메뉴 건너뛰기




Volumn 35, Issue 6, 2013, Pages

The use of finite difference/element approaches for solving the time-fractional subdiffusion equation

Author keywords

Convergence; Finite difference method; Finite element method; Fractional derivative; Subdiffusion; Unconditional stability

Indexed keywords

BOUNDARY CONDITIONS; FINITE ELEMENT METHOD; NUMERICAL METHODS; PARTIAL DIFFERENTIAL EQUATIONS; POLYNOMIALS;

EID: 84892586026     PISSN: 10648275     EISSN: 10957200     Source Type: Journal    
DOI: 10.1137/130910865     Document Type: Article
Times cited : (306)

References (63)
  • 1
    • 21144451936 scopus 로고    scopus 로고
    • Response of a diffusion-wave system subjected to deterministic and stochastic fields
    • O. P. Agrawal, Response of a diffusion-wave system subjected to deterministic and stochastic fields, Z. Angew. Math. Mech., 83 (2003), pp. 265-274.
    • (2003) Z. Angew. Math. Mech , vol.83 , pp. 265-274
    • Agrawal, O.P.1
  • 2
    • 0000078998 scopus 로고    scopus 로고
    • From continuous time random walks to the fractional fokker-planck equation
    • E. Barkai, R. Metzler, and J. Klafter, From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61 (2000), pp. 132-138.
    • (2000) Phys. Rev. E , vol.61 , pp. 132-138
    • Barkai, E.1    Metzler, R.2    Klafter, J.3
  • 3
    • 84862728868 scopus 로고    scopus 로고
    • A fast second-order finite difference method for space-fractional diffusion equations
    • T. S. Basu and H. Wang, A fast second-order finite difference method for space-fractional diffusion equations, Int. J. Numer. Anal. Modeling, 9 (2012), pp. 658-666.
    • (2012) Int. J. Numer. Anal. Modeling , vol.9 , pp. 658-666
    • Basu, T.S.1    Wang, H.2
  • 6
    • 84868465378 scopus 로고    scopus 로고
    • Least-squares spectral method for the solution of a fractional advection-dispersion equation
    • A. R. Carella and C. A. Dorao, Least-squares spectral method for the solution of a fractional advection-dispersion equation, J. Comput. Phys., 232 (2013) pp. 33-45.
    • (2013) J. Comput. Phys , vol.232 , pp. 33-45
    • Carella, A.R.1    Dorao, C.A.2
  • 7
    • 36149001420 scopus 로고    scopus 로고
    • A fourier method for the fractional diffusion equation describing sub-diffusion
    • C. M. Chen, F. Liu, I. Turner, and V. Anh, A Fourier method for the fractional diffusion equation describing sub-diffusion, J. Comput. Phys., 227 (2007), pp. 886-897.
    • (2007) J. Comput. Phys , vol.227 , pp. 886-897
    • Chen, C.M.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 8
    • 52049099584 scopus 로고    scopus 로고
    • Numerical analysis of the rayleigh-stokes problem for a heated generalized second grade fluid with fractional derivatives
    • C. Chen, F. Liu, and V. Anh, Numerical analysis of the Rayleigh-Stokes problem for a heated generalized second grade fluid with fractional derivatives, Appl. Math. Comput., 204 (2008), pp. 340-351.
    • (2008) Appl. Math. Comput , vol.204 , pp. 340-351
    • Chen, C.1    Liu, F.2    Anh, V.3
  • 9
    • 33646398146 scopus 로고    scopus 로고
    • Convolution quadrature time discretization of fractional diffusive-wave equations
    • E. Cuesta, C. Lubich, and C. Palencia, Convolution quadrature time discretization of fractional diffusive-wave equations, Math. Comp., 75 (2006), pp. 673-696.
    • (2006) Math. Comp , vol.75 , pp. 673-696
    • Cuesta, E.1    Lubich, C.2    Palencia, C.3
  • 10
    • 69049086472 scopus 로고    scopus 로고
    • Compact finite difference method for the fractional diffusion equation
    • M. R. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 228 (2009), pp. 7792-7804.
