-
1
-
-
0003508814
-
-
Commande Robuste d'Ordre Non Entier, Hermes
-
Oustaloup A. La Commande Crone 1991, Commande Robuste d'Ordre Non Entier, Hermes.
-
(1991)
La Commande Crone
-
-
Oustaloup, A.1
-
6
-
-
0030651602
-
Analysis and design of fractional-order digital control systems
-
Tenreiro Machado J.A. Analysis and design of fractional-order digital control systems. Syst. Aanl. Model. Simul. 1997, 27:107-122.
-
(1997)
Syst. Aanl. Model. Simul.
, vol.27
, pp. 107-122
-
-
Tenreiro Machado, J.A.1
-
7
-
-
62849085116
-
A central difference numerical scheme for fractional optimal control problems
-
Baleanu D., Defterli O., Agrawal O.P. A central difference numerical scheme for fractional optimal control problems. J. Vib. Control 2009, 15(4):583-597.
-
(2009)
J. Vib. Control
, vol.15
, Issue.4
, pp. 583-597
-
-
Baleanu, D.1
Defterli, O.2
Agrawal, O.P.3
-
8
-
-
84972571026
-
Integrodifferential equation which interpolates the heat equation and the wave equation II
-
Fujita Y. Integrodifferential equation which interpolates the heat equation and the wave equation II. Osaka J. Math. 2000, 27(4):797-804.
-
(2000)
Osaka J. Math.
, vol.27
, Issue.4
, pp. 797-804
-
-
Fujita, Y.1
-
9
-
-
0001780043
-
Fractional diffusion equation and relaxation in complex viscoelastic materials
-
Ginoa M., Cerbelli S., Roman H.E. Fractional diffusion equation and relaxation in complex viscoelastic materials. Physica A 1992, 191:449-453.
-
(1992)
Physica A
, vol.191
, pp. 449-453
-
-
Ginoa, M.1
Cerbelli, S.2
Roman, H.E.3
-
10
-
-
0001407424
-
The fundamental solution of the space-time fractional diffusion equation
-
Mainardi F., Luchko Y., Pagnini G. The fundamental solution of the space-time fractional diffusion equation. Fract. Calculus Appl. Anal. 2001, 4:153-192.
-
(2001)
Fract. Calculus Appl. Anal.
, vol.4
, pp. 153-192
-
-
Mainardi, F.1
Luchko, Y.2
Pagnini, G.3
-
11
-
-
0009481303
-
The fractional diffusion equation
-
Wess W. The fractional diffusion equation. J. Math. Phys. 1996, 27(11):2782-2785.
-
(1996)
J. Math. Phys.
, vol.27
, Issue.11
, pp. 2782-2785
-
-
Wess, W.1
-
12
-
-
0037081673
-
Analysis of fractional differential equations
-
Diethelm K., Ford N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265:229-248.
-
(2002)
J. Math. Anal. Appl.
, vol.265
, pp. 229-248
-
-
Diethelm, K.1
Ford, N.J.2
-
13
-
-
1542425102
-
Numerical solution of the space fractional Fokker-Planck equation
-
Liu F., Anh V., Turner I. Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 2004, 166:209-219.
-
(2004)
J. Comput. Appl. Math.
, vol.166
, pp. 209-219
-
-
Liu, F.1
Anh, V.2
Turner, I.3
-
14
-
-
34547673244
-
Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation
-
Liu F., Zhuang P., Anh V., Turner I., Burrage K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comp. 2007, 191:12-20.
-
(2007)
Appl. Math. Comp.
, vol.191
, pp. 12-20
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
Burrage, K.5
-
15
-
-
31744438550
-
A second-order accurate numerical approximation for the fractional diffusion equation
-
Tadjeran C., Meerschaert M.M., Scheffler Hans-Peter A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 2006, 213:205-213.
-
(2006)
J. Comput. Phys.
, vol.213
, pp. 205-213
-
-
Tadjeran, C.1
Meerschaert, M.M.2
Scheffler, H.-P.3
-
16
-
-
55549107511
-
New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation
-
Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J. Numer. Anal. 2008, 46(2):1079-1095.
-
(2008)
SIAM J. Numer. Anal.
, vol.46
, Issue.2
, pp. 1079-1095
-
-
Zhuang, P.1
Liu, F.2
Anh, V.3
Turner, I.4
-
17
-
-
67349231192
-
Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
-
Liu F., Yang C., Burrage K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2009, 231:160-176.
-
(2009)
J. Comput. Appl. Math.
, vol.231
, pp. 160-176
-
-
Liu, F.1
Yang, C.2
Burrage, K.3
-
18
-
-
25444472344
-
An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
-
Yuste S.B., Acedo L. An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 2005, 42(5):1862-1874.
-
(2005)
SIAM J. Numer. Anal.
