated wave equation
-
10.1007/s11071-012-0532-x
-
M.M. Meerschaert, P. Straka, Y. Zhou, R.J. McGough, Stochastic solution to a time-fractional attenuated wave equation. Nonlinear Dynamics 70 (2012), 1273-1281.
-
(2012)
Nonlinear Dynamics
, vol.70
, pp. 1273-1281
-
-
Meerschaert, M.M.1
Straka, P.2
Zhou, Y.3
McGough, R.J.4
-
27
-
-
0002641421
-
The random walk's guide to anomalous diffusion: A fractional dynamics approach
-
1809268 0984.82032 10.1016/S0370-1573(00)00070-3
-
R. Metzler, J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339 (2000), 1-77.
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
29
-
-
33646191893
-
Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2
-
2228717 1092.65122 10.1016/j.cam.2005.06.005
-
J.P. Roop, Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2. J. Comp. Appl. Math. 193 (2006), 243-268.
-
(2006)
J. Comp. Appl. Math.
, vol.193
, pp. 243-268
-
-
Roop, J.P.1
-
30
-
-
1542436807
-
Fractal mobile/immobile solute transport
-
10.1029/2003WR002141
-
R. Schumer, D.A. Benson, M.M Meerschaert, B. Baeumer, Fractal mobile/immobile solute transport. Water Resources Researces 39 (2003), 1296-1307.
-
(2003)
Water Resources Researces
, vol.39
, pp. 1296-1307
-
-
Schumer, R.1
Benson, D.A.2
Meerschaert, M.M.3
Baeumer, B.4
-
31
-
-
79951851714
-
Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation
-
2774121 1214.65046 10.1007/s11075-010-9393-x
-
S. Shen, F. Liu, V. Anh, Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numerical Algorithm 56 (2011), 383-404.
-
(2011)
Numerical Algorithm
, vol.56
, pp. 383-404
-
-
Shen, S.1
Liu, F.2
Anh, V.3
-
32
-
-
79952190735
-
Numerical method for solving diffusion-wave phenomena
-
2773298 1213.65133 10.1016/j.cam.2010.12.010
-
M. Stojanovic, Numerical method for solving diffusion-wave phenomena. J. Comp. Appl. Math. 235 (2011), 3121-3137.
-
(2011)
J. Comp. Appl. Math.
, vol.235
, pp. 3121-3137
-
-
Stojanovic, M.1
-
33
-
-
84871765883
-
Fractional wave equations with attenuation
-
P. Straka, M.M. Meerschaert, R.J. McGough, and Y. Zhou, Fractional wave equations with attenuation. Fract. Calc. Appl. Anal. 16, No 1 (2013), 262-272 (same issue); DOI:10.2478/s13540-013-0016-9; at http://link.springer.com/ journal/13540.
-
(2013)
Fract. Calc. Appl. Anal.
, vol.16
, Issue.1
, pp. 262-272
-
-
Straka, P.1
Meerschaert, M.M.2
McGough, R.J.3
Zhou, Y.4
-
34
-
-
0028292355
-
Time domain wave equations for lossy media obeying a frequency power law
-
10.1121/1.410434
-
T.L. Szabo, Time domain wave equations for lossy media obeying a frequency power law. J. Acoust. Soc. Am. 96 (1994), 491-500.
-
(1994)
J. Acoust. Soc. Am.
, vol.96
, pp. 491-500
-
-
Szabo, T.L.1
-
35
-
-
62249116725
-
A computationally effective predictor-corrector method for simulating fractional order dynamical control system
-
C. Yang, F. Liu, A computationally effective predictor-corrector method for simulating fractional order dynamical control system. ANZIAM J. 47 (2006), 168-184.
-
(2006)
ANZIAM J.
, vol.47
, pp. 168-184
-
-
Yang, C.1
Liu, F.2
-
36
-
-
62349097511
-
Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications
-
10.1016/j.advwatres.2009.01.008
-
Y. Zhang, D.A. Benson, D.M. Reeves, Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications. Advances in Water Resources 32 (2009), 561-581.
-
(2009)
Advances in Water Resources
, vol.32
, pp. 561-581
-
-
Zhang, Y.1
Benson, D.A.2
Reeves, D.M.3
-
37
-
-
79959196930
-
Stability analysis of fractional differential systems with order lying in (1,2)
-
ID 213485
-
F. Zhang, C. Li, Stability analysis of fractional differential systems with order lying in (1,2). Advances in Difference Equations (2011), ID 213485.
-
(2011)
Advances in Difference Equations
-
-
Zhang, F.1
Li, C.2
-
38
-
-
84907893973
-
Numerical methods for the variable order fractional advection diffusion equation with a nonlinear source term
-
2505873 1204.26013 10.1137/080730597
-
P. Zhuang, F. Liu, V. Anh, I. Turner, Numerical methods for the variable order fractional advection diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47 (2009), 1760-1781.
-
(2009)
SIAM J. Numer. Anal.
, vol.47
, pp. 1760-1781
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
|