    • (2009) J. Comput. Phys , vol.228 , pp. 7792-7804
    • Cui, M.R.1
  • 11
    • 84856219458 scopus 로고    scopus 로고
    • Compact alternating direction implicit method for two-dimensional time fractional diffusion equation
    • M. R. Cui, Compact alternating direction implicit method for two-dimensional time fractional diffusion equation, J. Comput. Phys., 231 (2012), pp. 2621-2633.
    • (2012) J. Comput. Phys , vol.231 , pp. 2621-2633
    • Cui, M.R.1
  • 12
    • 84875075606 scopus 로고    scopus 로고
    • Mixed spline function method for reaction-subdiffusion equation
    • H. F. Ding and C. P. Li, Mixed spline function method for reaction-subdiffusion equation, J. Comput. Phys., 242 (2013), pp. 103-123.
    • (2013) J. Comput. Phys , vol.242 , pp. 103-123
    • Ding, H.F.1    Li, C.P.2
  • 13
    • 84881532677 scopus 로고    scopus 로고
    • Numerical algorithms for the fractional diffusion-wave equation with reaction term
    • H. F. Ding and C. P. Li, Numerical algorithms for the fractional diffusion-wave equation with reaction term, Abstr. Appl. Anal., 2013 (2013), 493406.
    • (2013) Abstr. Appl. Anal , vol.2013 , pp. 493406
    • Ding, H.F.1    Li, C.P.2
  • 14
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • K. Diethelm and N. J. Ford, Analysis of fractional differential equations, J. Comput. Appl. Math., 265 (2002), pp. 229-248.
    • (2002) J. Comput. Appl. Math , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 15
    • 26444438049 scopus 로고    scopus 로고
    • Pitfalls in fast numerical solvers for fractional differential equations
    • K. Diethelm, N. J. Ford, A. D. Freed, and M. Weilbeer, Pitfalls in fast numerical solvers for fractional differential equations, J. Comput. Appl. Math., 186 (2006), pp. 482-503.
    • (2006) J. Comput. Appl. Math , vol.186 , pp. 482-503
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3    Weilbeer, M.4
  • 16
    • 42649109055 scopus 로고    scopus 로고
    • Numerical approximation of a time dependent nonlinear space-fractional diffusion equation
    • V. J. Ervin, N. Heuer, and J. P. Roop, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal., 45 (2007), pp. 572-591.
    • (2007) SIAM J. Numer. Anal , vol.45 , pp. 572-591
    • Ervin, V.J.1    Heuer, N.2    Roop, J.P.3
  • 17
    • 80051692866 scopus 로고    scopus 로고
    • A finite element method for time fractional partial differential equations
    • N. J. Ford, J. Y. Xiao, and Y. B. Yan, A finite element method for time fractional partial differential equations, Fract. Calc. Appl. Anal., 14 (2011), pp. 454-474.
    • (2011) Fract. Calc. Appl. Anal , vol.14 , pp. 454-474
    • Ford, N.J.1    Xiao, J.Y.2    Yan, Y.B.3
  • 18
    • 56949091229 scopus 로고    scopus 로고
    • Fractional adams-moulton methods
    • L. Galeone and R. Garrappa, Fractional Adams-Moulton methods, Math. Comput. Simul., 79 (2008), pp. 1358-1367.
    • (2008) Math. Comput. Simul , vol.79 , pp. 1358-1367
    • Galeone, L.1    Garrappa, R.2
  • 19
    • 64549112216 scopus 로고    scopus 로고
    • Explicit methods for fractional differential equations and their stability properties
    • L. Galeone and R. Garrappa, Explicit methods for fractional differential equations and their stability properties, J. Comput. Appl. Math., 228 (2009), pp. 548-560.
    • (2009) J. Comput. Appl. Math , vol.228 , pp. 548-560
    • Galeone, L.1    Garrappa, R.2
  • 20
    • 78649334165 scopus 로고    scopus 로고
    • A compact finite difference scheme for the fractional sub-diffusion equations
    • G. H. Gao and Z. Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230 (2011), pp. 586-595.
