메뉴 건너뛰기




Volumn 34, Issue 10, 2010, Pages 2998-3007

A compact difference scheme for the fractional diffusion-wave equation

Author keywords

Convergence; Diffusion wave system; Finite difference; Solvability; Stability

Indexed keywords

COMPACT DIFFERENCE SCHEME; CONVERGENCE ORDER; DIFFERENCE METHOD; DIFFERENCE SCHEMES; FINITE DIFFERENCE; FRACTIONAL DERIVATIVES; FRACTIONAL DIFFUSION; HIGH ORDER; NUMERICAL EXAMPLE; SOLVABILITY; THEORETICAL RESULT; WAVE SYSTEM;

EID: 77952888765     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2010.01.008     Document Type: Article
Times cited : (228)

References (30)
  • 1
    • 0003508814 scopus 로고
    • Commande Robuste d'Ordre Non Entier, Hermes
    • Oustaloup A. La Commande Crone 1991, Commande Robuste d'Ordre Non Entier, Hermes.
    • (1991) La Commande Crone
    • Oustaloup, A.1
  • 6
    • 0030651602 scopus 로고    scopus 로고
    • Analysis and design of fractional-order digital control systems
    • Tenreiro Machado J.A. Analysis and design of fractional-order digital control systems. Syst. Aanl. Model. Simul. 1997, 27:107-122.
    • (1997) Syst. Aanl. Model. Simul. , vol.27 , pp. 107-122
    • Tenreiro Machado, J.A.1
  • 7
    • 62849085116 scopus 로고    scopus 로고
    • A central difference numerical scheme for fractional optimal control problems
    • Baleanu D., Defterli O., Agrawal O.P. A central difference numerical scheme for fractional optimal control problems. J. Vib. Control 2009, 15(4):583-597.
    • (2009) J. Vib. Control , vol.15 , Issue.4 , pp. 583-597
    • Baleanu, D.1    Defterli, O.2    Agrawal, O.P.3
  • 8
    • 84972571026 scopus 로고    scopus 로고
    • Integrodifferential equation which interpolates the heat equation and the wave equation II
    • Fujita Y. Integrodifferential equation which interpolates the heat equation and the wave equation II. Osaka J. Math. 2000, 27(4):797-804.
    • (2000) Osaka J. Math. , vol.27 , Issue.4 , pp. 797-804
    • Fujita, Y.1
  • 9
    • 0001780043 scopus 로고
    • Fractional diffusion equation and relaxation in complex viscoelastic materials
    • Ginoa M., Cerbelli S., Roman H.E. Fractional diffusion equation and relaxation in complex viscoelastic materials. Physica A 1992, 191:449-453.
    • (1992) Physica A , vol.191 , pp. 449-453
    • Ginoa, M.1    Cerbelli, S.2    Roman, H.E.3
  • 10
    • 0001407424 scopus 로고    scopus 로고
    • The fundamental solution of the space-time fractional diffusion equation
    • Mainardi F., Luchko Y., Pagnini G. The fundamental solution of the space-time fractional diffusion equation. Fract. Calculus Appl. Anal. 2001, 4:153-192.
    • (2001) Fract. Calculus Appl. Anal. , vol.4 , pp. 153-192
    • Mainardi, F.1    Luchko, Y.2    Pagnini, G.3
  • 11
    • 0009481303 scopus 로고    scopus 로고
    • The fractional diffusion equation
    • Wess W. The fractional diffusion equation. J. Math. Phys. 1996, 27(11):2782-2785.
    • (1996) J. Math. Phys. , vol.27 , Issue.11 , pp. 2782-2785
    • Wess, W.1
  • 12
    • 0037081673 scopus 로고    scopus 로고
    • Analysis of fractional differential equations
    • Diethelm K., Ford N.J. Analysis of fractional differential equations. J. Math. Anal. Appl. 2002, 265:229-248.
    • (2002) J. Math. Anal. Appl. , vol.265 , pp. 229-248
    • Diethelm, K.1    Ford, N.J.2
  • 13
    • 1542425102 scopus 로고    scopus 로고
    • Numerical solution of the space fractional Fokker-Planck equation
    • Liu F., Anh V., Turner I. Numerical solution of the space fractional Fokker-Planck equation. J. Comput. Appl. Math. 2004, 166:209-219.
    • (2004) J. Comput. Appl. Math. , vol.166 , pp. 209-219
    • Liu, F.1    Anh, V.2    Turner, I.3
  • 14
    • 34547673244 scopus 로고    scopus 로고
    • Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation
    • Liu F., Zhuang P., Anh V., Turner I., Burrage K. Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comp. 2007, 191:12-20.
    • (2007) Appl. Math. Comp. , vol.191 , pp. 12-20
    • Liu, F.1    Zhuang, P.2    Anh, V.3    Turner, I.4    Burrage, K.5
  • 15
    • 31744438550 scopus 로고    scopus 로고
    • A second-order accurate numerical approximation for the fractional diffusion equation
    • Tadjeran C., Meerschaert M.M., Scheffler Hans-Peter A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 2006, 213:205-213.
    • (2006) J. Comput. Phys. , vol.213 , pp. 205-213
    • Tadjeran, C.1    Meerschaert, M.M.2    Scheffler, H.-P.3
  • 16
    • 55549107511 scopus 로고    scopus 로고
    • New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation
    • Zhuang P., Liu F., Anh V., Turner I. New solution and analytical techniques of the implicit numerical methods for the anomalous sub-diffusion equation. SIAM J. Numer. Anal. 2008, 46(2):1079-1095.