, vol.42
, Issue.5
, pp. 1862-1874
-
-
Yuste, S.B.1
Acedo, L.2
-
19
-
-
33646128485
-
Weighted average finite difference metods for fractional diffusion equations
-
Yuste S.B. Weighted average finite difference metods for fractional diffusion equations. J. Comput. Phys. 2006, 216(1):264-274.
-
(2006)
J. Comput. Phys.
, vol.216
, Issue.1
, pp. 264-274
-
-
Yuste, S.B.1
-
20
-
-
36149001420
-
A Fourier method for the fractional diffusion equation describing sub-diffusion
-
Chen C.M., Liu F., Turner I., Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227(2):886-897.
-
(2007)
J. Comput. Phys.
, vol.227
, Issue.2
, pp. 886-897
-
-
Chen, C.M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
21
-
-
44149091687
-
Numerical treatment of fractional heat equations
-
Scherer R., Kalla S.L., Boyadjiev L., Al-Saqabi B. Numerical treatment of fractional heat equations. Appl. Numer. Math. 2008, 58:1212-1223.
-
(2008)
Appl. Numer. Math.
, vol.58
, pp. 1212-1223
-
-
Scherer, R.1
Kalla, S.L.2
Boyadjiev, L.3
Al-Saqabi, B.4
-
22
-
-
17144427014
-
The accuracy and stability of an implicit solution method for the fractional diffusion equation
-
Langlands T.A.M., Henry B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205(2):719-736.
-
(2005)
J. Comput. Phys.
, vol.205
, Issue.2
, pp. 719-736
-
-
Langlands, T.A.M.1
Henry, B.I.2
-
23
-
-
0001983732
-
Some basic problems in continuum and statistical mechanics
-
Springer, Vienna, A. Carpinteri, F. Mainardi (Eds.)
-
Mainardi F. Some basic problems in continuum and statistical mechanics. Fractals and Fractional Calculus in Continuum Mechanics 1997, 291-348. Springer, Vienna. A. Carpinteri, F. Mainardi (Eds.).
-
(1997)
Fractals and Fractional Calculus in Continuum Mechanics
, pp. 291-348
-
-
Mainardi, F.1
-
24
-
-
0021448875
-
To the theoretical explanation of the universal response
-
Nigmatullin R.R. To the theoretical explanation of the universal response. Phys. Status Solidi (B): Basic Res. 1984, 123(2):739-745.
-
(1984)
Phys. Status Solidi (B): Basic Res.
, vol.123
, Issue.2
, pp. 739-745
-
-
Nigmatullin, R.R.1
-
25
-
-
0022492943
-
Realization of the generalized transfer equation in a medium with fractal geometry
-
Nigmatullin R.R. Realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi (B): Basic Res. 1986, 133(1):425-430.
-
(1986)
Phys. Status Solidi (B): Basic Res.
, vol.133
, Issue.1
, pp. 425-430
-
-
Nigmatullin, R.R.1
-
26
-
-
21144451936
-
Response of a diffusion-wave system subjected to deterministic and stochastic fields
-
Agrawal O.P. Response of a diffusion-wave system subjected to deterministic and stochastic fields. Z. Angew. Math. Mech. 2003, 83(4):265-274.
-
(2003)
Z. Angew. Math. Mech.
, vol.83
, Issue.4
, pp. 265-274
-
-
Agrawal, O.P.1
-
27
-
-
30744474991
-
A fully discrete difference scheme for a diffusion-wave system
-
Sun Z.Z., Wu X. A fully discrete difference scheme for a diffusion-wave system. Appl. Num. Math. 2006, 56:193-209.
-
(2006)
Appl. Num. Math.
, vol.56
, pp. 193-209
-
-
Sun, Z.Z.1
Wu, X.2
-
28
-
-
70349662642
-
On the compact difference schemes for heat equation with Neumann boundary conditions
-
Sun Z.Z. On the compact difference schemes for heat equation with Neumann boundary conditions. Numer. Method Partial Differen. Equat. 2009, 25:1320-1341.
-
(2009)
Numer. Method Partial Differen. Equat.
, vol.25
, pp. 1320-1341
-
-
Sun, Z.Z.1
-
29
-
-
0003881703
-
-
Nauka, Moscow, (in Russian); Beijing: Science Press, 1984 (in Chinese)
-
Samarskii A.A., Andreev B.B. Finite Difference Methods for Elliptic Equation 1976, Nauka, Moscow, (in Russian); Beijing: Science Press, 1984 (in Chinese).
-
(1976)
Finite Difference Methods for Elliptic Equation
-
-
Samarskii, A.A.1
Andreev, B.B.2
-
30
-
-
0036650559
-
Solution for a fractional diffusion-wave equation defined in a bounded domain
-
Agrawal O.P. Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynam. 2002, 29:145-155.
-
(2002)
Nonlinear Dynam.
, vol.29
, pp. 145-155
-
-
Agrawal, O.P.1
|