    • (2011) J. Comput. Phys , vol.230 , pp. 586-595
    • Gao, G.H.1    Sun, Z.Z.2
  • 21
    • 79953248728 scopus 로고    scopus 로고
    • High-order finite element methods for time-fractional partial differential equations
    • Y. J. Jiang and J. T. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235 (2011), pp. 3285-3290.
    • (2011) J. Comput. Appl. Math , vol.235 , pp. 3285-3290
    • Jiang, Y.J.1    Ma, J.T.2
  • 22
    • 84876119000 scopus 로고    scopus 로고
    • Error estimates for a semidiscrete finite element method for fractional order parabolic equations
    • B. Jin, R. Lazarov, and Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal., 51 (2013), pp. 445-466.
    • (2013) SIAM J. Numer. Anal , vol.51 , pp. 445-466
    • Jin, B.1    Lazarov, R.2    Zhou, Z.3
  • 24
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • T. A. M. Langlands and B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205 (2005), pp. 719-736.
    • (2005) J. Comput. Phys , vol.205 , pp. 719-736
    • Langlands, T.A.M.1    Henry, B.I.2
  • 25
    • 77958536189 scopus 로고    scopus 로고
    • A space-time spectral method for the time fractional diffusion equation
    • X. J. Li and C. J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47 (2009), pp. 2108-2131.
    • (2009) SIAM J. Numer. Anal , vol.47 , pp. 2108-2131
    • Li, X.J.1    Xu, C.J.2
  • 26
    • 84861220597 scopus 로고    scopus 로고
    • Finite difference methods for fractional differential equations
    • C. P. Li and F. H. Zeng, Finite difference methods for fractional differential equations, Internat. J. Bifur. Chaos, 22 (2012), 1230014.
    • (2012) Internat. J. Bifur. Chaos , vol.22 , pp. 1230014
    • Li, C.P.1    Zeng, F.H.2
  • 27
    • 84871814483 scopus 로고    scopus 로고
    • The finite difference methods for fractional ordinary differential equations
    • C. P. Li and F. H. Zeng, The finite difference methods for fractional ordinary differential equations, Numer. Funct. Anal. Optim., 34 (2013), pp. 149-179.
    • (2013) Numer. Funct. Anal. Optim , vol.34 , pp. 149-179
    • Li, C.P.1    Zeng, F.H.2
  • 28
    • 34547548712 scopus 로고    scopus 로고
    • Finite difference/spectral approximations for the time-fractional diffusion equation
    • Y. M. Lin and C. J. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), pp. 1533-1552.
    • (2007) J. Comput. Phys , vol.225 , pp. 1533-1552
    • Lin, Y.M.1    Xu, C.J.2
  • 29
    • 67349231192 scopus 로고    scopus 로고
    • Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
    • F. Liu, C. Yang, and K. Burrage, Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term, J. Comput. Appl. Math., 231 (2009), pp. 160-176.
    • (2009) J. Comput. Appl. Math , vol.231 , pp. 160-176
    • Liu, F.1    Yang, C.2    Burrage, K.3
  • 30
    • 78649919287 scopus 로고    scopus 로고
    • Two new implicit numerical methods for the fractional cable equation
    • F. Liu, Q. Q. Yang, and I. Turner, Two new implicit numerical methods for the fractional cable equation, J. Comput. Nonlinear Dynam., 6 (2011), 011009.
    • (2011) J. Comput. Nonlinear Dynam , vol.6 , pp. 011009
    • Liu, F.1    Yang, Q.Q.2    Turner, I.3
  • 31
    • 84868214613 scopus 로고    scopus 로고
    • Numerical methods and analysis for a class of fractional advection-dispersion models
    • F. Liu, P. Zhuang, and K. Burrage, Numerical methods and analysis for a class of fractional advection-dispersion models, Comput. Math. Appl., 64 (2012), pp. 2990-3007.
    • (2012) Comput. Math. Appl , vol.64 , pp. 2990-3007
    • Liu, F.1    Zhuang, P.2    Burrage, K.3
  • 32
    • 0000717432 scopus 로고
    • Discretized fractional calculus
    • C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17 (1986), pp. 704-719.