    • (2008) SIAM J. Numer. Anal. , vol.46 , Issue.2 , pp. 1079-1095
    • Zhuang, P.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 17
    • 67349231192 scopus 로고    scopus 로고
    • Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term
    • Liu F., Yang C., Burrage K. Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comput. Appl. Math. 2009, 231:160-176.
    • (2009) J. Comput. Appl. Math. , vol.231 , pp. 160-176
    • Liu, F.1    Yang, C.2    Burrage, K.3
  • 18
    • 25444472344 scopus 로고    scopus 로고
    • An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
    • Yuste S.B., Acedo L. An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 2005, 42(5):1862-1874.
    • (2005) SIAM J. Numer. Anal. , vol.42 , Issue.5 , pp. 1862-1874
    • Yuste, S.B.1    Acedo, L.2
  • 19
    • 33646128485 scopus 로고    scopus 로고
    • Weighted average finite difference metods for fractional diffusion equations
    • Yuste S.B. Weighted average finite difference metods for fractional diffusion equations. J. Comput. Phys. 2006, 216(1):264-274.
    • (2006) J. Comput. Phys. , vol.216 , Issue.1 , pp. 264-274
    • Yuste, S.B.1
  • 20
    • 36149001420 scopus 로고    scopus 로고
    • A Fourier method for the fractional diffusion equation describing sub-diffusion
    • Chen C.M., Liu F., Turner I., Anh V. A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comput. Phys. 2007, 227(2):886-897.
    • (2007) J. Comput. Phys. , vol.227 , Issue.2 , pp. 886-897
    • Chen, C.M.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 22
    • 17144427014 scopus 로고    scopus 로고
    • The accuracy and stability of an implicit solution method for the fractional diffusion equation
    • Langlands T.A.M., Henry B.I. The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 2005, 205(2):719-736.
    • (2005) J. Comput. Phys. , vol.205 , Issue.2 , pp. 719-736
    • Langlands, T.A.M.1    Henry, B.I.2
  • 23
    • 0001983732 scopus 로고    scopus 로고
    • Some basic problems in continuum and statistical mechanics
    • Springer, Vienna, A. Carpinteri, F. Mainardi (Eds.)
    • Mainardi F. Some basic problems in continuum and statistical mechanics. Fractals and Fractional Calculus in Continuum Mechanics 1997, 291-348. Springer, Vienna. A. Carpinteri, F. Mainardi (Eds.).
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics , pp. 291-348
    • Mainardi, F.1
  • 24
    • 0021448875 scopus 로고
    • To the theoretical explanation of the universal response
    • Nigmatullin R.R. To the theoretical explanation of the universal response. Phys. Status Solidi (B): Basic Res. 1984, 123(2):739-745.
    • (1984) Phys. Status Solidi (B): Basic Res. , vol.123 , Issue.2 , pp. 739-745
    • Nigmatullin, R.R.1
  • 25
    • 0022492943 scopus 로고
    • Realization of the generalized transfer equation in a medium with fractal geometry
    • Nigmatullin R.R. Realization of the generalized transfer equation in a medium with fractal geometry. Phys. Status Solidi (B): Basic Res. 1986, 133(1):425-430.
    • (1986) Phys. Status Solidi (B): Basic Res. , vol.133 , Issue.1 , pp. 425-430
    • Nigmatullin, R.R.1
  • 26
    • 21144451936 scopus 로고    scopus 로고
    • Response of a diffusion-wave system subjected to deterministic and stochastic fields
    • Agrawal O.P. Response of a diffusion-wave system subjected to deterministic and stochastic fields. Z. Angew. Math. Mech. 2003, 83(4):265-274.
    • (2003) Z. Angew. Math. Mech. , vol.83 , Issue.4 , pp. 265-274
    • Agrawal, O.P.1
  • 27
    • 30744474991 scopus 로고    scopus 로고
    • A fully discrete difference scheme for a diffusion-wave system
    • Sun Z.Z., Wu X. A fully discrete difference scheme for a diffusion-wave system. Appl. Num. Math. 2006, 56:193-209.
    • (2006) Appl. Num. Math. , vol.56 , pp. 193-209
    • Sun, Z.Z.1    Wu, X.2
  • 28
    • 70349662642 scopus 로고    scopus 로고
    • On the compact difference schemes for heat equation with Neumann boundary conditions
    • Sun Z.Z. On the compact difference schemes for heat equation with Neumann boundary conditions. Numer. Method Partial Differen. Equat. 2009, 25:1320-1341.
    • (2009) Numer. Method Partial Differen. Equat. , vol.25 , pp. 1320-1341
    • Sun, Z.Z.1
  • 30
    • 0036650559 scopus 로고    scopus 로고
    • Solution for a fractional diffusion-wave equation defined in a bounded domain
    • Agrawal O.P. Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynam. 2002, 29:145-155.
    • (2002) Nonlinear Dynam. , vol.29 , pp. 145-155
    • Agrawal, O.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.