    • (1986) SIAM J. Math. Anal , vol.17 , pp. 704-719
    • Lubich, C.1
  • 34
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion
    • M. M. Meerschaert and C. Tadjeran, Finite difference approximations for fractional advection-dispersion, J. Comput. Appl. Math., 172 (2004), pp. 65-77.
    • (2004) J. Comput. Appl. Math , vol.172 , pp. 65-77
    • Meerschaert, M.M.1    Tadjeran, C.2
  • 35
    • 33845628108 scopus 로고    scopus 로고
    • A second-order accurate numerical method for the two-dimensional fractional diffusion equation
    • C. Tadjeran and M. M. Meerschaert, A second-order accurate numerical method for the two-dimensional fractional diffusion equation, J. Comput. Phys., 220 (2007), pp. 813-823.
    • (2007) J. Comput. Phys , vol.220 , pp. 813-823
    • Tadjeran, C.1    Meerschaert, M.M.2
  • 36
    • 76549083329 scopus 로고    scopus 로고
    • Maximum-norm error analysis of a numerical solution via laplace transformation and quadrature of a fractional-order evolution equation
    • W. McLean and V. Thoḿee, Maximum-norm error analysis of a numerical solution via Laplace transformation and quadrature of a fractional-order evolution equation, IMA J. Numer. Anal., 30 (2010), pp. 208-230.
    • (2010) IMA J. Numer. Anal , vol.30 , pp. 208-230
    • McLean, W.1    Thoḿee, V.2
  • 37
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: A fractional dynamics approach
    • R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: A fractional dynamics approach, Phys. Rep., 339 (2000), pp. 1-77.
    • (2000) Phys. Rep , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 38
    • 34748865972 scopus 로고    scopus 로고
    • Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations
    • S. Momani and Z. Odibat, Comparison between the homotopy perturbation method and the variational iteration method for linear fractional partial differential equations, Comput. Math. Appl., 54 (2007), pp. 910-919.
    • (2007) Comput. Math. Appl , vol.54 , pp. 910-919
    • Momani, S.1    Odibat, Z.2
  • 39
    • 46049119633 scopus 로고    scopus 로고
    • Implicit finite difference approximation for time fractional diffusion equatuions
    • D. A. Murio, Implicit finite difference approximation for time fractional diffusion equatuions, Comput. Math. Appl., 56 (2008), pp. 1138-1145.
    • (2008) Comput. Math. Appl , vol.56 , pp. 1138-1145
    • Murio, D.A.1
  • 40
    • 79953716814 scopus 로고    scopus 로고
    • An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements
    • K. Mustapha, An implicit finite-difference time-stepping method for a sub-diffusion equation, with spatial discretization by finite elements, IMA J. Numer. Anal., 31 (2011), pp. 719-739.
    • (2011) IMA J. Numer. Anal , vol.31 , pp. 719-739
    • Mustapha, K.1
  • 41
    • 78651501283 scopus 로고    scopus 로고
    • Piecewise-linear, discontinuous galerkin method for a fractional diffusion equation, numer
    • K. Mustapha and W. McLean, Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation, Numer. Algorithms, 56 (2011), pp. 159-184.
    • (2011) Algorithms , vol.56 , pp. 159-184
    • Mustapha, K.1    McLean, W.2
  • 42
    • 84863955397 scopus 로고    scopus 로고
    • Uniform convergence for a discontinuous galerkin, time stepping method applied to a fractional diffusion equation
    • K. Mustapha and W. McLean, Uniform convergence for a discontinuous Galerkin, time stepping method applied to a fractional diffusion equation, IMA J. Numer. Anal., 32 (2012), pp. 906-925.
    • (2012) IMA J. Numer. Anal , vol.32 , pp. 906-925
    • Mustapha, K.1    McLean, W.2
  • 43
    • 84876136167 scopus 로고    scopus 로고
    • Superconvergence of a discontinuous galerkin method for fractional diffusion and wave equations
    • K. Mustapha and W. McLean, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM J. Numer. Anal., 51 (2013), pp. 491-515.
    • (2013) SIAM J. Numer. Anal , vol.51 , pp. 491-515
    • Mustapha, K.1    McLean, W.2
  • 45
    • 61349186917 scopus 로고    scopus 로고
    • Matrix approach to discrete fractional calculus ii: Partial fractional differential equations
    • I. Podlubny, A. Chechkin, T. Skovranek, Y. Q. Chen, and B. M. V. Jara, Matrix approach to discrete fractional calculus II: Partial fractional differential equations, J. Comput. Phys., 228 (2009), pp. 3137-3153.
    • (2009) J. Comput. Phys , Issue.228 , pp. 3137-3153
    • Podlubny, I.1    Chechkin, A.2    Skovranek, T.3    Chen, Y.Q.4    Jara, B.M.V.5
  • 46
    • 0036949980 scopus 로고    scopus 로고
    • Waiting-times and returns in high-frequency financial data: An empirical study
    • M. Raberto, E. Scalas, and F. Mainardi, Waiting-times and returns in high-frequency financial data: An empirical study, Phys. A, 314 (2002), pp. 749-755.
    • (2002) Phys. A , vol.314 , pp. 749-755
    • Raberto, M.1    Scalas, E.2    Mainardi, F.3
  • 47
    • 84868502319 scopus 로고    scopus 로고
    • Compact difference scheme for the fractional sub-diffusion equation with neumann boundary conditions
    • J. C. Ren, Z. Z. Sun, and X. Zhao, Compact difference scheme for the fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., 232 (2013), pp. 456-467.
    • (2013) J. Comput. Phys , vol.232 , pp. 456-467
    • Ren, J.C.1    Sun, Z.Z.2    Zhao, X.3
  • 48
    • 33646191893 scopus 로고    scopus 로고
    • Computational aspects of fem approximation of fractional advection dispersion equations on bounded domains in r2
    • J. P. Roop, Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2, J. Comput. Appl. Math., 193 (2006), pp. 243-268.
    • (2006) J. Comput. Appl. Math , vol.193 , pp. 243-268
    • Roop, J.P.1
  • 49
    • 84868209623 scopus 로고    scopus 로고
    • A second order explicit finite difference method for the fractional advection diffusion equation
    • E. Sousa, A second order explicit finite difference method for the fractional advection diffusion equation, Comput. Math. Appl., 64 (2012), pp. 3141-3152.
    • (2012) Comput. Math. Appl , vol.64 , pp. 3141-3152
    • Sousa, E.1
  • 50
    • 79960988872 scopus 로고    scopus 로고
    • Tau approximate solution of fractional partial differential equations
    • S. K. Vanani and A. Aminataei, Tau approximate solution of fractional partial differential equations, Comput. Math. Appl., 62 (2011), pp. 1075-1083.
    • (2011) Comput. Math. Appl , vol.62 , pp. 1075-1083
    • Vanani, S.K.1    Aminataei, A.2
  • 51
    • 77955927812 scopus 로고    scopus 로고
    • A direct o(n log2 n) finite difference method for fractional diffusion equations
    • H. Wang, K. X. Wang, and T. Sircar, A direct O(N log2 N) finite difference method for fractional diffusion equations, J. Comput. Phys., 229 (2010), pp. 8095-8104.
    • (2010) J. Comput. Phys , vol.229 , pp. 8095-8104
    • Wang, H.1    Wang, K.X.2    Sircar, T.3
  • 52
    • 79957886188 scopus 로고    scopus 로고
    • A fast characteristic finite difference method for fractional advection-diffusion equations
    • K. X. Wang and H. Wang, A fast characteristic finite difference method for fractional advection-diffusion equations, Advances in Water Resources, 34 (2011), pp. 810-816.
    • (2011) Advances in Water Resources , vol.34 , pp. 810-816
    • Wang, K.X.1    Wang, H.2
  • 53
    • 79960431454 scopus 로고    scopus 로고
    • Novel numerical methods for solving the timespace fractional diffusion equation in two dimensions
    • Q. Q. Yang, I. Turner, F. Liu, and M. Ilíc, Novel numerical methods for solving the timespace fractional diffusion equation in two dimensions, SIAM J. Sci. Comput., 33 (2011), pp. 1159-1180.
    • (2011) SIAM J. Sci. Comput , vol.33 , pp. 1159-1180
    • Yang, Q.Q.1    Turner, I.2    Liu, F.3    Ilíc, M.4
  • 54
    • 25444472344 scopus 로고    scopus 로고
    • An explicit finite difference method and a new von neumanntype stability analysis for fractional diffusion equations
    • S. B. Yuste and L. Acedo, An explicit finite difference method and a new von Neumanntype stability analysis for fractional diffusion equations, SIAM J. Numer. Anal., 42 (2005), pp. 1862-1874.
    • (2005) SIAM J. Numer. Anal. , vol.42 , pp. 1862-1874
    • Yuste, S.B.1    Acedo, L.2
  • 55
    • 33646128485 scopus 로고    scopus 로고
    • Weighted average finite difference methods for fractional diffusion equations
    • S. B.Yuste, Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys., 216 (2006), pp. 264-274.
    • (2006) J. Comput. Phys , vol.216 , pp. 264-274
    • Yuste, S.B.1
  • 56
    • 0036887936 scopus 로고    scopus 로고
    • Chaos, fractional kinetics, and anomalous transport
    • G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2002), pp. 461-580.
    • (2002) Phys. Rep , vol.371 , pp. 461-580
    • Zaslavsky, G.M.1
  • 57
    • 84862921732 scopus 로고    scopus 로고
    • Error estimates of crank-nicolson-type difference schemes for the subdiffusion equation
    • Y. N. Zhang and Z. Z. Sun, Error estimates of Crank-Nicolson-type difference schemes for the subdiffusion equation, SIAM J. Numer. Anal., 49 (2011), pp. 2302-2322.
    • (2011) SIAM J. Numer. Anal , vol.49 , pp. 2302-2322
    • Zhang, Y.N.1    Sun, Z.Z.2
  • 58
    • 84865575179 scopus 로고    scopus 로고
    • Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation
    • Y. N. Zhang, Z. Z. Sun, and X. Zhao, Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation, SIAM J. Numer. Anal., 50 (2012), pp. 1535-1555.
    • (2012) SIAM J. Numer. Anal , vol.50 , pp. 1535-1555
    • Zhang, Y.N.1    Sun, Z.Z.2    Zhao, X.3
  • 59
    • 84868451071 scopus 로고    scopus 로고
    • Fractional difference/finite element approximations for the timespace fractional telegraph equation
    • Z. G. Zhao and C. P. Li, Fractional difference/finite element approximations for the timespace fractional telegraph equation, Appl. Math. Comput., 219 (2012), pp. 2975-2988.
    • (2012) Appl. Math. Comput , vol.219 , pp. 2975-2988
    • Zhao, Z.G.1    Li, C.P.2
  • 60
    • 79956124918 scopus 로고    scopus 로고
    • A box-type scheme for fractional sub-diffusion equation with neumann boundary conditions
    • X. Zhao and Z. Z. Sun, A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions, J. Comput. Phys., 230 (2011), pp. 6061-6074.
    • (2011) J. Comput. Phys , vol.230 , pp. 6061-6074
    • Zhao, X.1    Sun, Z.Z.2
  • 61
    • 76449122108 scopus 로고    scopus 로고
    • A note on the finite element method for the spacefractional advection diffusion equation
    • Y. Y. Zheng, C. P. Li, and Z. G. Zhao, A note on the finite element method for the spacefractional advection diffusion equation, Comput. Math. Appl., 59 (2010), pp. 1718-1726.
    • (2010) Comput. Math. Appl , vol.59 , pp. 1718-1726
    • Zheng, Y.Y.1    Li, C.P.2    Zhao, Z.G.3
  • 62
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation
    • P. Zhuang, F. Liu, V. Anh, and I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 46 (2008), pp. 1079-1095.
    • (2008) SIAM J. Numer. Anal , vol.46 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 63
    • 80053638646 scopus 로고    scopus 로고
    • Finite difference approximation for two-dimensional time fractional diffusion equation
    • P. Zhuang and F. Liu, Finite difference approximation for two-dimensional time fractional diffusion equation, J. Algor. Comput. Tech., 1 (2007), pp. 1-15.
    • (2007) J. Algor. Comput. Tech , vol.1 , pp. 1-15
    • Zhuang, P.1    Liu, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.